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Traditional methods for financial risk measures adopt normal distributions as a pattern of the 

financial return behavior. Assessing the probability of rare and extreme events is an important 

issue in the risk management of financial portfolios. In this paper, we use Peaks Over 

Threshold (POT) model of Extreme Value Theory (EVT), and General Pareto Distribution 

(GPD), which can give a more accurate description on tail distribution of financial losses. 

The EVT and POT techniques provide well established statistical models for the computation 

of extreme risk measures like the Return Level, Value at Risk and Expected Shortfall. In this 

paper we apply these techniques to a series of daily losses of AFAP SURA over an 18-year 

period (1997-2015), AFAP SURA is the second largest pension fund in Uruguay with more 

than 310,000 clients, and over USD 2 billion assets under management. Our major conclusion 

is that the POT model can be useful for assessing the size of extreme events. VaR approaches 

based on the assumption of normal distribution overestimate low percentiles (due to the high 

variance estimation), and underestimate high percentiles (due to heavy tails). The absence of 

extreme values in the assumption of normal distribution underestimate the Expected Shortfall 

estimation for high percentiles. The extreme value approach appears consistent with respect 

to the actual losses observed. 
 

Keywords: Extreme Value Theory, General Pareto Distribution, Peaks Over Threshold, 

Risk Measures, Value at Risk, Pension Fund. 
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UNA APLICACIÓN DE LA TEORÍA DEL VALOR EXTREMO PARA LA 

MEDICIÓN DEL RIESGO FINANCIERO EN EL FONDO DE PENSIONES 

URUGUAYO 
 

 

 

 

 

Resumen 
 

 

 

 

 

Los métodos tradicionales para las medidas de riesgo financiero adoptan distribuciones 

normales como un patrón del comportamiento del retorno financiero. Evaluar la 

probabilidad de eventos raros y extremos es un tema importante en el manejo del riesgo 

de las carteras financieras. En este trabajo, utilizamos el modelo POT (Peaks Over 

Threshold) de la Teoría del Valor Extremo (EVT) y General Pareto Distribution (GPD), 

que puede dar una descripción más precisa de la distribución de la cola de las pérdidas 

financieras. Las técnicas EVT y POT proporcionan modelos estadísticos bien 

establecidos para el cálculo de medidas extremas de riesgo como el Nivel de Retorno, el 

Valor en Riesgo y la Pérdida Esperada. En este trabajo aplicamos estas técnicas a una 

serie de pérdidas diarias de AFAP SURA en un período de 18 años (1997-2015), AFAP 

SURA es el segundo mayor fondo de pensiones en Uruguay con más de 310.000 clientes 

y más de 2.000 millones de dólares de activos Bajo gestión. Nuestra principal conclusión 

es que el modelo POT puede ser útil para evaluar el tamaño de eventos extremos. Los 

enfoques de VaR basados en el supuesto de distribución normal sobrestiman los 

percentiles bajos (debido a la alta estimación de la varianza) y subestiman los percentiles 

altos (debido a colas pesadas). La ausencia de valores extremos en la hipótesis de 

distribución normal subestima la estimación de déficit esperado para percentiles altos. 

El enfoque de valor extremo parece coherente con respecto a las pérdidas reales 

observadas. 
 

Palabras clave: Teoría del Valor Extremo, Distribución General de Pareto, Picos sobre 

Umbral, Medidas de Riesgo, Valor en Riesgo, Fondo de Pensiones.  
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1. Introduction 
 

The Uruguayan pension system comprises, on the one hand, a pension scheme based 

on intergenerational solidarity or pay-as-you-go scheme that is administered by the Banco 

de Previsión Social (BPS); and, on the other hand, by an individual savings scheme which 

is administered by private savings firms (Administradoras de Fondos de Ahorro 

Provisional - AFAP). This system combines solidarity with individual savings in order to 

achieve financial balance in social security. A reform implemented in 1996 meant to deal 

with a pension crisis originated in flaws in a previous social security regime (Forteza et 

al. 1999).   
 

At present, there are four AFAPs in the Uruguayan market (República AFAP, AFAP 

SURA, Unión Capital AFAP and Integración AFAP). According to Banco Central del 

Uruguay (BCU), at the close of 2015, the AFAPs managed USD 12 billion, approximately 

90% of which is invested in Uruguayan assets, of which 60% is invested in sovereign 

assets. For this work, we use the daily NAV series of AFAP SURA over a period of 

eighteen years (1997-2015).  
 

AFAP SURA has more than 310,000 clients (almost 10% of Uruguay's total 

population) and assets under management over USD 2 billion, being the second largest 

pension fund manager in Uruguay. The quota value or net asset value (NAV) is the value 

per share of a pension fund on a specific date. In the context of Uruguayan pension funds, 

NAV per share is computed once per day based on the closing market prices of the 

securities in the portfolio. All of the buy and sell orders for pension funds are processed 

at the NAV of the trade date.  

 

The last years have been characterized by significant instabilities in financial 

markets. As an example of this, in mid-2013, because of a FED announcement, the yield 

curve of inflation-indexed bonds estimated by the Bolsa Electrónica de Valores (BEVSA) 

had a significant increase, corresponding to an important drop in all the bond prices. The 

movement in the 10-year UI yield bond was larger than 2% (see left panel of Figure 1). 

This situation motivated a large loss for corporate investment institutions, as pension 

funds, with a cost of approximately the 5% of the total portfolio (see right panel of Figure 

1). This led to numerous critics about the existing risk management systems and 

motivated the search for more appropriate methodologies for extreme risk measures. 

 

 

 

 

 

 

 



Figure 1: Comparative CUI and Average Monthly Performance AFAP 2013. 

 

The purpose of this paper is to compare different methodologies to calculate risk 

measures for Uruguayan pension funds such as Value at Risk, Expected Shortfall and 

Return Level. Traditional statistical methods for financial risk measures fit models to all 

data even if primary focus is on extremes. It is for this reason that it is common to see in 

literature the normal distribution assumption for financial returns. This assumption 

provides a good approximation for the average of financial returns (due the central limit 

theorem) but does not provide a good fit for the extreme values.  

 

The Extreme Value Theory (EVT) provides well-established statistical models for 

the computation of extreme risk measures. EVT became important in the 1920s with 

problems primarily related to hydrology and led to the first fundamental theorem of 

Fisher-Tippet (1928), then Gnedenko (1948). Another point of view arose in the 70s with 

the second fundamental theorem of Extreme Value Theory when Pickands (1975) and 

Balkema-de Haan (1974) characterized the asymptotic tail distribution as a Generalized 

Pareto Distribution (GPD) family. 

 

EVT is a well-known technique in many fields of applied sciences including 

engineering and insurance (McNeil, 1999; Embrechts et al., 1999; Reiss and Thomas, 

1997 and Giesecke & Goldberg, 2005). Numerous research studies surfaced recently 

which analyse the extremes in the financial markets due to currency crises, stock market 

turmoil and credit defaults. The behavior of financial series tail distributions has, among 

others, been discussed in Onour (2010), Gilli and Këllezi (2006), Loretan and Phillips 

(1994), Longin (1996), Daniels-son and de Vries (2000), Kuan and Webber (1998), 

Straetmans (1998), McNeil (1999), Jondeau and Rockinger (1999), Neftci (2000) and 

McNeil and Frey (2000). 

 

 

The paper is structured as follows: first, we present the different measures of risk and 

then a description of the theory of extreme value. Then we will present the results of the 

study for the data series and end with the conclusion. 
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2. Risk Measures 
 

Financial risk is the prospect for financial loss due to unforeseen changes in 

underlying risk factors (these factors are those that provide uncertainty in financial 

results). Financial risks can be classified in different ways, such as market risk, credit risk 

(or the risk of loss arising from the failure of a counterparty to make a promised payment), 

liquidity risk, operational risk (or the risk of loss arising from the failures of internal 

systems or the people who operate in them) and others (as legal risk, reputational risk). 

Market risks, in turn, can be classified as interest rate risks, equity risks, exchange rate 

risks, or commodity price risks (Dowd 2002). 
 

In this section we discuss statistical summaries of the loss distribution that quantify 

the portfolio risk. We call these summaries as risk measures. First, we describe the risk 

factor, the loss distribution and returns. Then we introduce the so-called axioms of 

coherence, which are properties deemed desirable for measures of risk. Thereafter, we 

discuss two widely used measures of financial risk: Value at Risk (VaR) and Expected 

Shortfall and the return level (R). These risk measures consider only the downside risk, 

i.e. the right tail of the loss distribution. 

 

Risk Factor, Loss Distribution and Return  
 

Consider a portfolio of financial assets and let Vt denote its current value. The 

portfolio value is assumed to be observable at time t. The portfolio loss over the time 

interval from t to t+1 is written as  
 

Lt+1 = - (Vt+1 - Vt) 
  

Because Vt+1 is unknown, Lt+1 is random from the perspective of time t. The 

distribution of Lt+1 will be referred to as the loss distribution. The portfolio value Vt will 

be modeled by a function of time and a set of d underlying risk factor. We write  
 

Vt = f ( t, Zt ) 

 

For some measurable function f: R+ x Rd → R, where Zt = (Zt,1,.. Zt,d)’ denotes a d-

dimensional vector of risk factors. We define the series process of risk factor change 

{Xt}teN, where Xt = Zt - Zt-1. Using the function f we can relate the risk factor changes to 

the changes in the portfolio value as  
 

Lt+1 = - ( f ( t+1, Zt+Xt+1) – f ( t, Zt) ) 
 

The portfolio loss can also take the form of arithmetic returns loss and is defined as: 
 

rt = - ( Vt - Vt-1 ) / Vt-1 
 

Which is the same as the Lt over period t divided by the value of the portfolio at the 

end of t-1. The returns loss can be interpreted as the relative loss of the portafolio. Is 



common in risk measures to use the return loss (rt) instead of the portafolio losses (Lt), 

this is because Vt changes over the time. 
 

Coherent Measures of Risk 
 

Artzner et al. (1999) argue that an appropriate measure of risk should satisfy a set of 

properties termed as the axioms of coherence. Let financial risk be represented by a set 

M interpreted as portfolio losses, i.e. L in M. Risk measures are real-valued functions 

ρ:M→R. The amount ρ(L) represents the capital required to cover a position facing a loss 

L. The risk measure ρ is coherent if it satisfies the following four axioms: 
 

 Monotonicity: L1 ≤ L2 → ρ(L1) ≤ ρ(L2). 

 Positive homogeneity: ρ( λ L)= λ ρ(L), for all λ >0. 

 Translation invariance: ρ(L+l)= ρ(L)+l, for all l in R. 

 Subadditivity: ρ(L1+L2) ≤ ρ(L1)+ ρ(L2) 
 

Monotonicity states that positions that lead to higher loss in every state of the world 

require more risk capital. Positive homogeneity implies that the capital required to cover 

a position is proportional to the size of that position. Translation invariance states that if 

a deterministic amount l is added to the position, the capital reeded to cover L is changed 

by precisely that amount. Subadditivity reflects the intuitive property that risk should be 

reduced or at least not increased by diversification, i.e. the amount of capital needed to 

cover two combined portfolios shold not be greater than the capital needed to cover the 

portfolios evaluated separately.  
 

Value at Risk 
 

Value-at-Risk is defined as the sufficient capital to cover, in most instances, losses 

from a portfolio over a holding period of a fixed number of days (Gilli and Kellezi, 2006). 

Assume a random variable X with continuous distribution function F models losses on a 

certain financial portfolio over a certain time horizon. VaRα can then be defined as the α-

th quantile of the distribution F 
 

VaRα = F-1 (1 - α),      (1) 

 

Where F-1 is defined as the inverse of the distribution function F. For this paper we 

compute a 5%, 2.5%, 1% and 0.5% VaR over a one-day holding period. For example, 

under the assumption of normal distribution, F ~ N(µ,σ). 

 

However, by definition VaRα gives no information about the size of the losses that 

occur with probability smaller than 1-α, i.e. the measure does not tell how bad it gets if 

things go wrong (Ramaswamy 2004). Given these problems with VaRα, we seek an 

alternative measure which satisfies this. 
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Expected Shortfall 

 

Another measure of risk is the expected shortfall (ES) or the tail conditional 

expectation that estimates the potential size of the loss exceeding VaR (Gilli and Kellezi, 

2006). The expected shortfall is defined as the expected size of a loss that exceeds VaRα 

 

ESα = E(X | X > VaRα)    (2) 

 

Expected Shortfall, as opposed to Value at Risk, is a coherent risk measure in the 

sense that satisfies properties of monotonicity, sub-additivity, homogeneity, and 

translational invariance (Gilli and Kellezi, 2006). 

 

Return Level 

 

If H is the distribution of the maximum observed over successive non overlapping 

periods of equal length, the return level Rm
k= H-1(1- 1/m) is the level expected to be 

exceeded in one out of m periods of length k. For example, assuming a model for the 

annual maximum, the 15-years return level R15
365 is on average only exceeded in one year 

out of every 15 years. The return level can be used as a measure of the maximum loss of 

a portfolio, a rather more conservative measure than the Value-at-Risk (Gilli and Kellezi, 

2006). 

 

Extreme Value Theory 

 

When modeling the maximum of a random variable, Extreme Value Theory (EVT) 

plays the same fundamental role as the central limit theorem when modeling sums of 

random variables. This is important because under certain conditions, any unknown 

distribution can be approximated with the Generalized Pareto Distribution. Thus, we 

argue that EVT provides simple parametric models to capture the extreme tails of a 

distribution.  

 

There are two related ways of identifying extremes in real data. Let us consider a 

independent and identically distributed random variable representing daily losses. The 

first approach considers the maximum the variable takes in successive periods. These 

selected observations constitute the extreme events, also called block (or per period) 

maxima. In the left panel of Figure 2, the observations X2,X5,X7   and X11 represent the 

block maxima for four periods of three observations each. 

 

 

 

 

 

 



Figure 2: Block-maxima (left panel) and excesses over a threshold u (right panel). 

 

The second approach, called Peak Over Threshold (POT), focuses on the realizations 

exceeding a given (high) threshold u. The observations X1,X2,X7,X8,X9 and X11 in the right 

panel of Figure 2, all exceed the threshold u and constitute extreme events. Then the POT 

method is more efficient in terms of data usage (Embrechts 1999) and is the chosen 

approach for this paper.  

 

Peak Over Threshold 

 

The POT method considers the distribution of exceedances over a certain threshold. 

Our problem is illustrated in Figure 3, we consider an (unknown) distribution function F 

of a random variable X. We are interested in estimating the distribution function Fu, for 

values of a x above a certain threshold u. 

 

Figure 3: Distribution function F and excess distribution Fu 

 

 

 

The distribution function Fu is called the excess distribution function and is defined 

as 
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Where X is a random variable, u is a given threshold, y=x-u are the excesses and xF < 

∞ is the right endpoint of F. 
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The realizations of the random variable X lie mainly between 0 and u and therefore the 

estimation of F in this interval generally poses no problems. The estimation of the portion 

Fu however might be difficult as we have in general very little observations in this area. 

 

At this point EVT can prove very helpful as it provides us with a powerful result about 

the excess distribution function Fu which is stated in the following theorem (Balkema and 

de Hann, 1974; Pickands 1975): 

 

Theorem 1: For a large class of underlying distribution F, the excess distribution 

function Fu can be approximated by GPD for increasing threshold u. 

 

 uyGyFu ),()(   

 Where G
 is the Generalized Pareto Distribution (GDP) which is given by 
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for y [0,(xF-u)] if  < 0 and y [0,-β/ ]$ if  < 0. Here   is the shape parameter 

and β is the scale parameter for GPD. 

 

Thus, for any distribution F, the excess distribution Fu converges (uniformly) to a 

Generalized Pareto distribution (GPD) as the threshold u is raised. We define the mean 

excess function for the GPD with parameter  < 1 as  
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This function gives the average of the excesses of X over a varying values of the 

threshold z. 

  



3. Dependent Sequences 

 

The POT method is obtained through mathematical arguments that assume an 

underlying process consisting of a sequence of independent random variables. However, 

for the types of data to which extreme value models are commonly applied, temporal 

independence is usually an unrealistic assumption. Various suggestions, with different 

degrees of sophistication, have been made for dealing with the problem of dependent 

exceedances in the threshold exceedance model. The most widely-adopted method is 

declustering (Coles 2001), which corresponds to a filtering of the dependent observations 

to obtain a set of threshold excesses that are approximately independent. This works by: 

 

1. Using an empirical rule to define clusters of exceedances. 

2. Identifying the maximum excess within each cluster. 

3. Assuming cluster maxima to be independent, with conditional excess 

distribution given by the GPD. 

4. Fitting the GDP to the cluster maxima. 

 

Risk Measures under Extreme Value Theory  

 

Assuming a GPD function for the tail distribution, VaRα, ESα and Rm
k can be defined 

as a function of GPD parameters (Singh et al. 2011). For equation (3), if we denote x=u+y 

then  

 

F(x) = ( 1 - F(u) )Fu(y) + F(u) 

 

and replacing Fu by the GPD and F(u) by the empiric estimate (n-Nu)/n, where n is 

the total number of observations and Nu the number of observations above the threshold 

u, we obtain  
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Inverting equation (6) for a given probability α gives 
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If we add and subtract VaRα in the equation (2) and we obtain 
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where the second term on the right is the expected value of the exceedances over the 

threshold VaRα. Then, for equation (5) where z = VaRα - u and 


< 1 we have  
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We know that  
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 Hence, the level xm that is exceeded on average once every m observations is the 

solution of  
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where P(X > u)=Nu / n is the empiric estimate. Rearranging,  
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For presentation, Coles (2001) argue that it is often more convenient to give return 

levels on an annual scale, so that the M-year return level is the level expected to exceed 

once every M years. If there are k observations per year, this corresponds to the m-

observation return level, where m=M × k. Hence, the M-year return level is defined by   
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4. Empirical Results  

 

We consider an extreme value approach working with the daily losses series of AFAP 

SURA NAV over a period of eighteen years (1997-2015). The empirical study uses the 

series of daily losses of AFAP SURA NAV, containing 4,802 trading days. The left panel 

of Figure 4 shows a graph of the daily evolution of AFAP SURA NAV values, and the 

right panel the daily return. 

  



Figure 4: Daily evolution and return of AFAP SURA NAV since 1997 to 2015. 

 

 

 

Table 1 shows the summary statistics for the series of daily changes. This table shows 

that kurtosis value is 193.33 and skewness value is 5.08. Relative value of Normal 

distribution is 3 and 0, respectively. Then there is no compatibility between the empirical 

distribution of daily returns and avnormal distribution. 

 

Table 1: Summary statistics for daily returns 

Min 1st quarter median 3rd quarter max 

-8,95 -0,04 0,05 0,16 14,88 

Mean sd variance skewness kurtosis 

0,06 0,53 0,28 5,08 193,33 

 

 

The Jarqua-Bera statistic shows that the behaviour of daily losses is different from 

normal distribution. The JB test statistics is defined as (Jarque and Bera, 1980): 

 

𝐽𝐵 =
𝑛

6
(𝑆2 +

1

4
(𝐶 − 3)2) 

 

Where n is the number of observations, S is the sample skewness and C is the sample 

kurtosis. The JB statistic has approximately a chi-squared distribution, with two degrees 

of freedom. The Jarqua-Bera test depends on skewness and kurtosis statistics. If the JB 

test statistic equals zero, it means that the distribution has zero skewness and kurtosis is 

about equal 3, and so it can be concluded that the normality assumption holds.  

 

Skewness values far from zero and kurtosis values far from 3 lead to an increase in 

JB values. The test returns the logical value h = 1 if it rejects the null hypothesis at the p 

< 0.05 significance level, and h = 0 otherwise. We foundthat JB value equals 7,505,400, 

p ~ 0, h = 1, which implies that we reject the hypothesis of normality. 
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In practice, we have to consider two important aspects, the selection of the threshold 

u and the independence of the exceedances, that is, the independence of values that are 

above the threshold. For example, the left panel of Figure 5 shows 182 exceedances for 

the threshold u = 0.5, clearly there is a concentration of exceedances in the years 2002 

and 2009. In the right panel we use a cluster technique to reduce dependence of the 

exceedances and we identify 59 exceedances. The clusters are identified as follows. The 

first exceedance of the threshold initiates the first cluster. The first cluster then remains 

active until either ten consecutive values fall below (or are equal to) the threshold. The 

next exceedance of the threshold (if it exists) initiates the second cluster, and so on. 

Thanks to this cluster technique we obtain exceedances that are independent as appear in 

the right panel of Figure 5. 

 

Figure 5: Daily losses over the threshold u = 0.5. 

 

 

 

 

 

 

 

 

 

 

The choice of the threshold u is important, if an excessively high u results in too few 

exceedances and consequently high variance estimators. On the other hand, a too small u 

biases the estimators and the approximation to a GPD is not feasible (Embrechts, 1999). 

So far, there is no algorithm with a satisfactory performance for the selection of the 

threshold u available (Gilli and Kellezi, 2006). The issue of determining the fraction of 

data belonging to the tail is treated in Danielsson and de Vries (1997), DAnielsson et al. 

(2001) and Dupuis (1998). However these references do not provide a clear answer to the 

question of which method should be used. For this reason the choice of u is a trade-off 

between bias and variance, for which there are no general guidelines. We use common-

sense judgement and graphical approaches to select the threshold u.  

 

For different thresholds u, the maximum likelihood estimates for the shape and the 

modified scale parameter (modified by subtracting the shape multiplied by the threshold) 

are plotted against the thresholds (see Figure 6). If the threshold u is a valid threshold to 

be used for peaks over threshold modeling, the parameter estimates depicted should be 

approximately constant above u. Based on Figure 6, we choose the threshold u = 0.5 

because the parameter estimates are approximately constant above 0.5.  

 

 



Figure 6: Estimates for the shape and the modified scale parameter for different 

thresholds u. 

 

 

 

 

 

 

 

 

 

 

The results of maximum likelihood estimation of the GPD parameters (with the chosen 

threshold u = 0.5) are  = 0.5175 (s.e 0.1919) and β = 0.3568 (s.e 0.0792). Figure 7 shows 

how GPD fits to the 59 exceedances. 

 

Figure 7: Diagnostics plot for GPD model. 
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One of the purposes of this paper is to determine the maximum daily loss of the 

portfolio. In Table 2 we show the return level for different periods of time. The return 

levels are interpreted as follows, a maximum daily loss of 6.88% in the portfolio is 

expected once every twenty years. These estimates are consistent with the empirical 

return observed in Figure 8. The level of return can be interpreted as a stress loss of the 

portfolio, it is for this reason that it is important for workers to have a notion of the risk 

assumed by the pension funds. 

 

Table 3: Return level for different periods of time. 

 5 years 10 years 20 years 50 years 

Return 

level 
3,26% 4,75% 6,88% 11,14% 

 

Figure 8: Return Level. 

 

 



In Tables 3 and 4 we report 95%, 97.5%, 99% and 99.5% Value at Risk and Expected 

Shortfall estimates for two different estimation methods. The performance of the methods 

can be evaluated by comparing the estimates with the actual losses observed. VaR 

approaches based on the assumption of normal distribution overestimate low percentiles 

(due to the high variance estimation), and underestimate high percentiles (due to heavy 

tails). The absence of extreme values in the assumption of normal distribution 

underestimates the Expected Shortfall estimation for high percentiles. In turn, the extreme 

value approach on GPD models appears consistent with the actual losses observed as 

show the mean square error (MSE).  

 

Table 3: Value at Risk: one day horizon estimates for two different estimation methods 

 

 α = 5% α =2.5% α =1% α = 0.5% MSE 

Normal model 0.808(0.411) 0.975(0.311) 1.169(-0.032) 1.301(-0.468) 0.121 

GPD model 0.408(0.011) 0.666(0.002) 1.185(-0.016) 1.777(0.008) 0.000 

Empirical 

Result 
0.397 0.664 1.201 1.769 

 

 

Table 4: Expected Shortfall: one day horizon estimates for two different estimation 

methods 

 α = 5% α =2.5% α =1% α = 0.5% MSE 

Normal model 1.030(0.039) 1.175(-0.293) 1.348(-0.966) 1.468(-1.666) 0.949 

GPD model 1.049(0.058) 1.583(0.115) 2.658(0.344) 3.887(0.753) 0.175 

Empirical 

Result 
0.991 1.468 2.314 3.134 

 

 

5. Discussion 

 

In recent years volatility of international financial system has become severe and, 

consequently,  risk management in Uruguayan pension funds has received extensive 

attention. As a measurement of market risk, VaR has been widely used in risk 

management. Uruguayan pension funds are exposed to this volatility, then we argue the 

need to communicate the risk they assume, not just profitability results. We understand 

that this will improve the transparency of Uruguay's pension system and allow members 

to have all the information about the management of their pension fund. 

 

Traditional statistical methods for financial risk measures assume normal distribution 

for financial returns even when empiric distribution is not normal, which always causes 

errors in the estimation. Aiming at this problem, we utilized alternative approaches based 

in the Extreme Value Theory. The distinguish features of an extreme value analysis as 

the objective to quantify the stochastic behavior of a process at unusually large levels. In 

particular, extreme value analyses usually require estimation of the probability of events 

that are more extreme than any that have already been observed. 

 

We have illustrated how Extreme Value Theory can be used to model financial risk 

measures such as Value at Risk, Expected Shortfall and Return Level, applying it to daily 
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returns of AFAP SURA. Our major conclusion is that the POT model can be useful for 

assessing the size of extreme events. From a practical point of view we discussed how to 

handle the selection of the threshold u and the independence of the exceedances. After 

that we estimate the model parameters through maximum likelihood and quantified the 

return level for 5, 10, 20 and 50 years. Next, we compared traditional methods for risk 

measures with the POT model, noting that the last one provides a superior adjustment. 

This is because traditional models do not take into account the instability of financial 

markets that cause extreme values. 

 

A possible extension of this research is raised by Singh et al. (2011), who propose a 

dynamic VaR forecasting method using EVT and GARCH regressions to model market 

volatility.  GARCH models to forecast the estimates of conditional volatility provide 

dynamics of one day ahead forecasts for VaR and ES for the financial time series. 

 

Finally, we invite the readers to continue deepening in the Theory of the Extreme Value 

and its applications in different areas of the science as, ocean wave modeling (Dawson, 

2000); memory cell failure (McNulty et al., 2000); wind engineering (Harris, 2001); 

management strategy (Dahan & Mendelson, 2001); biomedical data processing (Roberts, 

2000); thermodynamics of earthquakes (Lavenda & Cipollone, 2000); assessment of 

meteorological change (Thompson et al., 2001); non-linear beam vibrations (Dunne & 

Ghanbari, 2001); and food science (Kawas & Moreira, 2001). 
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