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Abstract
Aim of study: To test the use of LiDAR data from a single acquisition in order to estimate volume over_bark variations in a 5-yr 

period of Pinus radiata D. Don.
Area of study: Province of Bizkaia in the Autonomous Community of the Basque Country (Spain). 
Material and methods: Two field plot measurements were made in 2011 and 2015 and two wood volume models (one for each year) 

were fitted using the metric variables of the 2012 LiDAR points cloud. The models were applied to a 26.59 m raster covering the study 
area and the increase in volume at each pixel was calculated by subtraction. 

Main results: The increase in estimated wood volume, when added to the volume of timber extracted in the area during the 5-yr 
period under consideration, yielded an average increase of 13.74 m3 ha-1 yr-1, which corresponds to the average growth of the P. radiata 
in that area. The harvest area estimated using this procedure largely coincides with the actual harvest area in the same period. The value 
of R2 (85%) of the wood volume model for 2011 is similar to that obtained in other studies. However, as expected, the one obtained for 
the wood volume model for 2015 (80%) is significantly lower. 

Research highlights: The increase in wood volume can be estimated using a single LiDAR flight and field data from the 5-yr period 
provided that data from plots subjected to this kind of harvest is included in the models.

Additional keywords: LiDAR forest inventory; wood volume increase; wood volume LiDAR model.
Abbreviations used: CCF (Canopy Cover Fraction); CV (Coefficient of Variation); Dm (Mean Diameter); G (basal area, m2 ha-1); 

Hm (mean height, m); Ho (top height, m); IFN4 (4th National Forest Inventory); LiDAR (Light Detection and Ranging); MAE (Mean 
Absolute Error); ME (Mean Error); RMSE (Root Mean Square Error); Vob (stem volume over bark, m3 ha-1).
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Introduction

Over recent years, there has been increasing interest 
in the evaluation of the forestry variables, such as 
biomass and timber volume, especially within the 
context of the Kioto protocol (Lindner & Karjalainen, 
2007; Zhang et al., 2007). The quantification of these 
forestry parameters reveals the structure, operation and 
dynamics of forestry ecosystems and their assessment 
as an energy resource. For this reason, it is essential 
to determine these parameters in forestry management 
(Torres et al., 2010; Pan et al., 2011). In most European 
countries, the increase in these variables is greater than 

the amount harvested on an annual basis, converting 
forests into major carbon and biodiversity reserves 
(Mateos et al., 2016). One of the key indicators for 
assessing forestry conditions is the estimation of 
forestry parameters, such as timber volume, but the 
usual methods for estimating this parameter require 
prolonged fieldwork (Song et al., 2016). A large part of 
the forestry bibliography relating to this subject focuses 
on adjustment of timber volume equations by means of 
regression for geographical regions and specific tree 
species (Nilsson, 1996; Hyyppä et al., 2001; Popescu 
et al., 2003; Holmgren, 2004; Zianis et al., 2005; 
Dalponte et al., 2009; Latifi et al., 2010; Magnussen et 
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al., 2010). The high cost of sampling, especially when 
this is done in inaccessible areas, limit in many cases 
the establishment of sufficient plots to determine real 
variability (Popescu, 2007). 

The link between the parameters obtained in forestry 
inventories and LiDAR (Light Detection And Ranging) 
data through regression models offers an attractive 
approach to estimating forestry variables on a regional, 
continental or global scale (Li & Weiskittel, 2010; 
Næsset, 2011; Babcock et al., 2015). Over recent 
decades, LiDAR technology has become an extremely 
powerful tool for estimating the biophysical properties 
of the vegetation. This is an active, non-destructive 
remote sensing method that offers a better alternative for 
the study of the structural variables of the canopy due to 
the penetrating capacity of the laser pulse through gaps 
in the vegetation (Leiterer et al., 2015; Giannico et al., 
2016; Koenig & Höfle, 2016). The recording of multiple 
returns allows us to obtain sufficient three-dimensional, 
morphological information at a broad range of space 
and time scales of forestry variables such as the height 
of trees (Dean et al., 2006; Popescu & Zhao, 2008), the 
basal area and the diameter of the crown (Giannico et 
al., 2016), volume and aboveground biomass (Popescu, 
2007; Jochem et al., 2010; Zolkos et al., 2013), and the 
density and classification of groups of forest species 
(Brandtberg, 2007; Zhang et al., 2016). Moreover, the 
use of LiDAR data offers the possibility of reducing 
the number of required sampling plots (Maltamo et al., 
2007; Montaghi et al., 2013) and the accuracy obtained 
with LiDAR is greater than that reached with traditional 
inventory techniques (Condes et al., 2013; Watt et al., 
2013; Maltamo et al., 2014). 

Now that LiDAR technology has demonstrated its 
efficiency and accuracy in estimating most forestry 
variables, today the challenge is to try to take advantage 
of this tool in order to predict the annual growth of the 
plant structure at a large scale. The ease with which data 
can be updated allows us to readjust the estimations 
and quickly assess changes or disturbances in forest 
stands by estimating their development over time, or 
establish comparisons between different areas with 
a simple update of the forestry cartography (Riaño et 
al., 2004). The bibliography contains numerous studies 
that used bi-temporal data from two LiDAR flights to 
estimate plant growth (Yu et al., 2004, 2006; Næsset & 
Gobakken, 2005; Hopkinson et al., 2008; Vepakomma 
et al., 2011; Fekety et al., 2014; Cao et al., 2016; Song 
et al., 2016). Some researchers have estimated the 
growth of trees in forests on the basis of the differences 
in height derived from LiDAR data in flights separated 
by a 2-yr interval (Næsset & Gobakken, 2005; Yu et 
al., 2006; Vepakomma et al., 2011; Cao et al., 2016). 
These studies allowed the growth in different forestry 

parameters to be calculated, such as the basal area 
or volume (Næsset & Gobakken, 2005) as well as 
estimations of the vertical and lateral growth of trees 
(Vepakomma et al., 2011). Other researchers have 
used multi-temporal LiDAR datasets to estimate the 
growth of forests (Yu et al., 2006; Hopkinson et al., 
2008; Fekety et al., 2014; Cao et al., 2016; Song et 
al., 2016). However, we have not found any previous 
studies that use the data from a single LiDAR flight to 
estimate the increase in timber volume over a period 
of several years by fitting models that relate the timber 
volume at different moments in time with the metrics 
of the heights of a single LiDAR points cloud obtained 
at the beginning of the period. In view of the high cost 
of the flight, the optimisation of the long-term use of 
LiDAR data gathered during a campaign may represent 
a considerable economic advantage.

Material and methods 

This study assesses the application of data from 
the last LiDAR flight made over the Autonomous 
Community of the Basque Country in 2012 to evaluate 
the growth of volume over bark (Vob) during 5 years 
on stands of Pinus radiata D. Don (PR) through the 
comparison of estimated volumes by applying fitted 
models to relate separately the field data obtained with 
5 years of difference with the metrics of the LiDAR 
points cloud at the beginning of the period. 

The area based approach (ABA) for forest inventory 
applications using LiDAR has been utilised in this study, 
following the methodology applied by other researchers 
(Hopkinson et al., 2008; Jochem et al., 2010; Yu et al., 
2010). In order to get a better understanding of how 
LiDAR and the set of field data can be used to map Vob, 
we used two sets of field data gathered in 2011 and 2015 
respectively. This involves analysing and validating the 
proposed Vob models, fitting the corresponding models 
for both sets of data in accordance with the metric 
variables of the LiDAR points cloud obtained in the 
2012 LiDAR flight. The results will allow us to assess 
whether it is possible to estimate –with an acceptable 
margin of error– the growth in the timber volume based 
on field data obtained over a 5-yr period and the metrics 
of a single LiDAR flight made during this time could 
optimise the available resources and would represent 
a large decrease in the cost compared to traditional 
estimation methods.

Study area

The study area lies in the Province of Bizkaia in 
the Autonomous Community of the Basque Country 
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(ACBC) in the north of Spain. Its center is the 
municipality of Muxika and data from the surrounding 
municipalities between the coordinates 2º 30’ – 2º 54’ 
west and 43º 06’ – 43º 24’ north are also used. The 
average height is 230 m. The mean annual rainfall is 
1277 mm and the mean annual temperature is 13.8 ºC. 
Frosts are infrequent and no physiological drought is 
apparent. With regard to the silviculture applied in the 
area, the rotation cycle is, on average, 35 yrs, varying 
between 30 and 40 according to the site quality and 
the price of wood at the time when harvest takes place. 
Clear cutting are applied followed by repopulation with 
initial densities of 1300-1600 trees ha-1. Between the 
7th and 9th year, non-commercial thinning takes place, 
eliminating 500 trees ha-1 and pruning up to 2.5 m on the 
trees that have not been eliminated. Between the 12th 
and 15th year, the first commercial thinning is carried 
out, leaving between 500 and 700 trees ha-1. Between 
the 17th and 20th year, the second commercial thinning 
is applied, leaving between 400 and 500 trees ha-1. The 
third thinning is carried out between the 22nd and 25th 
year, leaving between 250 and 300 trees for the clear 
cutting. The total production is on average 550 m3 
ha-1 in one rotation, and therefore the average growth 
is 14.85 m3 ha-1 yr-1. Volumes and growths of 3153 ha 
occupied by P. radiata in the municipality of Muxika 
were estimated. The area in which data was gathered 
and results were obtained can be seen in Fig. 1.

2011 Field data

Two sets of data were used according to the year 
in which these were gathered. In order to fit the 

wood volume model from 2011, data was used from 
the Fourth National Forestry Inventory (IFN4) of 
the Province of Bizkaia (http://www.euskadi.eus/
inventario-forestal-2011/web01-a3estbin/es/). Initially, 
all the plots included in the IFN4 and located within 
the boundaries of the municipality of Muxika and 
neighboring municipalities were selected. From these 
plots, 111 located within the area occupied by P. radiata 
were selected, according to the 2010 Forestry Map of 
the Basque Country (http://www.euskadi.eus/mapa-
forestal-del-pais-vasco-ano-2010/web01-a2hestat/es/). 
From these 111 plots, 13 were eliminated as they had 
no data or did not have P. radiata as their main species. 
From the remaining 98, those that showed a clear 
incompatibility between the field data and the vegetation 
visible in the aerial photography were eliminated. This 
occurred because the coordinates of the centers of the 
plots were taken with GPS navigators that did not allow 
differential correction and had a potential error of more 
than 12 m. For the same reason, those plots in which 
the difference between the dominant height of the field 
trees and the 95th percentile of the height of the points 
of its LiDAR points cut was greater than 12 m were 
eliminated. Furthermore, those plots with a basal area 
(G) greater than 70 m2 ha-1 were also eliminated as 
these were not considered possible for this species in 
this area. Following the application of these filters, only 
8 additional plots were discarded. Therefore, 90 plots 
were used finally in this study. Their location can be 
seen in Fig. 1.

IFN4 plots are of variable radius, so that a tree will or 
will not be measured in accordance with its diameter and 
the distance to the center of the plot. For each selected 

Figure 1. The area in which the study was carried out. The area in which field data were gathered is shown in green. The 
area in which the study was conducted and the results were obtained is shown in red. The points correspond to the location 
of the IFN4 plots selected for the study.

http://www.euskadi.eus/inventario-forestal-2011/web01-a3estbin/es/
http://www.euskadi.eus/inventario-forestal-2011/web01-a3estbin/es/
http://www.euskadi.eus/mapa-forestal-del-pais-vasco-ano-2010/web01-a2hestat/es/
http://www.euskadi.eus/mapa-forestal-del-pais-vasco-ano-2010/web01-a2hestat/es/
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plot, the number of trees per hectare (N, trees ha-1), the 
dominant height (Ho, m) defined as the mean height 
of the 100 thickest trees per hectare, the mean height 
(Hm, m), the mean diameter (Dm, cm), the basal area 
(G, m2 ha-1) and the wood volume over bark (Vob, m3 

ha-1) were calculated. For the last of these calculations, 
the Excel add-in CUBIFOR (Rodríguez et al., 2008) 
was used. With the aim of reducing data-gathering 
costs for subsequent years, a Vob tariff was adjusted 
in accordance with G and Ho. In this way, in order to 
calculate volumes in measured plots it is sufficient to 
measure both variables quickly and economically. The 
Vob estimated with this tariff will be considered as the 
field Vob for the entire study. 

2015 Field data

In order to be able to assess the possibility of using 
LiDAR data from a single flight when estimating the 
forestry resources in subsequent years, 55 field plots 
were measured during the month of December, 2015. 
So as to prevent any lack of accuracy in locating the 
center of the plot from affecting the estimation of 
the final results, those areas with a sufficient level of 
uniformity were selected so that a displacement of up to 
10 m in the center of the plot would have only a slight 
effect on the final result.

With the aim of locating uniform areas, two influential 
variables were selected, the first being Canopy Cover 
Fraction (CCF), as a percentage of the surface covered 
by the canopy of trees, and the second being the height 
of the vegetation. The data gathering area was divided 
with a 10 m-sided grid and in each 100 m2 square and 
the CCF was estimated as a percentage of first returns, 
higher than 3 m over the total of first returns of the 
LiDAR points contained in it. For each grid, the typical 
deviation and the average of its CCF value and those 
of the 8 surrounding squares were calculated and those 
squares in which the coefficient of variation (CV) was 
not greater than 30% were selected if the CCF was 
lower than 70% and those in which the CV was greater 

than 10% if the CCF was greater than 70%. To estimate 
the height of the vegetation, the data gathering area was 
divided with a 10 m-sided grid and in each grid cell, 
the height of the 95th percentile of the heights of the 
LiDAR points contained in it was calculated. For each 
grid cell, the mean and typical deviation of its value and 
that of the 8 surrounding cells was calculated. Those 
grid cells in which the CV was not greater than 20% 
were selected if the 95th percentile was less than 8 m; 
those grid cells in which the CV was not greater than 
10% were selected if the 95th percentile was between 
8 and 12 m, and those in which the CV was not greater 
than 5% were selected if the 95th percentile was 
greater than 12 m. Only those grid cells that met both 
conditions were candidates for containing a plot center 
for data gathering. In accordance with these conditions, 
55 points were found and located in the field with a 
GPS navigator. From each point, the dominant height 
was measured as the average of the thickest three 
trees within a radius of 9.77 m from the point that 
corresponds to a plot with a surface area of 300 m2. The 
basal area was also measured by relascope inventory 
from the center of the plot. The measurement of these 
two variables allows the field work to be done cheaply 
and quickly. Later, the Vob was calculated for each plot 
applying the Vob tariff in accordance with Ho and G 
calculated with the plots from the IFN4. The values and 
statistics of the variables used in the measurements of 
the plots from the IFN4 (2011) and the new plots (2015) 
are shown in Table 1.

LiDAR Data

The LiDAR data used came from the flight over the 
Autonomous Community of the Basque Country in 
July, 2012, with a mean density of 1 pulse m-2 and up to 
4 returns per pulse.

For the entire data-gathering area, those las format 
files that contained a selected plot from the IFN4 or 
some of the plots measured in the field in 2015 and 
all the sheets contained partially or completely in the 

Table 1. Summary statistics of the stand variables of Pinus radiata used to develop a model to predict stem 
volume in plantations in Muxika (northern Spain)

Year 2011 Plots (n = 90) Year 2015 Plots (n=55)

Ho G Vob Ho G Vob
Mean 23.53 28.53 273.88 26.06 27.65 278.78
Standard deviation 6.99 11.47 165.36 8.10 6.41 127.31
Minimum 7.84 3.66 11.68 12.70 15.00 92.57
Maximum 37.92 56.35 693.65 46.20 45.00 610.24
Range 30.08 52.69 681.97 33.50 30.00 517.67

H0: dominant height (m). G: stand basal area (m2 ha-1). Vob: stand volume over bark (m3 ha-1)
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municipality of Muxika were selected. All the selected 
las format files were normalized by subtracting from 
the height Z of each point the corresponding height of 
the 1 m × 1 m Digital Terrain Model (DTM) of the grid 
cell published by the Basque Government (ftp://ftp.geo.
euskadi.net/lidar/). Once the points clouds had been 
normalized, the corresponding cylinders were clipped 
to the projection of each one of the plots, the center of 
which was that of the IFN4 plots and radius 15 m. In 
this way, 90 sets of LiDAR points coinciding with the 
90 IFN4 plots were obtained. For example, the cut of 
plot 559 can be seen in Fig. 2. 

In order to make this clip, the PolyClipData tool of 
the FUSION program (http://forsys.sefs.uw.edu/fusion/
fusionlatest.html) was used. Subsequently, the statistical 
parameters that describe each of the points clouds 
corresponding to plots were calculated. The results of 
the LiDAR points cloud statistics were compared to the 
results of the field measurements and volumes for each 
plot. In this way a table was obtained in which each 
row contains the field data and Vob of each IFN4 plot 
and the statistics corresponding to its LiDAR points 
cut. The selected plots and their data were separated in 
two groups of 60 and 30 plots respectively. The first of 
these was used to fit the model that relates the Vob with 
the statistics of the LiDAR points cloud and the second 
was used to validate this model. In order to separate 
the two groups, a random number between 0 and 100 
was generated for each plot. Those plots with assigned 
numbers of under 65 were used to fit the model; those 
plots with a number over 65 were kept in order to 
validate the model. The same classification was used 
for adjusting the Vob tariff in accordance with G and 
Ho. The location of the plots of the model and of the 
validation group can be seen in Fig. 3.

The same procedure was followed using the LiDAR 
data for 2011 and the plots measured in the field in 
2015. Fifty-five cuts of LiDAR points were obtained 
with their statistics and 55 Vob data calculated for 
each plot measured in 2015. Forty plots were selected 
to fit the model and the validation group was formed 
by the 15 plots. It should be pointed out that none of 
the plots measured in 2015 was located in areas in 
which clear cutting had been performed during the 5-yr 
period 2011-2015. This meant that the fitted model did 
not consider the possibility of volume 0. Some plots 
were indeed located in areas that had been subjected to 
thinning during the 5-yr period.

Clear cutting and thinning data in Muxika during 
the period 2011-2015

Clear cutting and thinning data in the municipality of 
Muxika between 2011 and 2015 was gathered in order 

to be able to use this to estimate the growth in wood 
volume during the period 2011-2015. Data on harvest 
provided by the Provincial Council of Bizkaia (the 
administrative office that manages the forest stands of 
the Province of Bizkaia), can be seen in Table 2.

In order to adjust the Vob tariff per hectare in 
accordance with the stand variables G and Ho, 90 plots 
of the IFN4 were used. Of these, 60 were used to fit the 
model and 30 to validate this. Plots were assigned to the 
model group or the validation group according to the 
random number assigned to them. In order to build the 
tariff, the STATGRAPHICS (http://www.statgraphics.
com) was used. Using the regression model selection 
option, Vob was used as a dependent variable and 

Figure 2. Normalized points cloud cut from plot 559 of 
the IFN4. The color of the points depends on their height 
above the ground.

Figure 3. Location of the IFN4 plots used to fit the model 
(green points) and those used in the validation (red points)

ftp://ftp.geo.euskadi.net/lidar/
ftp://ftp.geo.euskadi.net/lidar/
http://forsys.sefs.uw.edu/fusion/fusionlatest.html
http://forsys.sefs.uw.edu/fusion/fusionlatest.html
http://www.statgraphics.com
http://www.statgraphics.com
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Ho, Ho2, G, G2 and Ho*G were used as independent 
variables (Table 3). The models were examined to 
determine whether all the terms should be retained in the 
final regression equations. Once the stepwise regression 
had been applied, the Mallows’ Cp selection method was 
used as the best selection technique (Mallows, 1973). 
Only models whose parameters were significant at a 
given level (in our case, 5%) were taken into account.

The best model was chosen with the following 
indicators: adjusted determination coefficient (R2), root 
mean square error (RMSE) and mean absolute error 
(MAE). The heterocedasticity was examined visually, 
by plotting residuals as a function of predicted values 
and using the Breusch-Pagan test (Breusch & Pagan, 
1979). Moreover, the non-autocorrelation condition was 
checked using the Durbin-Watson test (Durbin & Watson, 
1971). The estimations of the different fitted models 
were analyzed by means of numerical and graphical 
analysis. Once the model had been fitted, the Vob in each 
plot from the IFN4 was calculated in accordance with Ho 
and G. This value was the one considered for each plot as 
a Vob value measured in the field and was the dependent 
variable in the stem volume models in accordance with 
LiDAR statistics for 2011 and 2015.

Fitting the stem volume model based on 2011 
LiDAR data (Vob_2011)

Linear models were used to establish empirical 
relationships between field measurements and LiDAR 
variables. In order to fit the Vob for 2011, the Vob 
calculated in each IFN4 plot based on the model fitted 
with the independent variables G and Ho was used as the 
dependent variable. In the STATGRAPHICS regression 

model selection procedure, all statistics relating to 
the height of the points obtained with the FUSION 
CloudMetrics order were included as independent 
variables. In order to fit the model, 60 plots from the 
IFN4 were used. The other 30 plots were used to validate 
the model. The highest model efficiency in accordance 
with the LiDAR metrics was obtained by ordering the 
proposed combinations according to the best Mallows 
Cp. The same goodness-of-fit test utilized for the models 
in the previous section was used. Likewise, for the 
selected models, a residuals analysis was made for the 
selected models, with the aim of identifying evidence 
of normality deviations, lack of adjustment and/or 
heterocedasticity. 

Fitting the 2015 stem volume model (Vob_2015)

In order to fit the Vob for 2015, the Vob was used as 
dependent variable, calculated in each one of the 55 plots 
measured in the field in 2015 with the previously adjusted 
tariff of G and Ho. In order to maintain the uniformity of 
the results obtained, the model was fitted with the same 
independent variable as the Vob_2011 model, in other 
words, the 70 percentile of the height of the points cloud 
was used. In order to fit the model, 40 plots were used. 
The other 15 plots were used to validate the model.

Application of LiDAR data to Vob models 

In order to apply the wood volume models obtained, 
the area occupied by P. radiata in Muxika (3,153 ha) was 
separated and a grid made up of 26.59-m grid cells was 
superimposed. Each grid cell had a surface area equal 
to a circular plot with a 15-m radius. Therefore, each 

Table 2. Clear cutting and thinnig data in Muxika between 2011 and 2015.

Year Vob
(m3)

Clear cutting
(m3)

Thinning
(m3)

Total area
(ha)

Clear cutting area 
(ha)

Thinning area 
(ha)

2011 11,813 5,746 6,067 199.34 18.35 180.99
2012 31,814 23,860 7,954 259.12 57.73 201.39
2013 21,663 18,755 2,908 132.31 53.95 78.36
2014 29,264 23,003 6,261 219.89 63.18 156.71
2015 41,070 33,391 7,679 257.48 87.5 169.98
Total 135,624 104,755 30,869 1,068.14 280.71 787.43

Table 3. Stem volume models evaluated

Equation Model tested1 R2 Mallows 
Cp

Breusch-Pagan
Homoscedasticity test

Durbin-Watson
Auto-correlation test

[1] Vob = β0 + β1*H0 78 1721 7.28 (p<0.05) 2.07 (p >0.05)
[2] Vob = β0 + β1*G 89 872 2.04 (p>0.05) 1.76 (p >0.05)
[3] Vob = β0 + β1*H0*G 99 0.51 23.94 (p<0.05) 2.16 (p >0.05)

1Vob: stem volume over bark (m3 ha-1). H0: dominant height (m). G: basal area (m2 ha-1). β0, β1: model parameters
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grid cell was of 706.86 m2. The cells that intersected the 
polygons corresponding to the surface areas of P. radiata 
according to the forestry map of the Basque Country, 
were singled out from the vector layer. In this way, a 
26.59-m grid mask was obtained with the location of P. 
radiata forests in the municipality of Muxika. Parallel to 
this, the GridMetrics procedure of FUSION was applied 
to all the LiDAR files that intersected the municipality of 
Muxika. In order to apply GridMetrics, a grid cell size 
equal to that of the 26.59-m grid was used. The work 
process diagram can be seen in Fig. 4. 

Results

Vob tariff per hectare

The lowest Mallows Cp value was 0.51. This 
corresponded to the model (3) that had a single 
independent variable: Ho*G (Table 3). This is a 
model with a high R2 (0.99), although it presents 

heteroscedasticity (p<0.05) for the Breusch-Pagan test. 
This occurs because the higher the volume value, the 
greater the absolute error. 

Vob_2011

The lowest Cp value was 3.28 and this corresponded 
to the model that had the value of the height of the 
percentile 70 (h70) of the points cloud (Eq. [4], Table 4) 
as single independent variable. This model had a good 
R2 (0.85) but was heterocedastic with a p< 0.05 in the 
Breusch Pagan test. Once again, this occurs because the 
higher the volume value, the greater the absolute error.

Vob_2015

The stem volume model for 2015 based on LiDAR 
data is shown in Table 5.

The models obtained allowed us to estimate the total 
volume over bark with a different degree of accuracy, 
although in all cases it is quite high. The best regression 

Figure 4. Work process diagram
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uniformity of the waste of the three fitted models, no 
evidence was found of any non-compliance with the 
assumptions. 

The mean values of volume with bark of the three 
models are shown in Table 8.

Results of applying the Vob models to the entire 
surface area of Muxika

By applying the volume per hectare of wood with 
bark models to the entire surface area of Muxika for 
2011 and 2015, the results shown in Table 9 were 
obtained.

The results of the distribution of the Vob for 2011 
and 2015 and the difference between both can be seen 
in Fig. 6.

Annual increase in volume over bark 

The difference between the Vob estimated for 
2015 and that estimated for 2011 is 81,603 m3 for the 
entire surface area of P. radiata in the municipality of 

model corresponds to the Vob model based on stand 
variables (H0, G). This model presents the highest 
value of the adjusted coefficient of determination 
(R2

adj = 99), followed by the volume estimation model 
in accordance with LiDAR metrics (Vob_2011, R2

adj 
= 85) and lastly, the model based on the field data 
obtained in 2015 (Vob_2015, R2

adj = 80) (Table 6). 
Likewise, the lowest values of RMSE, MAE and ME 
corresponded to the best model (Vob) obtaining in 
this the RMSE values (13.61–12.70), MAE (10.04–
9.86) and ME = (0–3.49) obtained in the adjustment 
plots and the validation, respectively (Table 6). 
Models Vob_2011 and Vob_2015 exhibited very 
similar values in RMSE (~ 60 m3 ha-1) and MAE (46 
m3 ha-1). Residual plots for Vob prediction indicated 
that the proposed model was appropriate, as can be 
seem from the predicted versus the observed values 
for Vob in Fig. 5.

Each of the adjusted equations showed good fit 
statistics. All the parameters were significant at a 
confidence level of 95% (Table 7). In the graphical 
evaluation of the assumptions of normality and 

Table 4. Stem volume models for 2011 based on LiDAR data

Equation Model tested R2 Mallows 
Cp 

Breusch-Pagan
Homoscedasticity 

test

Durbin-Watson
Auto-correlation 

test

[4] Vob_2011 = β0 + β1*h70 85 3.28 6 (p< 0.05) 1.71 (p> 0.05)
[5] Vob_2011= β0 + β1*h40 + β2*h70 85 3.68 4.66 (p< 0.05) 1.77 (p> 0.05)
[6] Vob_2011= β0 + β1*h75 85 4.52 6.31 (p< 0.05) 1.75 (p>0.05)
[7] Vob_2011= β0 + β1*h80 85 5.89 6.69 (p< 0.05) 1.79 (p>0.05)

Vob: Stem volume over bark (m3 ha-1). h70, h75, h80 and h40 : percentiles 70, 75, 80 and 40 of the height of the points 
cloud. R2: coefficient of determination. β0, β1 β2: parameters of the models.

Table 5. Stem volume models for 2015 based on LiDAR data

Equation Model tested R2 Mallows 
Cp

Breusch-Pagan
Homoscedasticity 

test

Durbin-Watson
Auto-correlation 

test

[8] Vob_2015 = β0 + β1 * h70 80 -- 3.50 (p>0.05) 2.12 (p>0.05)
Vob: Stem volume over bark (m3 ha-1). h70: percentile 70 of the height of the points cloud. R2: coefficient of 
determination. β0, β1: parameters of the models.

Table 6. Fits of the models 
Model

Equation
Fit Validation

n R2 adj RMSE
(m3 ha-1) MAE ME n RMSE

(m3 ha-1) MAE ME

[3] 60 99 13.61 10.04 0 30 12.70 9.86 3.49
[4] 60 85 62.54 46.24 0 30 68.00 51.75 -3.12
[8] 40 80 58.62 45.63 0 15 67.38 55.33 21.11

n: number of plots. R2 adj : adjusted coefficient of determination. RMSE: root mean squared error. 
MAE: mean absolute error; ME: mean error
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Figure 5. Chart showing models for stem volume and waste Vob model (a), Vob_2011 model (b) and Vob_2015 model (c)

Table 7. Parameter estimates, standard errors of the fitted models

Model Dependent 
variable

Independent 
variable

Parameter 
estimate

Standard 
error t-value p > |t|

Vob (Eq. [3]) Vob Intercept
 H0*G

    -0.143
     0.373

  3.478
  0.004

 -0.041
92.093

   0.967
 <0.001

Vob_2011 (Eq [4]) Vob_2011 Intercept
h70

-155.761
   23.975

24.675
  1.294

 -6.312
18.531

 <0.001
< 0.001

Vob_2015 (Eq. [8]) Vob_2015 Intercept
H70

    -2.143
   16.076

24.176
  1.251

 -0.088
12.853

   0.930
 <0.001

Vob: Stem volume (m3 ha-1); G: Basal area (m2 ha-1); Ho: Dominant height (m); h70: 70th percentile of points height for cell.

Table 8. Mean stem volume in the models analyzed

Model
Fit Validation

n m3 ha-1 n m3 ha-1

Vob 60 276.31 30 269.03
Vob_2011 60 276.31 30 269.03
Vob_2015 40 284.84 15 262.60

a)

b)

c)
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Muxika. Therefore, the annual mean growth of the 
volume over bark (ΔVob) obtained during the 5-yr 
period was 5.14 m3 ha-1 yr-1 (Table 9). 

The forestry harvests data shows that the wood 
volume extracted during the period 2011-2015 was 
135,624 m3 (Table 2) and therefore, on average, 8.60 
m3 ha-1 were extracted. The estimated mean growth 
for the period 2011 - 2015 is 13.74 m3 ha-1 yr-1 , this 
being the value obtained by adding the estimated 
mean growth in the aforementioned period (ΔVob = 
5.14 m3 ha-1 yr-1) and the mean volume extracted 8.6 
m3 ha-1.

As can be seen in Fig. 7, the fitted models predict 
the greatest increases for Vob of between 0 and 150 
m3 ha-1. The increases diminish gradually for Vob 
values close to 300 m3 ha-1 and become negative 
above that value.

Table 9. Application of the Vob models to the entire surface area of Muxika 

Year Vob 
(m3 ha-1)

Mean Vob 
(m3 ha-1)

Vob increase 2011-2015
(m3 ha-1)

Annual mean increase Vob 
(m3 ha-1 yr-1)

2011 712021 225.80 - -
2015 793084 251.51 81603 5.14

Figure 6. Distribution of the Vob in 2011 (a), distribution of the Vob in 2015 (b), and 
difference 2015 Vob minus 2011 Vob (c).

Discussion

Both the R2 and the RMSE of the model fitted for 
the Vob of 2011 are similar to those published by other 
authors under similar conditions (Packalen et al., 2011; 
Stone et al., 2011; Tonolli et al., 2011; Watt et al., 
2013). The values of R2 and RMSE of the Vob model 
for 2015 are more unfavorable than those obtained 
under similar working conditions. This is due to the fact 
that in the preparation of the Vob_2011 model, the field 
data and the LiDAR data were almost contemporary, 
i.e., they were taken just a few months apart. However, 
for the fit of the Vob_2015 model, the field data is more 
than four years older than the LiDAR data. This time 
difference causes a reduction in the ability to predict the 
fitted model, even more so if we take into consideration 
that P. radiata is a fast-growing species and is normally 



LiDAR data during multi-annual periods for estimating forestry variables

Forest Systems December 2017 • Volume 26 • Issue 3 • e019

11

subjected to intensive forestry regimes that bring about 
considerable changes within a short time span.

With regard to adapting the results obtained, the 
estimated mean growth being 13.74 m3 ha-1 yr-1, the 
volume will have increased 68.7 m3 ha-1 on average 
during the period 2011-2015. Therefore, in those places 
where harvest was more than 68.7 m3 ha-1, the growth 
has failed to offset the volume extracted and as a result 
will have less volume in 2015 than in 2011. These are 
the grid cells with a negative growth value. On the 
other hand, the mean volume extracted in a thinning 
operation according to Table 2 is 39.2 m3 ha-1. It is for 
this reason that the areas that were subjected to thinning 
between 2011 and 2015 must correspond to cells with a 
volume difference of less than 29.5 m3 ha-1 as the 68.7 
m3 of growth in the 5 yrs, minus the 39.2 m3 extracted 
in thinning operations will have allowed this amount 
to accumulate on average in these areas. Those grid 
cells with a volume difference of under that amount 
add up to 1,552 ha. This is the surface area in which, 
according to the fitted models, some kind of harvest 
took place during 2011 and 2015 and coincides with 
those contributed as real registered harvest: 1068.1 ha. 
As shown in Table 1, the minimum Vob of the plots 
measured in the field data taken in 2015 was 90.84 m3 

ha-1 and, therefore, no plot in which clear cutting had 
taken place was measured. Consequently, the 2015 
model cannot detect the clear cutting that took place 
during this period and assimilates these to intensive 
thinning, and therefore the surface area of harvest 
estimated by the models includes both clear cutting and 
thinning. This circumstance must be borne in mind for 
subsequent applications of the method and those plots 
subjected to clear cutting during the period of use of 
LiDAR data. It can be seen, moreover, that the areas 
in which the models predict greater harvest intensity 
correspond to those that had a higher volume in 2011. 
These areas are the ones in which third thinnings and 
clear cuttings (being the harvest of greater weight) are 
normally carried out. Both the assimilation of clear 

cutting to intensive thinning and the fact that the areas 
that were actually thinned or clearcut after July 2012 
are captured in the raster models, which are based on 
a Lidar dataset from July 2012, can be explained when 
analyzing the diagram resulting from a comparison of 
Vob_2011 and the growth between 2011 and 2015 (Fig. 
7). 

One of the aspects that must be clarified in subsequent 
studies is the development in growth in annual periods 
between both ends of the 5-yr interval. In this study it 
has not been possible to deal with this question due to a 
lack of field data in this intermediate period. Moreover, 
due to a lack of funding, locating the IFN plots was 
not possible for the second gathering of field data and 
for this reason the samples for 2011 and 2015 were 
different. Even though this circumstance might reduce 
the validity of the results obtained, it was decided to 
begin the study to verify whether this methodology 
could be used in subsequent studies with higher funding 
levels. Once sufficient funds are available, field data 
must be taken on an annual basis and in the same plot 
sample.

With regard to the multi-annual use and estimation 
of growth using a single LiDAR flight, no published 
references have been found concerning similar 
methods. This is the main contribution of this paper: 
the use of LiDAR data in successive years through the 
updating of the mass conditions with fast, reliable and 
cost-effective annual field data gathering. In this way, 
the investment involved in LiDAR data gathering is 
justifiable as this can be amortized in several years.

Fitted models that relate the descriptive variables 
of the points cloud of a LiDAR flight with the wood 
volume field data obtained in field plots with a 5-yr 
interval, provides a good approximation to the growth 
values produced in masses of P. radiata in this region 
(13.74 m3 ha-1 yr-1), as well as an estimation of the 
surface area subjected to harvest in this period. This 
allows the multi-annual use of LiDAR data gathered in 
a campaign with the consequent decrease in costs. To 

Figure 7. Vob increase versus Vob_2011
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ensure the highest levels of accuracy in the estimation 
of the growth and volume of wood during the years 
following the gathering of LiDAR data, it is necessary 
to include in the sample of plots to be measured those in 
which both thinning and clear cutting operations have 
been carried out.
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