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Abstract
Aim of the study: Acacia dealbata is an alien invasive species that is widely spread in Portugal. The main goal of this study was 

to produce an accurate and detailed map for this invasive species using ASTER multispectral imagery.
Area of study: The central-eastern zone of Portugal was used as study area. This whole area is represented in an ASTER scene 

covering about 321.1 x 103 ha. 
Material and methods: ASTER imagery of two dates (flowering season and dry season) were classified by applying three super-

vised classifiers (Maximum Likelihood, Support Vector Machine and Artificial Neural Networks) to five different land cover clas-
sifications (from most generic to most detailed land cover categories). The spectral separability of the land cover categories was 
analyzed and the accuracy of the 30 produced maps compared. 

Main results: The highest classification accuracy for acacia mapping was obtained using the flowering season imagery, the 
Maximum Likelihood classifier and the most detailed land cover classification (overall accuracy of 86%; Kappa statistics of 85%; 
acacia class Kappa statistics of 100%). As a result, the area occupied by acacia was estimated to be approximated 24,770 ha (i.e. 
8% of the study area). 

Research highlights: The methodology explored proved to be a cost-effective solution for acacia mapping in central-eastern of 
Portugal. The obtained map enables a more accurate and detailed identification of this species’ invaded areas due to its spatial 
resolution (minimum mapping unit of 0.02 ha) providing a substantial improvement comparably to the existent national land cover 
maps to support monitoring and control activities.
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et al., 1999; González-Muñoz et al., 2012). In the 
past few centuries, thousands of woody plant species 
have been moved out of their natural ranges around 
the world. As a result, in recent decades many spe-
cies of trees and shrubs have become naturalized or 
invasive. Many have spread from planting sites and 
some are now among the most widespread and dam-
aging of invasive organisms (Richardson & Re-
jmánek, 2011). 

Introduction

Fire and invasive species are becoming two of the 
most important global problems in natural and an-
thropogenic ecosystems (Pimentel et al., 2005; Kee-
ley, 2006; Arán et al., 2013). Invasive species con-
stitute a major environmental problem, as they have 
profound consequences on biodiversity conservation 
and on ecosystem processes and functioning (Parker 
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tannin and timber either for construction or for firewood) 
and for soil fixation. Despite its invasive behaviour has 
been reported during the 19th century, restrictive legislation 
to acacia plantation occurred only in 1937. Nevertheless, 
its status as an invasive species was only legally estab-
lished in 1999 (Marchante et al., 2005). At the present, 
the species acacia can be found all over the country and 
its high invasive potential comes from the high seed pro-
duction, dispersal and longevity in the soil, as well as the 
stimulation of seeds by fire (quite frequent in Mediter-
ranean climates such as Portugal) allowing that recently 
burnt areas of this species easily recover their stands 
(Marchante et al., 2005). According to the last National 
Forest Inventory (AFN, 2010), 35% of the territory (3.2 
x 106 ha) is covered by forests whereas the afforested area 
of Acacia sp. (stands) in 2010 was 5,351 ha (i.e. 0.2%). 
Furthermore, between 1995, 2005 and 2010 (a 15 year 
period) an enormous increase of this species afforested 
area was observed (2,701 ha in 1995, 4,726 ha in 2005 
and 5,351 ha in 2010, i.e. + 98%). Moreover, when con-
sidering acacia’s total area as a dominant species its ex-
pression is fairly higher (12,278 ha in 1995 that has de-
creased to 11,803 in 2010) representing around 0.4% of 
Portuguese forest area (ICNF, 2013). Even so, it must be 
stressed that in this National Forest Inventory forest areas 
estimation considered only areas with a minimum of 0.5 
ha, a minimum width of 20 m, and a ground cover high-
er than 10% (ICNF, 2013). 

According to Marchante et al. (2005) this species 
grows preferably in fresh valley soils or along water 
streams banks and it is also very frequently located along 
road sides. It is also known that the species acacia is 
widely spread in patches much smaller than 0.5 ha 
nearby localities and on main road sides (e.g. linear 
patches of width smaller than 20 m). Therefore, it is 
expected that this species invaded area to be much high-
er than those from the National Forest Inventory statistics. 
Acacia areas are characterized as both dense and very 
short vegetation structures (e.g. ground cover around 90%) 
wherein this species dominates all height classes under 
16 m (e.g. mean height around 4 m). This species invasion 
is mainly found in maritime pine (Pinus pinaster Aiton), 
umbrella pine (Pinus pinea L.) and eucalyptus (Eucalyp-
tus sp.) stands (Godinho-Ferreira et al., 2005).

Application of RS and GIS techniques  
in mapping biological invasions

The spread of invasive species has generated interest 
in mapping their present distribution worldwide as the 
patterns of plant invasions, and the ecological pro-
cesses which generate these patterns, vary across spatial 
scales. Thus, consideration of spatial scale may help to 

The naturalization/invasion process may be explained 
by the following key terms: ‘introduction’ means that the 
plant (or its propagule) has been transported by humans 
across a major geographical barrier; ‘naturalization’ starts 
when abiotic and biotic barriers to survival are surmount-
ed and when various barriers to regular reproduction are 
overcome; ‘invasion’ further requires that introduced 
plants produce reproductive offspring in areas distant from 
sites of introduction. Taxa that can cope with the abiotic 
environment and biota in the general area may invade 
disturbed, semi-natural communities (Richardson et al., 
2000). Asner et al. (2008) also consider that some of the 
life strategies that correlate a plant invasive success are: 
1) an ability to grow through the native canopy, or in gaps, 
and eventually replace it (e.g. Yamashita et al., 2000); 2) 
alteration of fundamental ecosystem processes such as 
nitrogen (N) cycling (e.g. Ehrenfeld, 2003; May & Atti-
will, 2003; Hughes & Denslow, 2005); and 3) an ability 
to alter disturbance regimes such as fire frequency (e.g. 
Hughes et al., 1991; D’Antonio & Vitousek, 1992). 

Characterization and distribution  
of Acacia dealbata Link

Australian acacias are a group of leguminous woody 
plants that include some of the most important plant 
invaders on a global scale (Richardson & Rejmánek, 
2011; Souza-Alonso et al., 2013). Australian acacias 
have a wide range of impacts on ecosystems that increase 
with time and disturbance, transform ecosystems and 
alter and reduce ecosystem service delivery. A shared 
trait is the accumulation of massive seed banks, which 
enables them to become dominant after disturbances (Le 
Maitre et al., 2011). As a result, the invasion of acacias 
species poses a threat to natural habitats by competition 
and replacement of native species, decreasing the native 
biodiversity and homogenizing the community (Lor-
enzo et al., 2010). In general, invasion takes over sites 
that have been disturbed by fire, harvesting or other 
types of anthropogenic disturbance as a result of this 
species high colonization capacity (Fuentes-Ramírez et 
al., 2011). Therefore, control and restoration operations 
should be promoted, particularly active restoration. 
Despite requiring substantial short to medium term in-
vestments these operations can reduce losses of biodi-
versity and ecosystem services as well as the costs to 
society in the long term (Le Maitre et al., 2011). 

The species Acacia dealbata Link (silver wattle) was 
introduced in Europe during the 19th century and is cur-
rently causing huge ecological concerns in Southern 
Europe (Souza-Alonso et al., 2013; Vazquez-de-la-Cueva, 
2014). In Portugal, the species was introduced in 1850 
and used for ornamental purpose, for its products (flowers, 
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presence maps for the species acacia by supervised 
classification techniques should be explored. 

Viana & Aranha (2010) performed a comparison 
study between ASTER/TERRA and ETM+/LANDSAT 
7 imagery for mapping the species acacia, in a study 
area in the center of Portugal, using two supervised 
classifiers and a classification system with three cat-
egories. These authors obtained overall accuracies of 
89% for the ETM+ imagery classification (24 January 
2003) and 87% for the ASTER imagery classification 
(7 October 2003) using the best classifier (e.g. maxi-
mum likelihood classifier). Despite of the ASTER 
imagery having a better special resolution (e.g. 15 m) 
than the ETM+ imagery (e.g. 30 m) it was the imagery 
acquisition date that proved to be the most relevant 
factor on imagery classification accuracy. 

Therefore, due to the success of those previous stud-
ies and also because of ASTER imagery specific char-
acteristics (low economic cost allied to moderate spatial 
and spectral resolutions), the aim of this study was to 
explore ASTER imagery from two acquisition dates 
(Acacia sp. flowering season vs. dry season), five land 
cover classifications with different degree of generaliza-
tion and three supervised classifiers, in order to assess 
the best approach to accurately map this species. The 
working hypothesis essayed was that ASTER imagery 
from March (i.e. the species flowering season) will allow 
a better spectral separability and classification/mapping 
of the species than the imagery from August (dry season) 
when using the most detailed land cover classification 
essayed and the maximum likelihood classifier. To test 
this hypothesis, ASTER imagery from 25 August 2005 
and from 24 March 2007 were used. First, both imagery 
datasets were assessed in terms of spectral separability 
using the five land cover classifications with different 
degree of generalization. After, the images were classi-
fied using three supervised classifiers (e.g. the paramet-
ric Maximum Likelihood classifier and the two non-
parametric Support Vector Machine and Artificial 
Neural Networks classifiers). In the end, the accuracy 
of the produced maps was compared to assess the best 
approach to accurately map this species. The most ac-
curate map was used to evaluate species’ invasion area 
at a minimum mapping unit of 0.02 ha providing a sub-
stantial improvement comparably to the COS2007 map 
and/or the National Forest Inventory statistics.

Material and methods

Study area and ASTER imagery

The study area consists of an ASTER scene of   321.1 
x 103 ha located in the central-eastern of Portugal cover-

illuminate the mechanisms driving biological invasions, 
and offer insight into potential management strategies 
(Pauchard & Shea, 2006). Therefore, it becomes es-
sential to have tools to identify and monitor invasive 
species distributions, in order to obtain reliable and 
updated information for better management of invaded 
areas (Joshi et al., 2006; Underwood & Ustin, 2007). 
This implies being able to delineate the spatial extent 
and to ascertain the severity or intensity of the invasion, 
providing therefore a baseline for monitoring future 
expansion, increasing the effectiveness of control ef-
forts, and assisting in identifying specific targets for 
control activities such as satellite populations and ‘inva-
sion fronts’ (Underwood et al., 2003).

Remote sensing (RS) has been an important tool for 
large-scale ecological studies in the past three decades, 
but it was not commonly used to study alien invasive 
plants until the mid 1990s (Huang & Asner, 2009). RS 
and Geographic Information Systems (GIS) are useful 
tools for mapping and monitoring invasive species and 
to predict areas of susceptibility for exotic species inva-
sion (Joshi et al., 2004). RS provides multi-temporal 
records that can be integrated and used into a GIS in 
order to support monitoring and control activities of 
invaded sites (Gil et al., 2013; Gil et al., 2014). Addi-
tionally, researchers have sought to exploit unique phe-
nological, spectral, or structural characteristics of inva-
sive species in digital multispectral imagery to 
distinguish them from the species around them (Under-
wood et al., 2003; Underwood & Ustin, 2007; Resasco 
et al., 2007). According to Huang & Asner (2009), 
moderate resolution satellite imagery (e.g. spatial reso-
lution between 10-100 m and spectral resolution with 
less than twenty spectral bands) such as the ones cap-
tured by the satellites LANDSAT (e.g. Thematic Mapper 
and Enhanced Thematic Mapper Plus), SPOT (Satellite 
pour l’ Observation de la Terre) and TERRA (particu-
larly, ASTER – Advanced Spaceborne Thermal Emission 
and Reflection Radiometer) are well suited for mapping 
at the community level and have been used to map in-
vasive species before (e.g. Cobbing, 2007; Lawes & 
Wallace, 2008; Viana & Aranha, 2010; Gil et al., 2014).

In Portugal the latest official land cover map 
(COS2007) was produced in 2007 at the scale of 
1:25,000 (with a minimum mapping unit of 1 ha, a 
minimum distance between lines of 20 m, and a mini-
mum polygon width of 20 m). Despite using a five-
level classification system of 238 land cover categories, 
the COS2007 map considers broad classes of invasive 
species only (e.g. A. dealbata and Ailanthus altissima 
Mill.) either as, pure or mixed forest (ground cover 
higher than 30%) or open forest (ground cover between 
10 to 30%) (DGT, 2007). Therefore, the use of moder-
ate resolution satellite imagery to produce detailed 
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sampling method of cubic convolution. Atmospheric 
correction was accomplished using the FLAASH model 
(Fast Line-of-sight Atmospheric Analysis of Spectral 
Hypercubes) through the MODTRAN algorithm 
(Adler-Golden et al., 1999). To do so, both VNIR and 
SWIR bands were first aggregate in one file (layer 
stacking) and the spatial resolution of the SWIR bands 
expanded to a pixel size of 15 m using the resampling 
method of cubic convolution once more. Subsequently, 
the layer stacking was converted to the BIL format so 
the FLAASH module could be processed (Fig. 2).

Methodology – RS classification scheme

Five land cover classification schemes with different 
degree of generalization (Table 1 – Level 1 to Level 5) 
were essayed which allowed studying the spectral 
separability of acacia class in comparison to the other 
land cover categories considered (Fig. 2). The classi-
fication system of the Portuguese official land cover 
map for 2007 (COS2007) was used as reference (DGT 
2007) and further adapted to the purpose of this study. 
It should be emphasized that the COS2007 classifica-

ing 49% of 11 municipalities of the Castelo Branco’s 
district (Fig. 1), located between 40º9´47´´N - 
39º34´49´´N and 8º10´36´´W – 7º16´46´´W. The im-
agery obtained was of two dates: the first, on 25 August 
2005 with a cloud cover of 20% and the second, on 24 
March 2007 without cloud cover as there were no im-
ages available from the same year to performed valuable 
work (e.g. high cloud cover). The months of March and 
August were chosen, as the first corresponds to acacia 
flowering season by contrast to the second (dry season). 

The multispectral sensor ASTER produces images 
with moderate spectral and spatial resolutions, namely: 
three visible and near-infrared bands (VNIR bands 1, 
2, 3N and 3D) with a spatial resolution of 15 m; six 
mid-infrared bands (SWIR bands 4, 5, 6, 7, 8 and 9) 
with a spatial resolution of 30 m; and five far-infrared 
bands (TIR bands 10, 11, 12, 13 and 14) with a spatial 
resolution of 90 m. The imagery used in this study 
(VNIR and SWIR bands) was acquired as raw data 
(L1A) that has radiometric correction but no geometric 
and atmospheric corrections. Therefore, imagery geo-
metric correction was performed using the digital el-
evation model (DEM) developed from both bands 3N 
and 3B to ortho-rectify the ASTER images by the re-
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among more specific and homogeneous forest assem-
blages; and (2) testing the potential of ASTER im-
agery for mapping these same more specific and ho-
mogeneous forest assemblages, as represented in the 
Portuguese National Forest Inventory. 

A total of 1080 sites (120 for each land cover class, 
Table 1 – Level 5) were selected over the ASTER im-
agery. The training sites were obtained by applying a 
stratified random sampling, in order to cover the whole 
study area (Congalton, 2001). Ancillary information 
such as the CLC land cover maps (2000 and 2006), the 
COS land cover map (1990 and 2007), ortho-rectified 
aerial photographs (2005) and Google Earth™ 5.2.1 
imagery (several dates) were used to cross-validate the 
sites selection by photo-interpretation and field work 
with GPS (undertaken between 2011 and 2012). These 
1080 field sites identified over both ASTER imagery 
were randomly divided in two sub-sets as follows: 75% 
as training sub-set (810 sites: 90 for each land cover 
class, Table 1 – level 5) and 25% as testing sub-set (270 
sites: 30 for each land cover class, Table 1 – level 5). 
The training sub-set was used to create the spectral 
signatures, for each land cover category by classifica-
tion level, needed to support the imagery classification 
stage. While, the training sub-set was used to assess 
the accuracy of the 30 imagery classifications produced 

tion system is standardized with the Corine Land Cover 
(CLC) classification system until the third level of 
detail (Caetano et al., 2009).

The categories “artificial areas”, “agricultural 
areas”, “forests” and “water bodies” used in this study 
follow the nomenclature referred to above for the 
broader classification level (Table 1 – Level 1). How-
ever, when moving to a more detailed classification 
(Table 1 – Level 2), the “acacia” category is isolated 
from the “forests” category. After, the “natural areas” 
category (e.g. scrub and/or herbaceous vegetation as-
sociations and open spaces with little or no vegeta-
tion) is isolated from the “forests” category (Table 1 
– Level 3). Next, “forests” category is sliced into 
“broadleaves” and “coniferous” categories (Table 1 
– Level 4). In the end, “broadleaves” category is di-
vided into “holm oak/cork oak” category (Qr/Qs – 
Quercus rotundifolia Lam. and Quercus suber L), 
“chestnut/other oaks” category (Cs/Q – Castanea 
sativa Mill. and Quercus sp.) and “eucalyptus” cat-
egory (Ec – Eucalyptus sp.) (Table 1 – Level 5). In 
this study area the “coniferous” category comprises 
essentially the species maritime pine (Pinus pinaster 
Aiton). The goals of sub-dividing the “broadleaves” 
category (Level 4) into more specific forest categories 
in Level 5 were: (1) testing spectral separability 

Figure 2. Methodological approach to test acacia mapping using ASTER imagery of two dates (25 August 2005 and 24 March 2007) 
and three classifiers (ML – Maximum Likelihood; SVM – Support Vector Machine; and ANN – Artificial Neural Networks).

Photointerpretation
Training Sites
shapefile for
classification

Training Sites
shapefile for

validation

Training Sites

Fieldwork with GPS
for validation

ASTER L1B
Orthorectificated
and atmospheric

correction

ASTER L1B
VNIR + SWIR

Ortho-rectification
Atmospheric correction

Separability/
Classification

ML
level 1

SBM
level 1

ANN
level 1

ML
level 2

SBM
level 2

ANN
level 2

ML
level 3

SBM
level 3

ANN
level 3

ML
level 4

SBM
level 4

ANN
level 4

ML
level 5

SBM
level 5

ANN
level 5

Acurracy assesment of
classification



Filipe Martins, Cristina Alegria and Artur Gil

Forest Systems December 2016 • Volume 25 • Issue 3 • e078

6

curacy (O) and the Kappa statistics (K). Producer’s 
accuracy (P) is a measure of omission error that indi-
cates the probability that a sample is correctly classi-
fied. User’s accuracy (U) is a measure of commission 
and indicates the probability that a classified pixel does 
represent that category in the field. Overall accuracy 
(O) allows evaluating the overall thematic classification 
of the map produced (Congalton & Green, 1999). The 
Kappa statistics measures model accuracy with respect 
to the accuracy expected with a random assignment of 
pixels to categories. The Kappa statistics takes into 
account all elements of the confusion matrix in its 
evaluation (i.e. also includes the elements off the main 
diagonal, which represent disagreements in classifica-
tion) as opposed to the overall accuracy which uses 
only the diagonal elements (real agreement) (Congal-
ton, 1991). 

Acacia spatial distribution

The accuracy measures referred to above were used 
to select the best image classification (from all clas-
sifications performed during the previous methodo-
logical step) in order to obtain the spatial distribution 
of the species acacia in the study area. Then, an esti-
mate of the invasion area of this species was obtained 
with a 15 m spatial resolution (i.e. a minimum carto-
graphic unit of 0.02 ha). Additionally, the previous 
acacia spatial distribution was compared to the one 
obtained by the overlay of the common areas classified 
as acacia in all high accuracy (i.e. U ≥ 80.00 and/or K 
≥ 0.8) image classifications for the species, in order to 
minimize classification uncertainty and errors regard-
ing this same class. After, the estimated areas of acacia 
spatial distribution were compared to the area of acacia 
stands over the study area according to the National 
Forest Inventory statistics in 2005 (AFN, 2010).

(i.e. two dates imagery x five land cover classifications 
x three supervised classifiers).

Prior to the ASTER imagery classification stage, the 
signatures were used to assess the spectral separability 
between every land cover categories referred to above 
(Table 1) by calculating the Transformed Divergence 
(TD). The TD is a measure of the statistical separation 
between categories response patterns computed for all 
pairs of categories and presented in the form of a ma-
trix. It is based on the covariance of the samples for 
each category at the pixel level and estimates a weight 
which exponentially decreases to enlarge the distances 
between categories (Richards, 2013). The TD values 
are normalized to the range of [0 , 2] and as a general 
rule it can be accepted that good spectral separability 
occurs for values higher than 1.9, moderate spectral 
separability for values between 1.7 and 1.9 and poor 
spectral separability (i.e. spectral similarity or spectral 
confusion) for values below 1.7 (Jensen, 1996).

After, the ASTER imagery for each date was classi-
fied at the pixel level wherein three supervised classi-
fiers were applied (Fig. 2). The classifiers essayed were 
the following: the parametric Maximum Likelihood 
classifier (ML) and the two non-parametric Support 
Vector Machine (SVM) and Artificial Neural Networks 
(ANN) classifiers (Xu et al., 2005; Foody & Mathur, 
2004; Filippi & Jensen, 2006).

In the end, the accuracy of the 30 classified images 
produced (Fig. 2) was assessed by calculating the error 
matrix (or confusion matrix). This matrix is obtained 
by comparing the land cover category found in the test-
ing sub-set (ground-truth) to that which was mapped 
in the image for the same location and it shows the 
distribution of the percentage of pixels classified cor-
rectly and in an erroneous way (Congalton, 1991). 
The statistical assessments of accuracy derived from the 
error matrix that were considered are: the producer’s 
accuracy (P), the user´s accuracy (U), the overall ac-

Table 1. Land cover categories by classification level (i.e. increasing degree of detail)

Land cover categories

Level 1 Level 2 Level 3 Level 4 Level 5

Artificial areas Artificial areas Artificial areas Artificial areas Artificial areas
Agricultural areas Agricultural areas Agricultural areas Agricultural areas Agricultural areas

Forests

Acacia Acacia Acacia Acacia

Forests Forests Broadleaves
Qr/Qs
Cs/Q
Ec

Coniferous Coniferous
Natural areas Natural areas Natural areas

Water bodies Water bodies Water bodies Water bodies Water bodies

Legend: Broadleaves – Qr/Qs (holm oak/cork oak); Cs/Q (chestnut/other oaks); Ec (eucalyptus); Coniferous (e.g. maritime 
pine).
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Levels 1, 2 and 3; Table 1) for both flowering season 
and dry season images did not demonstrate to be un-
equivocally higher than those reached for the most 
detailed land cover classifications (Levels 4 and 5; 
Table 1).

It was found spectral confusion between the catego-
ries “acacia” and both “forests” (i.e. broadleaves – 
holm oak/cork oak, chestnut/other oaks and eucalyp-
tus – and coniferous – e.g. maritime pine) and 
“natural areas” when using the imagery of August 
2005 (Table 2 – Level 5). Whilst, spectral confusion 
was only found between the categories “acacia” and 
both “agricultural areas” and “coniferous” (e.g. 
maritime pine) when using the imagery of March 
2007. Finally, good spectral separability between the 
“acacia” category and the remaining categories was 
observed (Table 3 – Level 5). 

Results

Spectral separability of land cover categories

The analysis of the transformed divergence (TD) 
matrices for each one of the five tested land cover clas-
sifications proved that there were more spectral confu-
sion when using the ASTER imagery of August 2005 
(dry season) than when using the image of March 2007 
(acacia flowering season – bright yellow flowers). In 
August, spectral separability among categories in the 
most detailed classifications (Table 2 – Level 5) were 
mainly moderate to good. Whilst in March, good spec-
tral separability was found between almost all of these 
same categories of land cover (Table 3 – Level 5). 
Furthermore, overall separability assessments per-
formed for more generic land cover classifications (e.g. 

Table 2. Land cover categories spectral separability in level 5 (ASTER imagery of 25 August 2005) – Transformed Divergence 
matrices obtained using the training sub-set

Land cover categories  Transform divergence matrices

Level 5 Artificial 
areas

Agricultural 
areas Acacia Qr/Qs Cs/Q Ec Coniferous Natural 

areas
Water 
bodies

Artificial areas 0
Agricultural 
areas

1.79 0

Acacia 1.98 1.78 0
Qr/Qs 1.99 1.51 1.38 0
Cs/Q 2.00 1.84 0.97 1.29 0
Ec 2.00 1.91 1.64 1.54 1.43 0
Coniferous 2.00 1.99 1.46 1.87 1.48 1.33 0
Natural areas 1.99 1.88 1.61 1.86 1.67 1.65 1.84 0
Water bodies 1.90 1.79 1.83 1.75 1.82 1.93 1.97 1.89 0

Legend: Good separability – > 1.9; Moderate separability – 1.7 - 1.9; Poor separability – < 1.7; Qr/Qs – holm oak/cork oak; 
Cs/Q – chestnut/other oaks; Ec – eucalyptus; Coniferous – e.g. maritime pine.

Table 3. Land cover categories spectral separability in level 5 (ASTER imagery of 24 March 2007) – Transformed Divergence 
matrices obtained using the training sub-set

Land cover categories  Transform divergence matrices

Level 5 Artificial 
areas

Agricultural 
areas Acacia Qr/Qs Cs/Q Ec Coniferous Natural 

areas
Water 
bodies

Artificial areas 0
Agricultural 
areas

2.00 0

Acacia 2.00 1.29 0
Qr/Qs 2.00 2.00 2.00 0
Cs/Q 2.00 1.90 1.93 2.00 0
Ec 1.99 2.00 2.00 2.00 2.00 0
Coniferous 2.00 1.84 1.21 2.00 1.95 2.00 0
Natural areas 1.52 1.99 1.97 2.00 1.98 1.99 1.99 0
Water bodies 1.97 1.99 1.98 2.00 1.99 1.99 1.99 1.92 0

Legend: Good separability – > 1.9; Moderate separability – 1.7 - 1.9; Poor separability – < 1.7; Qr/Qs – holm oak/cork oak; Cs/Q – 
chestnut/other oaks; Ec – eucalyptus; Coniferous – e.g. maritime pine.
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overall Kappa was obtained at level 1 (Table 4 – K = 
0.89). By contrast, the remaining classifiers (ANN and 
SVM) showed a very low global accuracy (Table 4; ANN 
always below K = 0.65; SVM always below K = 0.54). 

Acacia spatial distribution

Regarding the “acacia” category, the highest accu-
racy (Table 5 – Level 5: U = 100.00, P = 69.57 and K 
= 1.0) was reached by applying the ML classifier to the 
March 2007 (flowering season) image while using the 
most detailed land cover classification. Good accuracies 
were also obtained by applying to this same image the 
ML classifier to level 4 (U = 84.21 and K = 0.81) and 
level 2 (U = 80.77 and K = 0.75) land cover classifica-
tions. Finally, applying the ANN classifier to the flow-
ering season image while using the level 2 classifica-
tion scheme also allowed to reach a good mapping 
accuracy for acacia (U = 84.62 and K = 0.80). 

Accuracy results of acacia mapping obtained by pro-
cessing the dry season image (August 2005) were sig-
nificantly lower than those obtained with the flowering 
season image (March 2007), as shown in Table 5. Best 
results for this image were obtained by applying the 
ANN classifier to level 5 (U = 66.67 and K = 0.61) as 
well as the ML classifier to level 2 land cover classifica-
tion (U = 66.67 and K = 0.57), to level 4 (U = 60.61 and 
K = 0.53) and to level 5 (U = 60.00 and K = 0.54). 

As a result, to estimate the area of acacia spatial 
distribution over the study area the best image classi-
fication that resulted from the application of ML to the 
March 2007 image using the level 5 land cover clas-
sification (i.e. best image classification only; Table 5 
– Level 5: U = 100.00, P = 69.57 and K = 1.0) was used 
(Fig. 3). According to this output, the total area covered 
by acacia in the study area was estimated approxi-
mately in 24,770 hectares. 

Imagery classifications accuracy 

The analysis of the evaluated accuracy measures (P, 
U, O and K) for the classified images produced by the 
three classifiers essayed (ML, ANN, SVM) when using 
the imagery of August 2005 (dry season) proved that 
the ML classifier was the one that performed best for 
all tested land cover classifications. The same result 
was found when analysing the classified images pro-
duced by the three classifiers essayed (ML, ANN, 
SVM) while using the image of March 2007.

Regarding the classified images overall accuracy (for 
both O and K) it was verified that it was higher in all 
cases when using ASTER imagery of March 2007 (flow-
ering season) when compared to the results obtained by 
processing the dry season image of August 2005 (Table 
4). An explicit trend of increasing or decreasing accu-
racy associated to the change of land cover classifica-
tions (from level 1 to level 5) was not found. The high-
est overall accuracies (O ≥ 80.0 and/or K ≥ 0.80) were 
always obtained by applying the ML classifier to the 
flowering season image, which has slightly decreased 
from the most generic (Table 4 – Level 1: O = 92.45 and 
K = 0.89) to the most detailed land cover classification 
(Table 4 – Level 5: O = 85.21 and K = 0.83). Converse-
ly, overall accuracy results obtained by processing the 
dry season image (August 2005) were significantly lower 
(Table 4 – Level 1: O = 79.17 and K = 0.70; Table 4 – 
Level 5: O = 73.44 and K = 0.70) than those obtained 
with the flowering season image (March 2007). 

To what concerns to the classifiers tested, the ML 
classifier showed very good accuracies especially when 
using the flowering season imagery (Table 4 – K between 
0.83-0.89). As opposed to the lower accuracies observed 
either with the ANN classifier (Table 4 – K between 
0.50-0.78) or the SVM classifier (Table 4 – K between 
0.36-0.54). In fact, the ML classifier obtained the best 
results in all land cover classifications but the highest 

Table 4. Accuracy assessments – Overall accuracy and Kappa statistics of the 30 imagery classifications vs. the testing sub-set: 
ASTER imagery of two dates (25 August 2005 and 24 March 2007), three supervised classifiers (Maximum Likelihood, Support 
Vector Machine and Artificial Neural Networks) and five levels of land cover classification with different degree of generalization 

Land cover 
categories

ASTER imagery classification of
25 August 2005 vs. testing sub-set

ASTER imagery classification of
24 March 20075 vs. testing sub-set

ML SVM ANN ML SVM ANN

O K O K O K O K O K O K

Level 1 79.17 0.70 60.42 0.41 79.17 0.70 92.45 0.89 65.09 0.79 84.90 0.78
Level 2 83.96 0.79 39.58 0.24 63.54 0.54 88.54 0.86 63.20 0.54 72.64 0.65
Level 3 77.42 0.73 42.98 0.31 55.26 0.46 87.72 0.85 53.26 0.43 66.13 0.59
Level 4 72.53 0.68 44.70 0.35 49.24 0.41 87.12 0.85 47.18 0.38 55.63 0.48
Level 5 73.44 0.70 40.21 0.32 47.93 0.42 85.21 0.83 43.50 0.36 55.93 0.50

Legend: ML – Maximum Likelihood; SVM – Support Vector Machine; ANN – Artificial Neural Network; O – overall accuracy; and 
K – Kappa statistics.
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are especially dense in the western and northern 
zones.

Discussion

Spectral separability of land cover categories 

The analysis of the spectral separability of the land 
cover categories used in each of the five tested land 
cover classifications showed that the flowering season 
ASTER imagery provided higher spectral separability 
between almost all categories of land cover considered 
(e.g. good spectral separability) than the dry season 
ASTER imagery (e.g. moderate to good spectral sepa-
rability). This result highlights how detection by RS can 
be facilitated by the timing of image acquisition to cor-
respond with particular phenological periods of a target 

Additionally, the acacia spatial distribution obtained 
by the overlay of the common areas classified as acacia 
in all high accuracy (i.e. U ≥ 80.00 and/or K ≥ 0.8) 
image classifications for the species was produced 
(Fig. 4). Therefore, the aforementioned imagery clas-
sifications meeting those conditions were the following: 
(1) March 2007 image, ML classifier and Level 5 leg-
end (U = 100.00 and K = 1.0); (2) March 2007 image, 
ANN classifier and Level 2 legend (U = 84.62 and K 
= 0.80); (3) March 2007 image, ML classifier and Level 
4 legend (U = 84.21 and K = 0.81); and (4) March 2007 
image, ML classifier and Level 2 legend (U = 80.77 
and K = 0.75). According to this output, the total area 
covered by acacia in the study area was estimated ap-
proximately in 12,178 hectares.

By analysing both acacia spatial distribution maps 
(Figs. 3 and 4) it can be stated that although acacia 
vegetation patches occur all over the study area, they 

Table 5. Accuracy assessments – Confusion matrices of imagery classifications vs. the testing sub-set: ASTER imagery of two 
dates (25 August 2005 and 24 March 2007), three supervised classifiers (Maximum Likelihood, Support Vector Machine and 
Artificial Neural Networks) and the most detailed level of land cover classification (Level 5)

Land cover categories
Level 5

ASTER imagery classification of 25 August 2005 vs. testing sub-set

ML SVM ANN

P U K P U K P U K

Artificial areas 77.78 100.00 1.00 44.44 42.11 0.35 72.22 41.94 0.35
Agricultural areas 81.82  85.71 0.84 50.00 75.00 0.72 55.56 90.91 0.90
Acacia 78.26  60.00 0.54 69.57 32.65 0.22  8.70 66.67 0.61
Qr/Qs 35.00 100.00 1.00 56.52 30.95 0.20 39.13 47.37 0.39
Cs/Q 77.27  51.52 0.45 26.67 50.00 0.45 40.00 50.00 0.45
Ec 88.89  80.00 0.78 11.11 20.00 0.10 16.67 30.00 0.22
Coniferous 66.67  66.67 0.63 0.00  0.00 0.00 72.22 27.08 0.18
Natural areas 61.11  64.71 0.61 44.44 57.14 0.52 66.67 75.00 0.72
Water bodies 94.44 100.00 1.00 44.44 53.33 0.48 72.22 68.42 0.65
O 73.44 40.24 47.93
K 0.70 0.32 0.42

Land cover categories 
Level 5

ASTER imagery classification of 24 March 20075 vs. testing sub-set

ML SVM ANN

P U K P U K P U K

Artificial areas 83.33  93.75 0.93 88.89 69.57 0.66 77.78 70.00 0.67
Agricultural areas 88.89  84.21 0.82 81.82 58.06 0.52 77.27 77.27 0.74
Acacia 69.57 100.00 1.00 56.52 26.00 0.15 56.52 59.09 0.53
Qr/Qs 86.96  90.91 0.89 55.00 32.35 0.24 45.00 60.00 0.55
Cs/Q 86.67  92.86 0.92 4.55 33.33 0.24 13.64 100.00 1.00
Ec 83.33  68.18 0.64 22.22 66.67 0.63 44.44 47.06 0.41
Coniferous 94.44  80.95 0.79 0.00 0.00 0.00 66.67 46.15 0.40
Natural areas 94.44  77.27 0.75 5.56 100.00 1.00 44.44 25.00 0.17
Water bodies 83.33  88.24 0.87 72.22 44.83 0.39 83.33 75.00 0.72
O 85.21 43.5 55.93
K 0.83 0.36 0.50

Legend: ML – Maximum Likelihood; SVM – Support Vector Machine; ANN – Artificial Neural Network; P – producer’s accuracy; U 
– user’s accuracy; O – overall accuracy; K – Kappa statistics; Qr/Qs – holm oak/cork oak; Cs/Q – chestnut/other oaks; Ec – eucalyptus; 
Coniferous – e.g. maritime pine.
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was found using both the imagery of flowering season 
and the Maximum Likelihood classifier (K ≥ 0.80). 
Moreover, acacia mapping accuracy obtained excellent 
results when using the most detailed land cover clas-
sification (K = 1.00) which indicate the high potential-
ity of ASTER imagery for mapping this species distri-
bution when the most appropriate imagery date is used. 
As a result, mapping the spatial distribution of the 
species acacia across central-eastern Portugal was 
achieved with good accuracy by applying both the ML 
classifier and the most detailed land cover classification 
to the ASTER image of March (flowering season).

These findings are in accordance to the study of 
Viana & Aranha (2010) in which the imagery acquisi-
tion date was found to be the most relevant factor on 
imagery classification accuracy. The ML classifier was 
the one that performed the best as well. However, the 
accuracy of ASTER imagery classification, having an 
acquisition date of 7 October 2003 and using only three 
land cover categories, was slightly lower (O=86.69 and 
K=0.81) when compared to the ones obtained in the 
present study using the flowering season imagery, the 
ML classifier and five land cover categories (Level 2: 
O=88.54 and K=0.86). Despite producer´s accuracy 

invasive species (e.g. maximizing phenological differ-
ences between the invasive plant species and the native 
species) (see Underwood & Ustin, 2007; Pauchard & 
Maheu-Giroux, 2007). In this case, the species acacia 
provides a clear and intense yellow pattern during its 
flowering season (e.g. between January and March) (e.g. 
Marchante et al., 2005; Pauchard & Maheu-Giroux, 
2007) that can be distinguished by RS techniques, pro-
viding a tremendous potential for monitoring the spread 
of invasion of this species. Therefore, the analysis of the 
spectral separability between land cover categories al-
lows to identify where spectral confusion exists which 
is useful to better define optimal imagery acquisition 
date for each species. The findings in this study showed 
that in March some spectral confusion between “acacia” 
and “coniferous” category was observed thus suggesting 
that maybe a late winter imagery acquisition date (e.g. 
January-February) would be more suitable.

Imagery classifications accuracy 

The analysis of the accuracy of the 30 classification 
maps proved that the highest classification accuracy 
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Figure 3. Spatial distribution of acacia over the study area (with elevation, cities names and main roads) according to the best accuracy 
classification for acacia category (i.e. ML classification using the level 5 land cover classification and the ASTER imagery of March 
2007).
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Figure 4. a) Spatial distribution of common areas classified as acacia in all high accuracy (i.e. U ≥ 80.00 and/or K ≥ 0.8) image clas-
sifications obtained for the species over the study area (with elevation, cities names and main roads); b) Zoom over an area located at 
the western zone of the study area having a vast incidence of acacia invasion (e.g. nearby localities and along roads). 
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Directions for future research – Satellite 
Remote Sensing and acacia mapping

At the present the numbers of satellites for earth 
observations are constantly changing as new are being 
launched while others are getting inoperative (e.g. 
Richards, 2013). Available commercial imagery is not 
always cheap or has the desired resolutions (spatial, 
spectral, radiometric and temporal) for the study to be 
developed (e.g. ASTER imagery offer only four bands 
and a spatial resolution of 15 m; Landsat (E)TM im-
agery offer 6 or 11 bands but a spatial resolution of 30 
m). However, the ASTER imagery proved to constitute 
a cost-effective solution for acacia mapping in central-
eastern of Portugal. Furthermore, the use of flowering 
season date ASTER imagery with the application of 
the ML classifier when using levels 1, 2 and 3 land 
cover classifications also provided an effective and 
reliable solution to perform generic land cover mapping 
for both this species and type of landscape (rural ter-
ritories in central inland of Portugal). 

In sum, the use of ASTER imagery obtained during 
the species flowering season may therefore be recom-
mended for detailed land cover/vegetation and espe-
cially acacia mapping purposes and management de-
cision-support on this type of southern Europe’s 
ecosystems. Despite of the ASTER SWIR detectors no 
longer function since April 2008 (only VNIR and TIR 
sensors are still operational), the archived and cur-
rently available ASTER multispectral data may be used 
for multi sensor-based acacia temporal studies (e.g. 
Lawes & Wallace, 2008), in order to assess its invasive 
distribution trends and to enable a more effective con-
trol of these populations. 

Finally, further efforts on improving acacia mapping 
are needed to overcome the poor spectral separability 
observed between “acacia” category and both “agricul-
tural areas” and “coniferous” categories when using 
the flowering season date imagery. This situation is 
tightly related to this specific rural landscape under 
study where maritime pine forest dominates (flowering 
season March-April; golden yellow masculine flowers) 
and the distribution pattern of this invasive species 
consists mostly of both very small patches nearby ag-
ricultural areas and very narrow strips along main road 
sides. 

Although all the positive results achieved in this 
study and their potential application for improving 
decision-making on acacia management in Portugal, 
spatial and spectral information provided by moderate 
spatial and spectral resolution satellite images as 
ASTER is still insufficient to decipher the complexity 
of natural environment and further fully delineate the 
distribution of alien plants, as stated by Huang & Asner 

being the same in both studies (P=100), a paramount 
improvement in user’s accuracy was attained in the 
present study (Level 2: U=80.77) when compared to 
the one of those authors (U=11.10).

Acacia spatial distribution

The approximated total area occupied by this inva-
sive woody species was estimated in 24,770 hectares 
(8% of the study area) according to the most accurate 
image classification for the species (i.e. applying both 
the ML classifier and the most detailed land cover clas-
sification to the ASTER image of March). An estimate 
of approximately 12,178 hectares was obtained when 
considering only the common areas classified as acacia 
in all high accuracy (i.e. U ≥ 80.00 and/or K ≥ 0.8) 
image classifications for the species.

By contrast, according to the National Forest Inven-
tory in 2005 (AFN, 2010), the surface covered by 
acacia stands in the study area was estimated in 225 
hectares only (0.1% of the study area). This can be 
explained by the standards used in this forest inven-
tory (e.g. area with a minimum of 0.5 hectares, a 
minimum width of 20 meters and a ground cover 
higher than 10%). Therefore, due to this species frag-
mented distribution pattern it is argued that the esti-
mated area in this study (24,770 hectares) is a more 
realistic approach of acacia occupation and geograph-
ic distribution as a spatial resolution of 15 m was used 
(i.e. minimum cartographic area of 0.02 ha) and no 
generalization process was applied. 

Despite of the results obtained in this study, it is 
expected that acacia mapping accuracy may be slight-
ly increased if both the number of training sites are 
increased and ancillary GIS-based information (e.g. 
roads, distance to water lines, altitude, slope, soil type, 
lithology, etc.) are included in the classification process 
(Van der Wouw et al., 2011; Gil et al., 2014) to over-
come the poor spectral separability (TD < 1.7) observed 
between some of the land cover categories.

The spatial distribution map of acacia obtained al-
lows decision-makers, stakeholders and landowners to 
both setup and implement more realistic, adequate and 
cost-effective invasive woodland management in 
central-eastern Portugal, by clearly identifying the 
location, the dimension and the logistics constraints 
(distance to roads, distance to water streams, slope, 
etc.) associated to the sites to be intervened and man-
aged. Additionally, this new and more detailed data on 
acacia spatial distribution also allows more accurate 
ecological modeling studies of this invasive alien spe-
cies in this same geographic area (e.g. Bradley & 
Mustard, 2006; Andrew & Ustin, 2009). 
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(2009) and Joshi et al. (2004). Nevertheless, due to its 
innovative technical features, applying a multi-method 
processing approach to the new ESA Copernicus Sen-
tinel-2 sensor data might be able to cost-effectively 
address this relevant information gap at regional level, 
by providing accurate, detailed and periodic thematic 
cartography and change detection assessment (e.g. Im-
mitzer et al., 2016; Gil et al., 2012). Furthermore, 
observing alien plants as acacia requires data collected 
from sensors pushing the limits of at least one type of 
resolution (spatial, temporal or spectral resolution) 
since the profiles of these species may be quite similar 
to those of native plants, from a RS perspective (Asner, 
2008). For instance, the use of very high spatial resolu-
tion in several studies on mapping invasive species has 
pointed out very encouraging results (e.g. Gil et al., 
2013). On the other hand, hyperspectral images are 
currently the most heavily used imaging source for 
studies of alien plants because detailed spectral profiles 
can be developed for native and non-native plants, al-
lowing the analysis of specific spectral regions that are 
most sensitive to the abundance of the species of inter-
est (Underwood et al., 2003). Therefore, as stated by 
Gillespie et al. (2008) and Bradley (2014), future re-
search on satellite RS of alien invasive plants as the 
species acacia should focus on the collection and dis-
semination of high-quality field data coupled with the 
incorporation and integration of available data acquired 
by existing (especially the most recent) spaceborne 
multispectral (e.g. WorldView-3, Landsat-8 OLI, Sen-
tinel-2), hyperspectral (e.g. Chris-Proba, Hyperion) and 
synthetic aperture radar (e.g. Sentinel-1) sensors. Fi-
nally, this improved data (in quality and quantity) on 
the spatial distribution of this alien invasive plant spe-
cies may also allow more accurate ecological modelling 
studies (e.g. Gutierres et al., 2011; Costa et al., 2015, 
2013; Pereira & Figueiredo, 2015).
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