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Abstract

We use an overlapping generations model with physical and human capital to

ascertain the consequences for optimality of a social planner adopting a social welfare
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In particular, we consider a social planner who maximizes an non-discounted sum

of individual utilities defined over consumption per unit of efficient labour. We

show that, given some initial conditions, an economy commanded by such a social

planner converges to the Golden Rule defined in this framework. Decentralizing
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you-go social security system.
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1 Introduction

The choice of an objective function with which to characterize social optimum has always

been the subject of controversy. Ramsey (1928) assumed a social planner who maximizes

an infinite, non-discounted sum of present and future utilities. The discounting of later

enjoyments in comparison with earlier ones was for him an ethically indefensible practice.

In his own words, (Ramsey, 1928, p. 543) discounting of future utility is “ethically in-

defensible and arises merely from the weakness of the imagination.” Later, Cass (1965,

1966), Koopmans (1965, 1967), Malinvaud (1965) and Samuelson (1965) generalized Ram-

sey’s approach to allow for the discounting of future utilities. In an explicit overlapping

generations setting where individuals are pure life-cyclers, Diamond (1965) adhered to the

maximization of the utility level of a representative individual under the constraint that

any other achieves the same welfare level, giving rise to what the subsequent literature

coined as the Two-Part Golden Rule, i.e., the combination of the Biological Interest Rate

and the Golden Rule of (physical) capital accumulation [Samuelson (1968, 1975a, 1975b)].

Adding to this framework the dimension of intergenerational altruism à la Barro (1974),

so that individuals behave as if they maximized dynastic utility, there is a new choice

between considering the welfare level enjoyed by a representative child only [Carmichael

(1982)] or that of all children [Burbidge (1983)].

Clearly, each of these views of social welfare leads to a different optimal resource

allocation. But all of them share the feature that they assume economies without pro-

ductivity growth, in which a steady state is a situation where consumption levels per

unit of (natural) labour are kept constant. In contrast, in the presence of productivity

growth that translates into consumption growth, these consumption levels will grow with-

out limit. Under these circumstances, if a social planner adopted a social welfare function

whose arguments were utility functions defined over individual consumptions per unit of

natural labour, it is clear that, for plausible specifications, the utility index would grow

without limit. Since utility will eventually be infinite along a balanced growth path, there

would simply be no scope for utility maximization. A way to sidestep this is, of course,
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to assume that the planner maximizes a discounted sum of utilities. This is the approach

adopted by Docquier et al. (2007) to characterize the optimal balanced growth path in

the endogenous growth model set up in the preceding section. An uncomfortable feature

of this approach is that the precise cardinalization of the individual utility function is

crucial for both the characterization of the social optimum and the policies that support

it [Del Rey and Lopez-Garcia (2012)].

In light of these facts, it is tempting to ask whether it is possible for a social planner to

continue to adhere to the Utilitarian criterion of maximizing a sum of individual utilities

but: (i) without having to postulate something as elusive as a social discount rate; and (ii)

without having to choose a specific functional form to cardinalize individual preferences.

As it is argued below, the answer is affirmative provided that the social planner maxi-

mizes a non-discounted sum [thus solving (i)] of individual future utilities defined over

consumption levels per unit of efficient rather than natural labour units [this allowing to

sort (ii)]. It is important to stress that this “new” utility function is obtained by means

of a monotonic transformation of the one guiding individual’s behaviour, thus being fully

respectul with individual ordinal preferences. Notice also that, assuming convergence,

the limit of the time sequence of consumption levels expressed in terms of output per unit

of efficient labour will be measured in such a dimension, as will be any variable which is

constant along a balanced growth path.

This approach to the characterization of the optimal growth path can be related to

the discussion in Del Rey and Lopez-Garcia (2013), who focus on the balanced growth

path that maximizes the lifetime welfare of a representative individual subject to the

constraint that everyone else’s welfare is fixed at the same level, i.e., the counterpart

in an endogenous growth framework of the so-called Two-Part Golden Rule [Samuelson

(1968, 1975a, 1975b)]. As the analytics below will show, this is the balanced growth path

towards which an economy converges when commanded by a social planner who, given

some initial conditions, maximizes an non-discounted sum of individual utilities defined

over consumption per unit of efficient labour.

The second purpose of this paper concerns the characterization of optimal policies,

3



i.e., those that once superimposed on private behaviour and interaction in the market

place, allow the social planner to decentralize the optimal growth path. Del Rey and

Lopez-Garcia (2013) show that along the optimal balanced growth path, a negative edu-

cation subsidy and positive pensions to the elderly are called for. However, these results

do not seem especially instructive when the focus turns from balanced growth paths to

the discussion of the whole time trajectory leading to it. In particular, two questions be-

come relevant: (i) the sign of tax parameters, particularly the one addressed to education

decisions, along the transition periods starting from some arbitray initial conditions; and

(ii) the intergenerational effects of the optimal tax instruments taken together. As far as

(i) is concerned, it is shown below that education expenditures should not only be taxed

along the optimal balanced-growth path but also along the entire optimal growth path.

And referring to (ii), the directions of the intergenerational transfers associated with the

whole tax system along the optimal balanced growth path are equivalent to those of a

pay-as-you-go social security system where the middle-aged contribute and the old-aged

retirees receive a pension benefit. Interestingly, the pay-as-you-go nature of the optimal

policy is independent of any particular feature of the model. This is in sharp contrast

with the results obtained from exogenous growth models, where the precise configuration

of the optimal social security depends in a crucial way on the relationship between the

interest rate and the growth rate along the laissez-faire balanced-growth path [Samuelson

(1975b)].

The rest of the paper is organized as follows. Section 2 presents the model and analyzes

the market equilibrium in the presence of government. Section 3 discusses the optimal

growth path chosen by a social planner who maximizes an non-discounted sum of individ-

ual utilities defined over consumption per unit of efficient labour. Section 4 characterizes

the optimal tax policies that allow to decentralize the optimal growth path and clarifies

the pay-as-you-go nature of the intergenerational effects induced by the optimal policy.

Section 5 concludes.
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2 The model and the decentralized equilibrium in the

presence of government

The framework of analysis is the overlapping generations model with both human and

physical capital used in Boldrin and Montes (2005), Docquier et al. (2007) and Del Rey

and Lopez-Garcia (2012,2013). At period t, Lt+1 individuals are born, and coexist with Lt

middle-aged and Lt−1 old-aged. Population grows at the exogenous rate n > −1,so that

Lt = (1 + n)Lt−1. Agents are born with the level of human capital of their parents, ht−1,

measured in units of efficient labour per unit of natural labour. Human capital in period

t results from the interaction of the amount of output that young individuals invest in

education, dt−1, and the inherited human capital ht−1 according to the production function

ht = E(dt−1, ht−1). Assuming constant returns to scale, the production of human capital

can be written in intensive terms as ht/ht−1 = e(d̃t−1), where e(.) satisfies the Inada

conditions and d̃t−1 = dt−1/ht−1 is the amount of output devoted to education per unit of

inherited human capital. Therefore, the growth rate of productivity from period t− 1 to

period t, gt, satisfies ht/ht−1 = e(d̃t−1) = (1 + gt).

There is a single good, Yt , that is produced by means of physical capital, Kt, and

human capital, Ht, according to a constant returns to scale production function Yt =

F (Kt, Ht). Only the middle-aged work, supplying inelastically one unit of natural labour,

so that Ht = htLt. Physical capital is assumed to fully depreciate each period. Letting

kt = Kt/Lt be the physical capital per unit of natural labour ratio and k̃t = Kt/Ht = kt/ht

the physical capital per unit of efficient labour ratio, one can write Yt/Ht = f(k̃t), where

f(.) also satisfies the Inada conditions.

Perfect competition prevails, so that, if (1 + rt) and wt are respectively the interest

factor and the wage rate per unit of efficient labour,

(1 + rt) = f ′(k̃t) (1)

wt = f(k̃t)− k̃tf
′(k̃t) (2)

Two policy instruments are assumed to be available to the government: lump-sum
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taxes, both on the middle-aged and the elderly, and education subsidies. The latter are

related to the repayment, in the second period of life, of the loans taken in the first one

to pay for education and the ensuing interests. Let zm
t > 0 [resp. < 0] be the lump-sum

tax [transfer] the middle-aged pay [receive], zo
t > 0 [< 0] the lump-sum tax the old pay

[the pension they receive], and let θt be the subsidy rate, all of them in period t. The

government budget constraint can be written:

zm
t Lt + zo

tLt−1 = θt(1 + rt)dt−1Lt (3)

Notice that a subsidy to the repayment of loans is not the only way to model education

subsidies. This approach, however, emphasizes the role of credit markets in financing

human capital investments, and the interaction of this process with public policy.

Individuals are assumed to behave as pure life-cyclers and only consume in their second

and third period. The lifetime utility function of an individual born at period t − 1 is

Ut = U(cmt , c
o
t+1), where cmt and cot+1 denote her consumption levels as middle-aged and old-

aged respectively. This function is strictly increasing in both arguments, strictly concave

and homogeneous of degree j < 1.In their first period, individuals born at t − 1 borrow

in perfect credit markets the amount of output required to pay for the education level

dt−1 that maximizes the present value of their lifetime resources. In their second period

they work, pay taxes zm
t , pay back the loan net of education subsidies (1 + rt)dt−1(1− θt),

consume and save to finance consumption in their third period. In this third period,

individuals consume and pay taxes zo
t+1. Letting st stand for savings of a middle-aged:

cmt = wtht − (1 + rt)dt−1(1− θt)− zm
t − st (4)

cot+1 = (1 + rt+1)st − zo
t+1 (5)

As a consequence, the lifetime budget constraint of an individual born at period t− 1 is:

cmt +
cot+1

(1 + rt+1)
= wtht − (1 + rt)dt−1(1− θt)− zm

t −
zo

t+1

(1 + rt+1)
(6)

The first-order conditions associated with the individual decision variables, dt−1, c
m
t

and cot+1, are:

wte
′(dt−1/ht−1) = (1 + rt)(1− θt) (7)
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∂U(cmt , c
o
t+1)/∂c

m
t

∂U(cmt , c
o
t+1)/∂c

o
t+1

= (1 + rt+1) (8)

where use has been made of the homogeneity of degree one of the E function, i.e., ht =

e(dt−1/ht−1)ht−1. Equation (7) shows that the individual will invest in education up to the

point where the marginal benefit in terms of second period income equals the marginal

cost of investing in human capital allowing for subsidies. Rewriting (7) as e′(d̃t−1) =

(1 − θt) (1 + r(k̃t))/w(k̃t), this expression implicitly characterizes the optimal ratio d̃t−1

as a function of k̃t and θt, i.e., d̃t−1 = φ(k̃t, θt). Since e′′ < 0 it can readily be shown that

the greater k̃t and θt, the greater d̃t−1.

Using (3), (6) becomes

cmt +
cot+1

(1 + rt+1)
= ωt (9)

where ωt is the present value of the net lifetime income of an individual born at t− 1:

ωt = wtht − (1 + rt)dt−1(1− θt)− zm
t −

(1 + n)

(1 + rt+1)
[θt+1(1 + rt+1)dt − zm

t+1] (10)

The homogeneity assumption on preferences implies that the cot+1/c
m
t ratio is a function

of rt+1 only. This allows one to write consumption in the second period as cmt = π(rt+1)ωt,

where the function π(.) depends on the interest rate only. Equilibrium in the market

for physical capital will be achieved when the physical capital stock available in t + 1,

Kt+1, equals gross savings made by the middle-aged in t, stLt, minus the amount of

output devoted to human capital investment by the young in t, (1+n)dtLt. That is, when

Kt+1 = stLt − (1 + n)dtLt, or, equivalently, k̃t+1 = s̃t/e(d̃t)(1 + n) − d̃t/e(d̃t) , where

s̃t = st/h. This equilibrium condition can be rewritten as

k̃t+1 =
(1− π(rt+1)) ω̃t

e(φ(k̃t+1, θt+1))(1 + n)
−

z̃m
t+1

(1 + rt+1)
− (1− θt+1)φ(k̃t+1, θt+1)

e(φ(k̃t+1, θt+1))
(11)

where z̃m
t+1 = zm

t+1/ht+1 and ω̃t = ωt/ht is the present value of lifetime resources ex-

pressed in terms of output per unit of efficient labour. Taking into account (1) and (2),

this expression implicitly provides k̃t+1 as a function of k̃t, z̃
m
t , z̃m

t+1, θt, and θt+1, i.e.,

Ψ(k̃t; z̃
m
t , z̃

m
t+1, θt, θt+1).

Finally, using factor prices in (1) and (2), the government budget constraint (3), the

individual budget constraints in middle and old-age, (4) and (5), and the equilibrium
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condition (11), one can find the aggregate feasibility constraint expressed in terms of

output per unit of efficient labour:

c̃mt +
c̃ot

e(d̃t−1)(1 + n)
= f(k̃t)− (1 + n)d̃t − e(d̃t)(1 + n)k̃t+1 (12)

where c̃mt = cmt /ht and c̃ot = cot/ht−1 are, respectively, consumption of a middle-aged and

of an old-aged in period t per unit of labour efficiency.1

A balanced growth path will be a situation where all variables expressed in terms of

output per unit of natural labour grow at a constant rate, and, as a consequence, all vari-

ables per unit of efficient labour will remain constant over time. One can then delete the

time subscripts in (11) and write k̃ = Ψ(k̃; z̃m, θ). An equilibrium ratio of physical capital

to labour in efficiency units along a balanced growth path in the presence of government

intervention, k̃
G

, will then be a fixed point of the Ψ function, i.e., k̃
G

= Ψ(k̃
G

; z̃m, θ). Such

an equilibrium will be locally stable provided that 0 < ∂Ψ(k̃
G

; z̃m, θ)/∂k̃ < 1.We will focus

on situations where the equilibrium is unique and stable, so that the relationship between

k̃ and the tax parameters can be written, with an obvious notation, as k̃
G

= k̃(z̃m, θ). As

for the determination of d̃
G

, the amount of output devoted to education per unit of in-

herited human capital along a balanced growth path will be governed by the relationship

arising from the education decision (7),so that we can write d̃
G

= φ(k̃(z̃m, θ), θ) or sinply

d̃
G

= d̃(z̃m, θ).

The fact that the utility function is homogeneous implies that the marginal rates

of substitution in the
(
cmt , c

o
t+1

)
and (c̃m, c̃o) spaces will be the same. Thus, individual

behavior along a balanced growth path in the presence of government intervention can be

summarized by:
∂U(c̃mG , c̃

o
G)/∂c̃m

∂U(c̃mG , c̃
o
G)/∂c̃o

= (1 + r
G

) (13)

w
G
e′(d̃

G
) = (1 + r

G
)(1− θ) (14)

c̃mG +
c̃oG

(1 + r
G

)
= ω̃

G
(15)

1Note that cmt Lt and cotLt−1 are measured in units of output. Since middle-aged individuals supply

one unit of natural labour, cmt and cot are expressed in units of output per unit of natural labour. The

interpretation of c̃mt and c̃ot in terms of units of output per unit of efficient labour follows naturally.
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where

ω̃
G

= w
G
− (1 + r

G
)d̃

G

e(d̃G)
−

[
θ(1 + r

G
)d̃

G
− e(d̃G)z̃m

]
(1 + r

G
)e(d̃G)

[
e(d̃G)(1 + n)− (1 + r

G
)
]
. (16)

is the present value of the individual’s lifetime resources along a balanced growth path,

and e(d̃G) =(1 + g
G

) is the growth factor of productivity and of any variable expressed in

terms of output per unit of natural labour.

3 The optimum: A non-discounted sum of utilities

defined over consumption per unit of efficient labour

In this section, we argue that a social welfare function can be postulated that maximizes

a non-discounted sum of individual utilities without being obliged to adopt a specific

cardinalization of individual ordinal preferences. To this end, notice that since the utility

function is homogeneous of degree j, we can take the monotonic transformation of Ut =

U(cmt , c
o
t+1) resulting from dividing by ht and obtain a new utility Ũt = U(c̃mt , c̃

o
t+1) while

ensuring that ordinal preferences are respected.

The social planner’s objective can then be written as the maximization of a non-

discounted sum of the divergences between individual utilities derived from consump-

tion expressed per unit of efficient labour and some “bliss utility” à la Ramsey (1928).

This bliss utility level, U(c̃m∗ , c̃
o
∗), is the one associated with those values c̃m∗ and c̃o∗ that

maximize Ũt under the balanced-growth-path version of the feasibility constraint (12).

Formally, this can be written [Samuelson (1968), De la Croix and Michel (2002)] as:

W̃ =
∞∑

t=0

[
U(c̃mt , c̃

o
t+1)− U(c̃m∗ , c̃

o
∗)
]
. (17)

The planner’s problem is then to maximize (17) subject to the sequence of aggregate

feasibility constraints (12) for given values of k̃0, c̃
o
0 and d̃−1 as initial conditions.2 The

2Strictly speaking, and to be fully coherent with the approach followed by Ramsey (17) should be

written as (−W̃ ) =
∑∞

t=0

[
U(c̃m∗ , c̃

o
∗)− U(c̃mt , c̃

o
t+1)

]
, so that the purpose of the social planner is to
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socially optimum growth path can be characterized by means of the first-order conditions

and the transversality conditions.3 The Lagrangean function becomes:

L =
∞∑

t=0

[
U(c̃mt , c̃

o
t+1)− U(c̃m∗ , c̃

o
∗)
]
− (18)

−
∞∑

t=0

µt

(
c̃mt +

c̃ot
e(d̃t−1)(1 + n)

− f(k̃t) + (1 + n)e(d̃t)k̃t+1 + (1 + n)d̃t

)
(19)

where µt is the Lagrange multiplier associated with the resource constraint (12) at time

t. From the first-order conditions corresponding to c̃mt , c̃ot+1, k̃t+1, d̃t, and µt, and adding

the subscript ∗ to denote optimality, we obtain:

∂U(c̃m∗t, c̃
o
∗t+1)/∂c̃

m
t

∂U(c̃m∗t, c̃
o
∗t+1)/∂c̃

o
t+1

= f ′(k̃∗t+1) (20)

∂U(c̃m∗t, c̃
o
∗t+1)/∂c̃

m
t

∂U(c̃m∗t−1, c̃
o
∗t)/∂c̃

o
t

= e(d̃∗t−1)(1 + n) (21)

e(d̃∗t)

(
c̃o∗t+1

f ′(k̃∗t+1)e(d̃∗t)(1 + n)
− k̃∗t+1

)
= 1 (22)

as well as (12). The interpretation of (20) and (21) is straightforward. The former reflects

the equality of the intertemporal rates of substitution in consumption (i.e., between second

and third period consumptions) and of transformation in production (i.e., the marginal

product of physical capital) between periods t and t + 1. The latter captures the static

conditions of optimal distribution of consumption available in period t between middle-

aged and old-aged individuals, allowing for growth of both productivity and population.

Although it may seem odd at first glance, expression (22) also has a natural interpretation.

Indeed, it is an arbitrage condition between the returns from investing in physical capital

and in education. The intuition can be grasped by making use of the fact that µt [resp.

µt+1] is the shadow value (in terms of social welfare W̃ ) of a unit of output per efficient

minimize the non-discounted divergence of the amount by which utility falls short of the bliss level.

Obviously both are equivalent, as maximizing W̃ is tantamount to minimizing (−W̃ ).
3On the precise form of the transversality condition in Ramsey-like optmization problems, see Michel

(1990) and De la Croix and Michel (2002).
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labour in period t [resp. t + 1]. Suppose that in period t the social planner slightly

increases k̃t+1. It is clear from the aggregate feasibility constraint (12) that this will affect

its counterparts at periods t and t+ 1: a higher k̃t+1 implies a reduction in the resources

left for consumption in period t, given by e(d̃t)(1 + n), and an increase of the resources

available for consumption in period t+1, captured by f ′(k̃t+1). Thus, the marginal cost of

investing in physical capital is µt(1+n)e(d̃t) and the marginal benefit is µt+1f
′(k̃t+1). The

first order condition for k̃t+1 imposes that this marginal cost and this marginal benefit

should be equal along the optimum growth path. If, instead, the planner increases d̃t,

the feasibility constraints at periods t and t+ 1 will also be modified. The cost, incurred

in period t, now has two components. On the one hand, there is a direct cost, (1 + n),

that reduces consumption possibilities. There is, however, also an indirect cost, given by

e′(d̃t)(1 + n)k̃t+1: as a consequence of the effect of d̃t on the growth rate, the amount of

output devoted to investment in physical capital must be increased if we are to achieve the

optimal value of k̃t+1. Using the shadow value µt, the marginal cost of an additional unit

invested in education is thus µt[(1 +n) + e′(d̃t)(1 +n)k̃t+1]. The benefits, however, do not

take place until period t + 1. Indeed, evaluating (12) at t + 1, the increased growth rate

lowers the marginal rate of transformation between third and second period consumption

in the right hand side. This amounts to an expansion of consumption possibilities, so

that the marginal benefit is µt+1e
′(d̃t)(1 +n)c̃ot+1/[e(d̃t)(1 +n)]2. As before, the first order

condition for d̃t imposes that these marginal costs and benefits should be equal along

the optimum growth path. Both first order conditions involve the same ratio of shadow

values, µt/µt+1, so that an arbitrage condition between the returns from investing in k̃t+1

and d̃t, measured in units of resources at t+ 1 per unit of resources at t, can be derived.

This is precisely the way expression (22) is obtained.

We can advance the following definition:

Definition 1 Given the initial conditions (k̃0,c̃o0 and d̃−1), the optimal path {cm∗t, co∗t+1, k∗t+1,

d∗t} that provides the sequence {U∗t} and maximizes the non-discounted sum (17) defined

over consumption per unit of efficient labour from period t=0 to infinity, satisfies condi-

tions (20), (21), (22) and (12).
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Along a balanced growth path the variables measured in terms of output per unit of ef-

ficient labour will remain constant while the variables expressed per unit of natural labour

will be growing at a constant common rate. Assuming convergence, and deleting the time

subscripts in (20), (21) and (22), we obtain the following expressions characterizing the

optimal balanced growth path:

∂U(c̃m∗ , c̃
o
∗)/∂c̃

m

∂U(c̃m∗ , c̃
o
∗)/∂c̃

o
= e(d̃∗)(1 + n) (23)

f ′(k̃∗) = e(d̃∗)(1 + n) (24)

e′(d̃∗)

 c̃o∗[
e(d̃∗)(1 + n)

]2 − k̃∗
 = 1 (25)

in addition to the balanced growth path version of (12). Together, these four equa-

tions provide the optimal-growth-path levels c̃m∗ , c̃o∗, k̃∗ and d̃∗, and thus Ũ∗ = U(c̃m∗ , c̃
o
∗),

termed by Del Rey and Lopez-Garcia (2013) as the “Golden Rule” in the current en-

dogenous growth setting. Condition (23) is the equality of the marginal rate of sub-

stitution between second and third period consumptions and the economy’s growth rate

e(d̃∗)(1+n). In turn, (24) is the equality between the marginal product of physical capital

and the growth rate. Together, (23) and (24) are the counterpart of the so-called Two-

Part Golden Rule [Samuelson (1968, 1975a, 1975b)], i.e., the (now endogenous) Biological

Interest Rate [Samuelson (1958)] and the Golden Rule of (physical) capital accumulation

[Phelps (1961)]. Notice that (24), and along with it the entire system of equations, is

independent of the specific cardinalization of individual preferences that could have be

chosen to describe individual behaviour. In other words, and in contrast to Docquier et

al. (2007), the degree of homogeneity j of the utility function is now irrelevant.4

4Indeed, using the double subscript ∗ to denote the optimal balanced growth path in Docquier et

al. (2007), when the social planner maximizes a discounted (with a social factor γ) sum of utilities

defined over consumption per unit of natural labour, the optimal balanced growth path is characterized

by the Modified Golden Rule, γf ′(k̃∗∗) = [e(d̃∗∗)]1−j(1 +n), and the marginal product of physical capital

will be greater than the economy’s growth rate. The presence of the degree of homogeneity j in this
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4 Optimal policy

We are now in a position to discuss the values, and not less important, the signs, of

the optimal tax instruments
{
θt, z̃

m
∗t , z̃

o
∗t+1

}
that allow the social planner to decentralize

the optimal time path characterized in the preceding section,
{
c̃m∗t, c̃

o
∗t+1, k̃∗t+1, d̃∗t

}
, as a

market equilibrium. Of course, to do so, the set of tax parameters has to induce individuals

to choose the optimal sequence of physical and human capital-labour ratios.

Using the feasibility constraint (12) evaluated at t, we can backward the arbitrage

condition (22) one period and rewrite it in a way that resembles the first-order condition

of the individual when she chooses the amount of resources invested in education (7):

[
f(k̃∗t)− k̃∗tf ′(k̃∗t)

]
e′(d̃∗t−1) = f ′(k̃∗t)

(
1 +

e′(d̃∗t−1)Λ(k̃∗t+1, d̃∗t, c̃
m
∗t)

f ′(k̃∗t)

)
, (26)

where Λ(k̃∗t+1, d̃∗t, c̃
m
∗t) = (1 + n)e(d̃∗t)k̃∗t+1 + (1 + n)d̃∗t + c̃m∗t > 0. Mere comparison of

(26) and (7) entails that the optimal education investment tax rate at period t, θ∗t, for

all t ≥ 0 will be:

θ∗t = −e
′(d̃∗t−1)Λ(k̃∗t+1, d̃∗t, c̃

m
∗t)

f ′(k̃∗t)
< 0. (27)

This result can be stated as the following

Proposition 1 When the social planner maximizes the non-discounted sum of utilities

(17) and decentralizes the allocation of resources through the market mechanism, invest-

ment on education should be taxed along the entire growth path according to the tax rate

given in (27).

As far as the physical capital-labour ratio is concerned, the equilibrium condition was

discussed above to be k̃t+1 = s̃t/e(d̃t)(1+n)+ d̃t/e(d̃t). Denoting s̃∗t the amount of saving

per unit of efficient labour made by each middle-aged to support k̃∗t+1, one can use (4)

expression makes it apparent that different cardinalizations of the same ordinal preferences will entail

different balanced growth paths (and, consequently, different optimal configurations of the tax parameters

designed to decentralize them).
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and (5), with the latter backwarded one period, to obtain the required lump-sum taxes

and transfers for any period t ≥ 1:5

z̃m
∗t = w∗t − (1 + r∗t)d̃∗t−1(1− θ∗t)/e(d̃∗t−1)− s̃∗t − c̃m∗t (28)

z̃o
∗t = (1 + r∗t)s̃∗t−1 − c̃o∗t (29)

Proposition 2 When the social planner maximizes the non-discounted sum of utilities

(17) and decentralizes the allocation of resources through the market mechanism, the se-

quence of lump-sum taxes or transfers on middle-aged and old-aged along the optimal

growth path are given by (28) and (29).

Admittedly, Proposition 2 is not very instructive in the characterization of the signs

of z̃m
t and z̃o

t , and in particular on whether lump-sum taxes in old-age are positive or

negative. Del Rey and Lopez-Garcia (2013, Prop. 3) provide a result related the sign

of z̃o
∗. In particular, they show that decentralizing the “Golden Rule” entails positive

pensions to the elderly, i.e., z̃o
∗ < 0, a result that obviously applies to the optimal balanced

growth path when the social planner maximizes the non-discounted sum of utilities (17).

Although we are unable to characterize the sign of the lump-sum taxes along the en-

tire growth path, we can at this point take ask a related question and inquire about the

intergenerational effects of the optimal tax policy, i.e., the direction of the net intergen-

erational transfers implied by the tax system that allow the social planner to decentralize

the optimal balanced growth path. To advance in the analysis, notice that along the

5As for the optimal lump-sum taxes and education tax in period 0, we have that k̃0 (and thus s̃−1,

w0 and r0), c̃0 and d̃−1 are given as initial conditions, so that (27), (28) and (29) become:

θ∗0 = −e
′(d̃−1)Λ(k̃∗1, d̃∗0, c̃m∗0)

f ′(k̃0)

z̃m
∗0 = w0 − (1 + r0)d̃−1(1− θ∗0)/e(d̃−1)− s̃∗0 − c̃m∗0

z̃o
∗0 = (1 + r0)s̃−1 − c̃o0

Together, they provide three equations to solved in θ∗0, z̃m
∗0 and z̃o

∗0.
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optimal balanced growth path, the individual’s present value of lifetime resources in (16),

ω̃∗, is:

ω̃∗ = w∗ −
(1 + r∗)d̃∗

e(d̃∗)(1 + n)
−

[
θ∗(1 + r∗)d̃∗ − e(d̃∗)z̃m

∗

]
(1 + r∗)e(d̃∗)

[
e(d̃∗)(1 + n)− (1 + r∗)

]
(30)

where (1 + r∗), w∗ and e(d̃∗)(1 + n) are, respectively, the interest factor, the wage rate

and the economy’s growth rate along the “Golden Rule”. Clearly, condition (24) assures

that the third term on the right-hand side of (30) vanishes regardless of the sign of[
θ∗(1 + r∗)d̃∗ − e(d̃∗)z̃m

∗

]
, and thus we end up with ω̃∗ = w∗− (1+n)d̃∗, which is precisely

the right-hand side of the feasibility constraint (12) evaluated along the “Golden Rule”.

Nevertheless, this should not obscure the crucial fact that from the government budget

constraint (3) one gets
[
θ∗(1 + r∗)d̃∗ − e(d̃∗)z̃m

∗

]
= z̃o

∗/(1 + n). Since, as stated above,

optimal pensions in old age are positive, i.e., z̃o
∗ < 0, (30) can be rewritten as:

ω̃∗ = w∗ − (1 + n)d̃∗ +
(−z̃o

∗)[
e(d̃∗)(1 + n)

]2 [e(d̃∗)(1 + n)− (1 + r∗)
]

= w∗ − (1 + n)d̃∗ (31)

The important point is that (31) is exactly the individual’s present value of lifetime income

in the presence of a pure pay-as-you-go social security that forces individuals to contribute

the (positive) amount (−z̃o
∗)/e(d̃∗)(1+n) in their middle age, entitling them to receive the

(positive) pension benefit (−z̃o
∗) in their old age. As individuals are actually obtaining the

(counterpart in the present model of the) Biological Interest Rate e(d̃∗)(1 + n) through

their “investment in shares of future generations” and the opportunity cost is exactly

the market interest rate (1 + r∗), both terms cancel in present value along the optimal

balanced growth path, as shown in (31). This point can also be easily illustrated by means

of the physical capital market equilibrium condition (11), that along the optimal balanced

growth path becomes:

e(d̃∗)(1 + n)k̃∗ = w∗ − (1 + n)d̃∗ −
(−z̃o

∗)

e(d̃∗)(1 + n)
− c̃m∗ − (1 + n)d̃∗ (32)

Form (3) the optimal pay-as-you-go contribution will be given by:

−z̃o
∗

e(d̃∗)(1 + n)
=
−
[
θ∗(1 + r∗)d̃∗ − e(d̃∗)z̃m

∗

]
e(d̃∗)

> 0 (33)
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so that we can state the following

Proposition 3 The intergenerational effects of the optimal tax policy (z̃m
∗ ,z̃o

∗,θ∗) are

equivalent to those of a pay-as-you-go social security system where middle-aged individuals

contribute the amount in (33) when middle-aged and receive a pension benefit (−z̃o
∗) when

they retire.

It should be stressed that it is the combination of the orthopaedics provided by the

optimal values of z̃m
∗ , z̃o

∗ and θ∗, the one that allows the decentralized behaviour of individ-

uals to replicate the optimal balanced growth path. In other words, the intergenerational

income effects associated with the scheme described in Proposition 3 have to be supple-

mented by the price effects in terms of investment in human capital induced by the tax

on education reported in Proposition 1. If individuals faced the optimal social security

scheme but not the optimal education tax, they would fail to achieve the “Golden Rule”,

and the same reasoning applies to the situation where the optimal education tax is in

force but the intergenerational transfers are not optimally set. Notice also that the op-

timal lump-sum tax on middle-aged, z̃m
∗ , can either be positive or negative but, together

with the revenue obtained by taxing the repayment of education loans, will generate a

net contribution in middle age to finance optimal pensions to the elderly.

It is important to emphasize that the result stated in Proposition 3 is in sharp contrast

with the one that arises in life-cycle models with physical capital only and exogenous

growth. Indeed, in such a setting, the nature of the optimal social security that supports

the Two-Part Golden Rule depends in a crucial way on whether the laissez-faire capital-

labour ratio is higher or lower than the optimum one. In other words, it entails a transfer

from [resp. to] the younger generation to [resp. from] older one through a pay-as-you-

go social security system [resp. a “reverse” pay-as-you-go system or a more-than-fully-

funded one] when the interest rate is less [resp. greater] than the economy’s growth rate

in the laissez-faire steady state. In contrast, in the presence of human capital that drives

endogenous growth, the intergenerational effects of the optimal policy mix are always

equivalent to those of a pay-as-you-go social security system.
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5 Concluding remarks

In this paper, we have used an overlapping generations model with physical and human

capital to ascertain the consequences for optimality of a social planner adopting a social

welfare criterion that treats all generations alike and is respectful of individual preferences.

In particular, we have considered a social planner who maximizes an non-discounted sum

of individual utilities defined over consumption per unit of efficient labour. We show that,

given some initial conditions, an economy commanded by such a social planner converges

to the Golden Rule defined in Del Rey and Lopez-Garcia (2013). Decentralizing the

optimum requires taxing education along the entire growth path. With respect to lump-

sum taxes on the middle-aged and old-aged individuals, no general result can be derived

for the entire growth path. We know, however, from previous work that, along the optimal

balanced growth path, pensions are positive. In this paper, we have moved a step forward

and showed that the intergenerational effects of the optimal policy are equivalent to those

of a pay-as-you-go social security system.

Although our social welfare function my seem ad hoc at first sight, it is worth em-

phasizing that, unlike what happens when we adopt alternative objectives, our optimal

policy is independent of the degree of cardinalization of the utility function as well as the

choice of an arbitrary discount rate. Other assumptions underlying the model are quite

unrealistic, e.g. the assumption that individuals have access to perfect credit markets. It

may well be the case that the insights emerging from the analysis differ when individuals

face constraints when trying to borrow to finance their educational investments. We leave

these issues for further research.
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