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Resumo – Este trabalho avaliou genótipos de trigo em condições de escassez de água inoculados com Azospirillum 

brasilense e Herbaspirillum seropedicae, com e sem adubação nitrogenada. Para tanto, amostras para determinação  do 
conteúdo relativo de água na folha (CRA) e do índice de estabilidade da membrana (IEM) foram coletadas no 1º e 8º 
dias de uma restrição total de água no estágio de emborrachamento. Além disso, os parâmetros de biomassa, nitrogênio 
total (NT) e produtividade foram determinados na colheita. Como resultado, os genótipos mostraram um desempenho 
distinto. Os dados de CRA e IEM revelaram que a inoculação de A. brasilense e H. seropedicae são capazes de conduzir o 
genótipo CD 120 à tolerância à seca. Além disso, o índice de grãos foi melhorado em todas as condições em que H. 
seropedicae estava presente em ambos os diferentes regimes de água. O H. seropedicae inoculado juntamente com adubo 
nitrogenado também aumentou o rendimento de grãos sob o regime de escassez de água. Além disso, A. brasilense 
inoculado com adubo nitrogenado foi capaz de melhorar a massa de 1000 grãos de plantas sob escassez de água. O 
cultivar Frontana exibiu a capacidade de manutenção do IEM e CRA apenas quando H. seropedicae ou ambas as bactérias 
mais adubo nitrogenado foram aplicados, no entanto, esta cultivar não apresentou diferenças em termos de massa fresca 
e seca da parte aérea e radicular, NT ou produtividade. Estes resultados apontaram H. seropedicae como promissora para 
inoculação em cereais e o CD120 como um bom modelo de planta para estudar a interação de plantas e bactérias. 

Palavras-Chave – status hídrico, associação planta-bactéria, rizobactérias. 

Abstract – This work evaluated wheat genotypes under water deficit inoculated with Azospirillum brasilense and 

Herbaspirillum seropedicae, with and without nitrogen fertilization. Samples of the plants were collected to evaluate its 
relative water content (RWC) and membrane stability index (MSI) at the 1st and 8th day of total water restriction at the 
booting stage. The plant biomass, total nitrogen (TN) and grain yield were determined at harvesting. The genotypes 
showed different performances. According to the results of RWC and MSI, inoculation with A. brasilense and H. 
seropedicae can make the cultivar CD-120 more tolerant to drought. Grain index was improved with H. seropedicae in all 
conditions and water regimes. H. seropedicae with nitrogen fertilization increased grain yield under water deficit. A. 
brasilense with nitrogen fertilization improved the 1000-grain weight of plants under water deficit. The cultivar Frontana 
maintained its cellular integrity and RWC with nitrogen fertilization combined with H. seropedicae and with both bacteria, 
however the shoot and root fresh and dry weights, TN and yield of this cultivar showed no differences. These results 
show the inoculation with H. seropedicae as promising to cereals, and the cultivar CD-120 as a good plant model to study 
plant-bacteria interaction. 

Keywords – water status, plant-microbe association, rhizobacteria 
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INTRODUCTION 

Wheat (Triticum aestivum L.) is one of the main 
products in the human daily diet (JONES, 2005), whose 
production reached more than 730 million Mg in 
2017/2018 (FAO, 2017). The most limiting factor for 
wheat productivity is water deficit, which affects yield 
depending on its intensity and wheat phenological stage 
(OKUYAMA et al., 2004; ARAUS et al., 2008). In the 
Southern hemisphere, the wheat season coincides with a 
low precipitation period. Thus, 5% of the wheat 
production was lost in South Brazil in 2013 
(GODINHO, 2013), contributing to decreasing the 
internal production supply to about half of the expected 
(CONAB, 2015).  

Plants have developed adaptive physiological 
responses to cope with drought stress, such as reduction 
of transpiration by fast stomatal closure, decreasing of 
photosynthetic activity and deepening of roots (ALI et 
al., 2013; BECK et al., 2007). Plants with high 
antioxidant levels usually have greater tolerance to 
oxidative damages due to water stress (APEL; HIRT, 
2004). Moreover, the synthesis of osmolytes can increase 
the osmotic potential inside cells in response to drought 
(FAROOQ et al., 2009). Importantly, all of these 
responses may vary among plant cultivars.  

In order to maintain productivity, it is necessary 
to find efficient low-cost technologies to reduce drought 
effects over crops. The maintenance of crop yields under 
water restriction is the major challenge facing agriculture 
where plant growth-promoting bacteria (PGPB) can play 
an important role. In the last decades, many authors have 
been studying soil microorganisms as crops helpers in 
withstanding abiotic stresses (CHAKRABORTY et al., 
2013). The PGPB have a potential to increase agricultural 
productivity through biological nitrogen fixation, 
promotion of greater absorption of nutrients by plant 
roots and reduction of deleterious effects of pathogens 
(BECKERS; CONRATH, 2007, FARINA et al., 2012, 
NAIMAN et al., 2009, ROJAS-TAPIAS et al., 2012, 
SPAEPEN et al., 2008). Remarkably, PGPB can also lead 
plants to drought tolerance by secreting compounds 
(including osmolytes) that increase root cells osmotic 
potential (DIMKPA et al., 2009).  

Find efficient low-cost technologies to reduce 
effects of drought over crops is necessary to the 
maintenance of crop yields under water deficits, which is 
the major challenge faced by agriculture. Plant growth-
promoting bacteria (PGPB) can be an important tool for 
this challenge. In the last decades, many authors have 
studied soil microorganisms to improve the tolerance of 
crops to abiotic stresses (CHAKRABORTY et al., 2013). 
PGPB have potential to increase agricultural productivity 

through biological nitrogen fixation, promotion of 
greater absorption of nutrients by plant roots and 
reduction of deleterious effects of pathogens 
(BECKERS; CONRATH, 2007, FARINA et al., 2012, 
NAIMAN et al., 2009, ROJAS-TAPIAS et al., 2012, 
SPAEPEN et al., 2008). Remarkably, PGPB can also 
promote tolerance to drought in plants by secreting 
compounds (including osmolytes) that increase osmotic 
potential of root cells (DIMKPA et al., 2009).  

Herbaspirillum seropedicae (BALDANI et al., 1986) 
and Azospirillum brasilense (TARRAND et al., 1978) can 
colonize roots of cereals, and their efficiency to transfer 
fixed nitrogen to plants was already described in rice and 
sugarcane (BALDANI et al., 1997, BALDANI; 
BALDANI, 2005, BHATTACHARJEE et al., 2008, 
SENGUPTA; GUNRI, 2015). H. seropedicae in wheat 
crops can substitute nitrogen fertilization, according to a 
greenhouse experiment (NEIVERTH et al., 2014). 
Moreover, A. brasilense decreased grain yield loss in wheat 
under salt and drought stresses (CREUS et al., 1997; 
CREUS et al., 2004).   

The beneficial effects of PGPB on plants 

depends on many factors, such as soil type, plant age, 

physiological stage and genotype, and the bacterial strain 

specificity (BALDANI; BALDANI, 2005, ROESCH et 

al., 2006, VARGAS et al., 2012). However, wheat 

genotypes have different capacities of association with 

bacteria. Root exudates act as chemical attractants for a 

vast number of heterogeneous, diverse and active 

metabolizing soil microbial communities (AHEMAD; 

KIBRET, 2014). These exudates differ according to the 

genotype, defining the microbiota around the roots 

(AIRA et al., 2010). These factors are essential to find 

solutions for specific potential application of these 

bacteria as bio-fertilizers.  
Plants considered as models, showing a positive 

and negative plant-bacteria interaction, were described 
for cultivars of rice (IR42 and IAC 4440) (VARGAS et 
al., 2012), sugar cane (SP70 1143 and Chunee) (GOMES 
et al., 2005) and wheat (CD-120 and CD104) 
(NEIVERTH et al., 2014). However, few studies 
evaluated the performance of wheat model plants 
inoculated with PGPB and subjected to water deficit.  

The cultivar CD-120 belongs to the Coodetec's 
wheat germplasm and has Mexican origin (CIMMYT) 
(VENDRUSCOLO et al., 2008). This genotype is 
described as resistant to the major diseases and of high 
grain yield potential and soft wheat quality 
(MARCHIORO et al., 2011). Frontana is an old, tall, red-
grained cultivar with high level of seed dormancy and 
resistance to leaf rust and fusarium head blight (FHB) 
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(ANDREOLI et al., 2006). This cultivar is an ancient 
genotype from which some Brazilian wheat varieties 
originated. It was included in the present study as 
control, since it probably underwent lower breeding 
pressure to respond to nitrogen fertilization and 
interactions with bacteria. 

The objective of this study was to verify the 
performance of two wheat cultivars subjected to water 
deficit, under different inoculation with bacteria and 
fertilization conditions. 

MATERIAL AND METHODS 

The experiment was conducted at the 

Agricultural Research Central Cooperative 

COODETEC, Cascavel, State of Paraná, Brazil 

(24º53'10.7''S, 53º32'56.1''W), from May to September, 

2012, using two wheat genotypes (CD-120 and 

Frontana). 
The experiment was conducted in a complete 

randomized block design with five replications, consisted 
of two genotypes, eight different conditions 
(fertilizations and inoculations) and two water regimes 
(normal irrigation and water deficit). Results were 
subjected to analysis of variance (ANOVA) and 
compared by the Tukey's test at 5% significance level 
using the program GENES (CRUZ, 2013). 

Six seeds were sown per pot, which contained 
approximately 4.5 kg of 5-mm sieved, not-autoclaved Red 
Latosol that were locally collected, arranged in a greenhouse to 
have the same solar radiation, temperature (25±2°C) and 
relative humidity (60%). No chemical fertilizers were applied 
due to the good soil characteristics (pH = 6.40, P = 60.00 mg 
dm-3, K = 1.14 cmol dm-3, Ca = 6.69 cmol dm-3, Mg = 3.03 
cmol dm-3, H+Al = 3.18 cmol dm-3, Cu = 14.45 mg dm-3, Mn 
= 400.00 mg dm-3, Fe = 21.00 mg dm-3, Zn = 32.49 mg dm-3, 
BS = 10.86 cmol dm-3 and organic matter = 41.6 g dm-3).  

The pre-inoculum (of both H. seropedicae SMR1 
and A. brasilense ABV5 strains) were prepared from a 
single colony in 5 mL of liquid DYGS medium 
maintained at 28 °C in a shaker (120 rpm overnight). 
One mL of the pre-inoculum was transferred to a 20-mL 
conic tube containing the liquid DYGS medium 
originating the inoculum. The inocula grew until the log 
phase (OD 660 nm) and the seed inoculation was 
performed before sowing, in order to provide 106 cells 
seed-1 for H. seropedicae and 107 cells seed-1 for A. brasilense 
(JUHNKE et al., 1989; SANTOS et al., 2010). 

The treatments consisted of control (C1), 
inoculation with H. seropedicae (C2), inoculation with A. 
brasilense (C3), inoculation with H. seropedicae and A. 
brasilense (C4), nitrogen fertilization (C5), inoculation with 

H. seropedicae and nitrogen fertilization (C6), inoculation 
with A. brasilense and nitrogen fertilization (C7), 
inoculation with H. seropedicae and A. brasilense and 
nitrogen fertilization (C8).  

Thinning was performed 30 days after planting, 
keeping four plants in each pot, followed by nitrogen 
fertilization (142 kg urea ha-1).  The plants were subjected 
to two water regimes, plants with normal irrigation (once 
a day) (1) and plants under total water restriction for 8 
days in the early booting stage, from the 65th for the 
cultivar CD-120 and from the 75th day after germination 
for the cultivar Frontana (2) (Zadoks 4.5) (ZADOKS et 
al., 1974). After this period, plants from both water 
regimes were irrigated normally until harvesting. Leaf 
samples were collected from plants at the same time in 
both water regimes, in the 1st and 8th day after water 
restriction. Samples were used to quantify the relative 
water content (RWC), following the protocol proposed 
by Schonfeld et al. (1988), and membrane stability index 
(MSI), according to Chandra Babu et al. (2004). Harvests 
were performed at 139 (Frontana) and 120 (CD-120) 
days after germination, and the plants were evaluated 
according to production parameters, including plant 
fresh and dry weights, shoot total nitrogen (TN), grain 
weight per plant (grain yield) and 1000-grain weight 
(grain index) (BREMNER; MULVANEY, 1982). 

RESULTS AND DISCUSSION 

  

Relative water content and membrane stability 
index 

RWC and MSI were used to assess the water 
status and membrane stability of plants subjected to 
water deficit and inoculation with A. brasilense and/or H. 
seropedicae and/or nitrogen fertilization. RWC and MSI 
data showed that the inoculation with A. brasilense and H. 
seropedicae promoted tolerance to drought for the cultivar 
CD-120. The same trend was observed for the cultivar 
Frontana, but at a lesser extent. The cultivar CD-120 
maintained a high RWC until the 8th day of water 
restriction, under all inoculation conditions (Figure 1A).  

The lowest RWC were found in the control 

(C1) (12%) and nitrogen fertilization (C5) (41%) of the 

cultivar CD-120. These results represent a decrease in 

RWC of 84 and 51%, respectively, compared with 

control plants, denoting the effect of water deficit in the 

plants. The RWC of plants of the cultivar Frontana 

under irrigation and water stress, with A. brasilense (C2) 

or H. seropedicae (C3) and with nitrogen plus the bacteria 

strains (C8) was similar (Figure 1B). 



 

 
REVISTA SCIENTIA AGRARIA 
Versão On-line ISSN 1983-2443 
Versão Impressa ISSN 1519-1125 
SA vol. 18 n°. 2 Curitiba Abr/Jun. 2017 p. 104-113 

 

107 

 

Figure 1 – Relative Water Content of A) CD 120 B) 
Frontana at irrigated and stressed conditions. C1 – 
control; C2 – inoculation with H. seropedicae; C3 – 
inoculation with A. brasilense; C4 – inoculation with H. 
seropedicae and A. brasilense; C5 – nitrogen fertilization; 
C6 – inoculation with H. seropedicae and nitrogen 
fertilization; C7 – inoculation with A. brasilense and 
nitrogen fertilization; C8 – inoculation with H. 
seropedicae and A. brasilense and nitrogen fertilization. 
Means followed by the same capital letter in the column 
(corresponds to different water regime – irrigated and 
stressed) and small letter on the column (corresponds to 
differences among fertilization/inoculation conditions) 
did not differ statistically by the Tukey Test (p<5%). 

The MSI data of CD-120 clearly showed its 
maintenance of cellular membrane in most conditions, 
excepted control (C1) and nitrogen fertilization (C5), 
which had decreases in membrane integrity of 54% and 
48%, respectively (Figure 2A).  

The MSI of the cultivar Frontana showed the 
same trend of the RWC (Figure 2B). The data indicated a 
better membrane protection when inoculated with H. 
seropedicae (C2) and with both strains plus nitrogen 
fertilization (C8).  

 

Figure 2 – Membrane Stability Index of A) CD 120 B) 
Frontana at irrigated and stressed conditions. C1 – 
control; C2 – inoculation with H. seropedicae; C3 – 
inoculation with A. brasilense; C4 – inoculation with H. 
seropedicae and A. brasilense; C5 – nitrogen fertilization; 
C6 – inoculation with H. seropedicae and nitrogen 
fertilization; C7 – inoculation with A. brasilense and 
nitrogen fertilization; C8 – inoculation with H. 
seropedicae and A. brasilense and nitrogen fertilization. 
Means followed by the same capital letter in the column 
(corresponds to different water regime – irrigated and 
stressed) and small letter on the column (corresponds to 
differences among fertilization/inoculation conditions) 
did not differ statistically by the Tukey Test (p<5%). 

 The RWC and MSI of plants under water deficit 
were similar to those reported by Lemos et al. (2011) for 
another COODETEC genotype under the same water 
regimes. These authors found significant decreases in 
RWC (31%) and MSI (15%) in plants under water deficit, 
compared with those under normal irrigation. 

The low RWC and MSI found are indicators of 
severe membrane injuries, which compromised the cell 
recovery after the drought period. Reduction in 
electrolyte losses under water stress results in a better 
membrane integrity and tolerance to oxidative stress 
(LIU et al., 2011). 
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Inoculation with A. brasilense induced 
homeostatic mechanisms that generate tolerance to 
drought in prime wheat (KASIM et al., 2013). Moreover, 
drought increases reactive oxygen species production 
(BECK et al., 2007), which can damage cells and activate 
defense responses to water stress (DOORNBOS et al., 
2012; FAROOQ et al., 2009). The MSI of inoculated 
plants of the cultivar CD-120 indicated a protection 
against oxidative damage using the bacteria as a bio-
priming (BECKERS et al., 2007, COMPANT et al., 
2005, ZAMIOUDIS; PIETERSE, 2012; MASWADA; 
EL-KADER, 2016). However, the treatment with 
nitrogen fertilization (C5) did not prevent damage to the 
membrane structure and loss of turgor in both genotypes 
subjected to water deficit.  

Fresh and dry weight and yield parameters 

Booting seems to be the most critical 

phenological stage for wheat subjected to water deficit 

(LEMOS et al., 2011; KHAN et al., 2015).  High shoot 

fresh weight and TN indicate a plant growth with a 

normal metabolism. Drought affected the shoot weight 

and TN of both genotypes (Table 1), showing that water 

is essential to the physiological apparatus. 
H. seropedicae (C2) increased the fresh and dry 

shoot weight of CD-120 under irrigation (Table 1). 
However, under water deficit, this cultivar showed 
increments in fresh shoot weight with nitrogen 
fertilization plus inoculation with H. seropedicae (C6) and 
H. seropedicae and A. brasilense (C8) with 1.8-fold and 2-
fold respectively, compared with the control. The highest 
shoot dry weight (17%) and TN (35%) content was 
found in the treatment with both bacteria and N 
fertilization (C8) in plants under water stress.  

Grain weight per plant and 1000-grain weight 
was improved in all conditions with H. seropedicae (C2) 
under normal water regime. Moreover, H. seropedicae with 
nitrogen fertilization (C6) improved grain weight per 
plant of the cultivar CD-120 under water deficit. The 
good productive performance and higher RWC and MSI 
of the cultivar CD-120 indicated a beneficial interaction 
with H. seropedicae, thus, this cultivar can be considered as 
a positive model (NEIVERTH et al., 2014) to evaluate 
plant-bacteria interaction in water stress conditions. 

Furthermore, CD-120 showed increases in grain 
yield (8-fold) and 1000-grain weight (1.3-fold) with 
nitrogen fertilization plus inoculation with H. seropedicae 

(C6) and A. brasilense (C7) (Table 2). Its higher yields can 
be explained by a delayed water loss due to the presence 
of bacteria, involving several morphophysiological and 
biochemical changes, such as rises in abcisic acid (ABA), 
lipid peroxidation and proline (COHEN et al., 2015). 

Although the results showed good responses of 
the cultivar CD-120, there are few works in the literature 
comparing its performances. However, Alamri and 
Mostafa (2009) evaluated the effect of N supply and 
inoculation with A. brasilense in wheat subjected to a 
saline condition (8%) and found an increase of 9% in 
1000-grain weight without N fertilization and of 21% 
when N was applied. In the present work, the application 
of nitrogen fertilization (C5) did not increase grain yield 
and grain index of plants under water standard regime. 

The cultivar Frontana has usually high shoot 
weight phenotype, which explains its highest fresh and 
dry shoot weight and TN (Table 1). The parameters of 
this cultivar did not differ significantly with the 
inoculations or water regimes (Tables 1 and 2). The 
Frontana shoot dry weight of plants inoculated with A. 
brasilense increased in approximately 2-fold with nitrogen 
fertilization (C7) under water deficit condition. 
Nevertheless, TN content decreased under the same 
condition. The grain weight per plant under water deficit 
of the cultivar Frontana, inoculated with A. brasilense and 
H. seropedicae (C2, C3 and C4) was also improved. H. 
seropediace plus nitrogen fertilization (C7) promoted the 
highest grain weight per plant, but the 1000-grain weight 
did not increase (Table 2). 

Rhizobacteria-induced drought endurance and 
resilience (RIDER) that includes changes in the levels of 
phytohormones, defense-related proteins and enzymes, 
antioxidants and epoxypolysaccharide have been 
observed for microbe-mediated plant responses 
(MEENA et al., 2017). According to the results of the 
present work, A. brasilense and H. seropedicae can be 
considered as RIDERs, since they improved the plants 
of both genotypes.   

The cultivar CD-120 (commercial cultivar) 
seems to interact better with bacteria, minimizing the 
drought stress effects than the cultivar Frontana 
(ancestral cultivar). Probably, CD-120 presents a better 
anti-oxidative enzymatic profile and the presence of 
bacteria can optimize it, conferring a better tolerance to 
drought stress to this cultivar (HANDIA et al., 2004; 
HAYAT et al., 2010). 
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Table 1 – Effect of different conditions of fertilization and/or inoculation with H. seropedicae and A. brasilense on 
biomass parameters of wheat varieties submitted to different water regimes.

 

WATER STANDARD REGIME 

 
Fresh Shoot Mass (g) Shoot Dry Mass(g) 

Shoot Total Nitrogen Content 
(g.kg-1) 

CD 120 Frontana CD 120 Frontana CD 120 Frontana 

C1 10.1 Bb* 22.2 Aa* 7.7 Bb* 15.2 Aa* 1.4 Aab 1.9 Aa 
C2 21.5 Aa* 22.3 Aa* 14.6 Aa* 14.1 Aa 1.4 Bab 2.3 Aa 
C3 7.7 Bb 17.6 Aa 6.3 Bb* 11.9 Aa 1.9 Ba 2.4 Aa* 
C4 11.3 Bb* 19.1 Aa 9.2 Bb* 13.3 Aa 1.7 Aab 2.0 Aa 
C5 7.9 Bb* 13.2 Aa 6.2 Ab 8.3 Aa 1.3 Bab 2.5 Aa* 
C6 5.8 Bb 18.2 Aa 4.4 Bb 13.6 Aa* 1.7 Bab 2.7 Aa* 
C7 7.3 Ab 13.1 Aa 5.7 Ab 9.5 Aa 1.5 Bab 2.8 Aa* 
C8 10.3 Bb 18.2 Aa* 7.7 Bb 13.6 Aa* 1.1 Bb 2.5 Aa 

WATER SHORTAGE REGIME  

 
Fresh Shoot Mass (g) Shoot Dry Mass(g) 

Shoot Total Nitrogen Content 
(g.kg-1) 

CD 120 Frontana CD 120 Frontana CD 120 Frontana 

C1 5.1 Bab 11.3 Aa 4.4 Aab 6.0 Ab 2.0 Aab 1.2 Bab 
C2 5.3 Bab 12.1 Aa 3.9 Bb 6.3 Aab 1.9 Aab* 1.9 Aa 
C3 5.7 Bab 14.2 Aa 4.4 Bab 9.8 Aab 1.8 Ab 1.6 Aab 
C4 5.2 Bab 15.3 Aa 4.3 Bab 10.6 Aab 2.5 Aab* 1.7 Bab 
C5 4.2 Bb 11.7 Aa 4.0 Bab 7.9 Aab 2.3 Aab* 2.1 Aa 
C6 9.6 Aab* 10.2 Aa 5.3 Bab 7.5 Aab 1.9 Ab 1.9 Aa 
C7 8.8 Bab 17.7 Aa 5.1 Bab 12.5 Aa 2.4 Aab* 0.7 Bb 
C8 10.3 Aa 10.2 Aa 6.0 Aa 7.5 Aab 2.7 Aa* 1.8 Ba 

 
 
 
Table 2 – Effect of different conditions of fertilization and/or inoculation with H. seropedicae and A. brasilense on yield 
parameters of wheat varieties submitted to different regimes of water support.   

WATER STANDARD REGIME 

 
Grain Mass/plant (g) 1000-Grain Mass (g) 

CD 120 Frontana CD 120 Frontana 
C1 2.8 Abc* 2.4 Aab* 3.4 Ad* 3.1 Ba 
C2 6.9 Aa* 3.1 Ba* 3.8 Aabc* 3.1 Ba 
C3 2.8 Abc* 2.4 Aab* 3.6 Abcd* 3.0 Ba 
C4 3.7 Ab* 2.4 Aab 4.0 Aa* 2.8 Bab 
C5 1.7 Ac* 0.6 Ac 3.5 Acd* 2.5 Bb 
C6 2.6 Abc* 2.0 Aab* 3.9 Aab 2.5 Bb 
C7 2.0 Ac* 1.7 Abc 3.5 Acd 2.6 Bab 
C8 3.0 Abc* 2.0 Bab* 3.7 Aabc* 2.7 Bab* 

WATER SHORTAGE REGIME 

 
Grain Mass/plant (g) 1000-Grain Mass (g) 

CD 120 Frontana CD 120 Frontana 
C1 0.2 Ab 0.2 Ad 2.9 Ad 3.1 Aab 
C2 0.6 Bb 1.5 Aab 3.3 Aabc 3.5 Aa 
C3 0.9 Aab 1.5 Aab 3.1 Acd 3.3 Aab 
C4 0.3 Bb 1.5 Aab 3.3 Ac 2.8 Bbcd 
C5 0.4 Ab 0.4 Acd 3.2 Acd 2.7 Bbcd 
C6 1.6 Aa 1.1 Abc 3.7 Aa 2.5 Bcd 
C7 0.7 Bb 1.9 Aa 3.7 Aa 2.9 Babc 
C8 0.7 Ab 0.2 Bcd 3.3 Abc 2.2 Bd 

For both tables means followed by the same capital letter in the line (correspond to genotypes – CD120 and Frontana) and small letter on the column 
(correspond to different conditions of fertilization and/or inoculation) did not differ statistically by the Tukey test (p<0.05). Means of water regimes 
followed by * are statistically different by Tukey test (p<0.05).
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Comparing CD120 (commercial cultivar) and 
Frontana (ancestral cultivar), the former seems to 
interact better to the presence of bacteria minimizing the 
drought stress effects. Probably, CD 120 presents a 
better anti-oxidative enzymatic profile and the presence 
of bacteria could optimize it conferring better tolerance 
to drought stress (HANDIA et al., 2004; HAYAT et 
al.,2010) 

CONCLUSION 

The cultivar CD-120 can be used as a plant 
model in studies evaluating the effect of plant growth-
promoting bacteria on tolerance to drought and yield 
performance in wheat. 
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