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ABSTRACT. Meteorological drought indices are commonly calculated using 
data from weather stations and then interpolated to create a map of moisture 
conditions. These maps are used to communicate drought information to decision 
makers and the general public. This study analyzes five of the factors (drought 
index, interpolation method, seasonality, climate region, and station density) 
that influence the accuracy of these maps. This study compared the Standardized 
Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration 
Index (SPEI) using data from the Cooperative Observer Network (COOP) and 
United States Historical Climatology Network (USHCN). The accuracy of the 
drought maps varied significantly over time and space. The most significant 
factor affecting the accuracy of the meteorological drought maps was seasonality. 
Errors were higher in regions (e.g., southeastern U.S.), and months (e.g., summer), 
dominated by convective precipitation. The choice of interpolation method also 
had an influence. We found that Ordinary Kriging (OK) performed better than 
Inverse Distance Weighting (IDW) in all cases and therefore it was recommended 
for interpolating drought indices. Not surprisingly, maps that were created using 
more stations (COOP) were more accurate. The normalized errors of SPI and 
SPEI were very similar and so the choice of drought index had little impact on 
the accuracy of the drought maps.

Variaciones espaciales y temporales en la precisión de los mapas de sequías 
meteorológicas

RESUMEN. Los índices de sequía meteorológica se calculan normalmente 
utilizando datos de estaciones meteorológicas que luego son interpolados para 
crear un mapa de las condiciones de humedad. Este estudio analiza cinco de 
los factores (índice de sequía, método de interpolación, estacionalidad, región 
climática y densidad de estaciones) que influyen en la precisión de estos mapas. 
Este estudio compara el Índice de Precipitación Estandarizada (SPI) y el Índice 
de Precipitación Evapotranspiración estandarizada (SPEI) utilizando datos de 
la Cooperative Observer Network (COOP) y la Red Climatológica Histórica 
de los Estados Unidos (USHCN). La precisión de los mapas de sequía varió 
significativamente en el tiempo y en el espacio. El factor que afectó de manera 
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más significativa a los mapas de sequía meteorológica fue la estacionalidad. Los 
errores fueron mayores en las regiones (por ej., sureste de los Estados Unidos) y 
meses (por ej., el verano) dominados por precipitación convectiva. La elección 
del método de interpolación también tuvo influencia, de manera que el Kriging 
Ordinario (OK) ofrecía mejores resultados que el Peso de la Distancia Inversa 
(IDW) en todos los casos, y por ello se recomienda para la interpolación de 
índices de sequía. Como cabría esperar, los mapas que fueron creados utilizando 
más estaciones (COOP) fueron más precisos. Los errores normalizados de SPI y 
SPEI fueron muy similares, de manera que la elección del índice de sequía tuvo 
poco impacto en la precisión de los mapas de sequía.
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1. Introduction

Drought is a naturally recurring feature of the climate system that is characterized 
by a prolonged deficiency of precipitation (Dai, 2011). The social and economic costs of 
drought can be enormous and therefore decision makers seek to develop better mitigation 
and adaptation strategies (Zarafshani et al., 2012). Quantitative information on the 
duration, severity and spatial extent of drought events are used to help monitor conditions 
and make decisions (Rhee et al., 2008). Accurate information is important for making 
good decisions. However, lots of factors can affect the accuracy of drought information, 
such as the choice of drought indices (Quiring, 2009), the source of the meteorological data 
(Zhou et al., 2011; Naumann et al., 2014), the qualitative and quantitative methods that are 
used to combine drought indices (Yuan and Quiring, 2014; Steinemann et al., 2015), and 
the methods used to interpolate drought indices to a continuous grid (Akhtari et al., 2009). 

There is no uniform method to characterize drought conditions and many different 
drought indices have been used to monitor meteorological drought (Heim, 2002; 
Quiring, 2009). Some of the drought indices that are commonly used to monitor drought 
conditions include: Palmer Drought Severity Index (PDSI) introduced by Palmer (1965), 
Standardized Precipitation Index (SPI) introduced by McKee et al. (1993), Standardized 
Precipitation Evapotranspiration Index (SPEI) introduced by Vicente-Serrano et al. 
(2009), and Effective Drought Index (EDI) introduced by Byun and Wilhite (1999). Each 
drought index has advantages and disadvantages and it may not accurately represent 
drought conditions at every location (Vicente-Serrano et al., 2010). For example, SPI 
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does not account for the influence of potential evapotranspiration and so it neglects the 
effects of temperature on drought conditions. 

Previous studies have evaluated the performance of drought indices in different 
regions. For example, Keyantash and Dracup (2002) assessed seven meteorological 
drought indices and they found that the SPI ranked highly in terms of robustness, 
sophistication and extendibility. Morid et al. (2006) compared seven drought indices in 
Iran and found that there was significant variability in terms of their ability to accurately 
detect drought onset and to represent the spatial and temporal patterns of drought. Jain et 
al. (2015) evaluated six drought indices in India and found that the time scale and location 
of interest had a significant influence on the performance of the drought indices and that 
there was not a single best index for all locations and time scales. McEvoy et al. (2012) 
evaluated two multiscalar drought indices, SPI and SPEI, in Nevada and California at 
time scales ranging from 1 to 72 months. They found that the SPEI performed slightly 
better than SPI when compared to summer stream flow. Vicente-Serrano et al. (2010) 
also compared a multiscalar drought index (SPEI) with two different versions of the 
PDSI and found that the PDSI provides information on medium-term or long-term 
drought conditions in most regions.

In addition to the choice of drought indices, the method used for drought index 
interpolation also has an impact on the accuracy of spatial depictions of drought 
conditions. Previous studies have evaluated different interpolation methods that are 
commonly used in drought monitoring. Carbone et al. (2008) assessed the suitability 
of Inverse Distance Weighting (IDW), Thin Plate Splines (TPS), Kriging and Thiessen 
Polygons (TP) using a cross-validation analysis for both PDSI and SPI based on 316 
stations in North and South Carolina (~12 stations per 10,000 km2). They concluded 
that IDW and Kriging had similar accuracy and both outperformed TPS and TP by a 
significant margin. Rhee et al. (2008) compared two interpolation methods used for 
mapping drought indices, simple unweighted average and spatial interpolation (IDW) 
plus aggregation, to examine the effects on droughts across space. They found that spatial 
interpolation plus aggregation is a superior method. In general, applying interpolation 
methods before calculating drought indices may increase error relative to performing 
the interpolation after calculating the drought index. Akhtari et al. (2009) compared the 
accuracy of drought index interpolations using IDW, Ordinary Kriging (OK) and TPS 
based on 43 stations in Iran (~22 stations per 10,000 km2). They observed that IDW and 
OK outperformed TPS. Ali et al. (2011) carried out a similar study using 27 climatic 
stations in the Boushehr province of Iran (~12 stations per 10,000 km2) and their results 
were generally in agreement with Akhtari et al. (2009).

Other interpolation methods such as regression, Bayesian approaches (Li and Heap, 
2011) and the reduced optimal interpolation (ROI) method (Kaplan et al., 2000) have also 
been analyzed. For example, Yuan and Quiring (under review) applied ROI to interpolate 
soil moisture in Oklahoma. This method uses a secondary dataset to capture the spatial 
patterns and improve the interpolation accuracy. However, these methods have not been 
frequently applied for interpolating drought indices. In addition, most of the previous 
studies that have evaluated interpolation of drought indices have focused on a regional 
scale (e.g., a relatively small number of stations in a single state or province). There have 
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been relatively few studies comparing interpolation methods for drought indices over 
a large spatial extent (e.g., national to continental) that spans diverse topography and 
climate regions. This paper will address this gap by evaluating the spatial and temporal 
patterns of interpolation accuracy over the United States.

In addition to the influence of selecting a drought index and interpolation method, 
the accuracy of spatial depictions of drought are also influenced by the climatic datasets 
that are used (Sheffield et al., 2012). Tucker (1989) compared two satellite-derived data 
sets for drought monitoring in sub-Saharan Africa and northeastern Brazil, one based on 
the Scanning Multi-channel Microwave Radiometer (SMMR) and one based on Advanced 
Very High Resolution Radiometer (AVHRR). Significant differences between the two were 
found during certain time periods even though the two satellite-derived datasets are highly 
correlated. Sheffield et al. (2012) calculated the PDSI using observation (HADCRU), 
reanalysis (e.g., ECMWF ERA-40, ERA-Interim and NCEP/NCAR) and combined datasets 
(Sheff2006) to evaluate global drought trends. They found that the choice of datasets had 
an impact on the results and the largest drought trends were found when using the NCEP/
NCAR reanalysis dataset. Mo et al. (2010) compared SPI calculated based on the Climate 
Forecast System Reanalysis (CFSR), North American Land Data Assimilation System 
(NLDAS) and the North American Regional Reanalysis (NARR). They found significant 
regional and seasonal differences in the SPI between the three datasets. Naumann et al. 
(2014) compared SPI and SPEI in Africa derived from five datasets: ECMWF ERA-Interim 
reanalysis, Tropical Rainfall Measuring Mission (TRMM) monthly rainfall (3B43), Global 
Precipitation Climatology Centre (GPCC) precipitation, Global Precipitation Climatology 
Project (GPCP) precipitation, and the Climate Prediction Center (CPC) merged analysis of 
precipitation. They found that use of different datasets had an influence on the magnitude 
of the wet seasons and extremes and the areal extent of drought events. The differences 
were especially large in regions with few precipitation gauges. 

The goal of this study is to quantify how five factors influence the accuracy of 
spatial depictions of meteorological drought conditions. Specifically, this paper will 
evaluate how the choice of drought indices, interpolation methods and weather data 
influences the accuracy of drought maps. In addition, it will examine how the accuracy 
of these maps varies over time (seasonality) and space (climate region). This study has 
significant practical implications since maps of drought conditions are commonly used 
to develop products like the United States Drought Monitor (Lawrimore et al., 2002) 
and to make operational decisions such as drought and disaster declarations (Quiring, 
2009). A detailed description of the data and methods used in this study are presented in 
section 2. This is followed by presentation of the results and discussion in section 3 and 
the conclusions are summarized in section 4.

2.  Data and Methods

2.1.  Data

Precipitation and temperature data from 2001 to 2010 were obtained from the 
National Weather Service Cooperative Observation Network (COOP) and the United States 
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Historical Climatology Network (USHCN). The COOP network consists of volunteer 
observers that span the continental United States (CONUS) with over 11,000 observers 
taking measurements for daily variables. Monthly data from COOP are available from 
the National Centers for Environmental Information. The majority of COOP stations were 
not included in this study because of missing data. There are 3680 stations that are used 
to calculate drought indices (Figure 1a). The average station density of the COOP stations, 
based on the entire CONUS study region, is ~5.80 stations per 10,000 km2.

Figure 1. Spatial distribution of: (a) COOP stations and, (b) USHCN stations across the  
9 climate regions.
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USHCN version 2 is a dataset of 1147 stations (Figure 1b) across the 48 contiguous 
states that provide longer daily and monthly records of basic meteorological variables. The 
USHCN sites are a subset of the COOP network and they were selected due to their spatial 
coverage, record length, data completeness, and historical stability (Menne et al., 2009). 
Most of these stations are in rural locations, while some are National Weather Service 
First-Order stations that are located at airports. The average station density of the USHCN 
stations, based on the entire CONUS study region, is 1.5 stations per 10,000 km2. Relative 
to COOP, USHCN has a longer period of record, but lower station density.

2.2.  Methods

2.2.1.  Drought Indices

Two commonly used drought indices are analyzed in this study, the Standardized 
Precipitation Index (SPI) and the Standardized Precipitation and Evapotranspiration 
Index (SPEI). The SPEI is an improved version of the SPI that includes a temperature-
based estimate of potential evapotranspiration (Vicente-Serrano et al., 2009).

The SPI was developed by McKee et al. (1993) to provide a moisture supply 
index that performed better than the PDSI. The SPI is produced by standardizing the 
probability of observed precipitation for any duration. For example, durations of weeks 
or months can be used to apply this index for agricultural or meteorological purposes, 
and longer durations of years can be used to apply this index to water supply and water 
management purposes (Guttman, 1999). The SPI can be calculated for any location that 
has a long-term precipitation record. The precipitation record is fit with a probability 
density function and subsequently transformed using an inverse normal (Gaussian) 
function (Guttman, 1999). This insures that the mean SPI value for any given location 
(and duration) is zero and the variance is one. 

There are different probability distributions (e.g., Pearson Type III or Gamma) 
that are commonly used to calculate the SPI. This is important to note because using a 
different probability distribution will produce different SPI values, even with the same 
input data. Guttman (1999) experimented with different probability distributions and 
concluded that the Pearson Type III distribution provides the best model for calculating 
the SPI. However, this remains a matter for debate since other studies have identified 
different probability distributions as being the most appropriate for evaluating monthly 
precipitation probabilities (Legates, 1991, Husak et al., 2007). For example, the National 
Drought Mitigation Center (NDMC, drought.unl.edu) uses the 2-parameter gamma PDF 
to fit the frequency distribution of precipitation and calculate the SPI (Wu et al., 2007). 
In this study, we will use the Gamma distribution to calculate the SPI.

Vicente-Serrano et al. (2009) introduced the Standardized Precipitation 
Evapotranspiration Index (SPEI) which is calculated using both precipitation and 
potential evapotranspiration (PET). PET is estimated using Thornthwaite equation 
(Thornthwaite, 1948) which is based on monthly air temperature, latitude, and month. 
Thornthwaite equation has some limitations because it is an empirical function solely 
depends on the temperature. Relative to more physical based equation, such as Penman-
Monteith equation (Allen et al., 1998) and two-source PET model (Shuttleworth and 
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Wallace, 1985), Thornthwaite equation overestimates PET under global warming. This 
leads to further overestimation on drought conditions. Detailed evaluation on the impacts 
of different PET calculations on droughts was described by Yuan and Quiring (2014). 
The inclusion of PET means that this index represents the difference between water 
supply from precipitation (P) and atmospheric demand for water through PET. The SPEI 
is based on this difference (Pi – PETi) for any time period of interest. It is necessary to 
use a 3-parameter model to fit the frequency distribution of the P-PET differences since, 
unlike when only precipitation is considered, negative values are possible. This study 
uses a three-parameter Gamma distribution to calculate the SPEI.

2.2.2.  Interpolation Methods

Two interpolation methods are evaluated in this study: Inverse Distance Weighting 
(IDW) and Ordinary Kriging (OK). These two were selected because they are the most 
commonly used interpolation methods in the environmental sciences (Li and Heap, 2011).

IDW is a weighting algorithm, so the value at the target location is most strongly 
influenced by the nearest stations. IDW is calculated as follows: 

 
                           

(eq. 1)

 

 
                          

(eq. 2)

where, Z(Si) is the measured value at the ith station; li is the weight for the ith station; 
Z(S0) is the interpolated value at the target location, n is the number of stations, di is the 
distance from the ith station to the target location; p is power parameter.

We evaluated the performance of IDW using a variety of power parameters and 
found that parameters >2.5 or <2.0 led to a degradation in interpolation accuracy (results 
not shown). Therefore, in this study IDW is employed using power parameters of 2 and 
2.5 (hereafter referred to as IDW 2 and IDW 2.5).

OK is based on a semi-variogram, which is used for estimating the dissimilarity 
between observations. The semi-variogram is calculated using: 

 
                            

(eq. 3)

where n is the number of pairs of stations which are separated by distance h. Z(xi) and 
Z(xi + h) are the measured value at xi and xi + h locations.

In this study, the nearest 500 COOP (200 USHCN) stations are used for generating 
fitting functions. The theoretical semi-variogram is fit using a least-squares approach 
based on a Gaussian distribution. 
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2.2.3.  Performance Evaluation

This study uses leave-out-one cross-validation (Isaaks and Srivastava, 1989) to 
examine the spatial accuracy (i.e., performance) of different drought indices, interpolation 
methods and datasets. In this approach, one station is removed and the value at that 
location is interpolated using the remaining stations. This process is then repeated until 
all stations have been held out. The difference between the measured value at each 
station and the interpolated value is the residual error and its absolute value is called 
the absolute error. The absolute error and normalized absolute error (calculated over a 
group of absolute errors, e.g., all stations within a climatic region) are used to quantify 
the accuracy for each interpolation method, drought index and dataset. The results are 
summarized on a regional basis to illustrate the spatial variations in performance.

2.3.  Climatic Regions

Figure 1 shows the 9 climatic regions within CONUS that were identified by Karl 
(1983). In this paper, these regions are referred to as: NorthEast, SouthEast, Central, 
EastNorthCentral, South, SouthWest, WestNorthCentral, West and NorthWest. These 
climatic regions are used to aggregate the results of the performance evaluation and to 
compare how they vary across the United States.

3.  Results and Discussion

3.1. Comparison of Interpolation Methods

Figure 2 compares the mean absolute error (MAE) for OK, IDW 2 and IDW 2.5 for 
1-month SPI and 1-month SPEI based on COOP stations and USHCN stations for CONUS. 
Overall, the OK method had the lowest MAE over the entire CONUS, followed by IDW 
2.5 and IDW 2. The differences between interpolation methods are small, but statistically 
significant between OK and IDW based on a paired t-test (90% confidence level). 

Figure 2. Monthly variations in mean absolute error for the three interpolation methods (IDW 
2.0, IDW 2.5 and OK) and the two drought indices (1-month SPI and 1-month SPEI) based on 

the COOP data (upper) and USHCN data (lower) over CONUS.
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Given that OK consistently had the lowest error and IDW 2 had highest error 
regardless of the drought index and dataset that was used, the results are only shown for 
one representative drought index/dataset combination (Table 1). Table 1 shows the mean 
MAE for the three interpolation methods in the 9 climate regions based on the 1-month 
SPI. IDW 2 has the highest error, while OK has the lowest error in all the regions. All the 
three interpolation methods have the smallest MAE in the West region and the highest 
MAE in the WestNorthCentral region. MAE is also consistently high in the SouthEast 
and SouthWest. Our results show that although the choice of interpolation methods has 
a relatively small impact on the depiction of drought conditions, OK is slightly more 
accurate. 

Table 1. Mean MAE of 1-month SPI for each interpolation method (IDW 2, IDW 2.5 and OK) in 
each of the 9 climate regions.

Mean MAE

OK IDW 2.5 IDW 2

NorthEast 0.35 0.37 0.39

SouthEast *0.39 0.40 0.44

Central 0.34 0.36 0.41

EastNorthCentral 0.35 0.38 0.42

South 0.36 0.38 0.43

SouthWest *0.39 *0.41 0.44

WestNorthCentral *0.39 *0.41 *0.45

West 0.30 0.31 0.33

Northwest 0.34 0.35 0.37

Note: *corresponds to largest mean monthly MAE across the 9 climate regions and corresponds to 
smallest mean monthly MAE across the 9 climate regions.

3.2.  Comparison of Drought Indices

This section compares two commonly used drought indices, SPI and SPEI, 
to determine whether there are significant differences in their ability to accurately 
represent spatial variations in drought conditions. SPI depends solely on precipitation 
while SPEI uses the same algorithm but also accounts for PET. Normalized errors were 
computed (using the mean and standard deviation of each index) and they are used to 
compare the pair of drought indices (SPI vs. SPEI) over the 9 climatic regions using 
USHCN datasets, as shown in Figure 3. A paired t-test is used to compare the drought 
index pairs in 27 combinations (9 climate regions and 3 selected months: January, July 
and October). January, July and October were selected because they represent climatic 
conditions during different seasons. Specifically, precipitation patterns and precipitation 
mechanisms differ from season to season in CONUS. Obviously our analyses could 
be repeated for other months, but we believe that these three months are relatively 
representative. Drought maps are usually created on a weekly or monthly timescale and 
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therefore it is not appropriate to perform this analysis using seasonal precipitation (e.g., 
total December-January-February precipitation).

Figure 3. Differences in normalized error between SPI and SPEI over the 9 climatic regions in 
the United States in January, July and October using USHCN data.

SPI shows slightly lower accuracy than SPEI (Figure 3). 4 out of 27 combinations 
show that the normalized errors for SPI are significantly lower (90% confidence level) 
than SPEI and 6 out of 27 combinations show the opposite results. Therefore, maps of 
drought conditions based on the SPI tend to have higher errors than SPEI, but the results 
are not statistically significant in all regions and months. A more detailed discussion of 
the reasons for this is provided in the following section.

3.3.  Seasonal Variations

Figure 4a shows that there is substantial seasonal variability in the accuracy of 
1-month SPI maps. In most regions, except the West and NorthWest, the largest MAE 
is in July or August and the smallest MAE is in October or November. This intra-
annual variation coincides with the precipitation climatology since SPI is a function of 
precipitation (not shown). Therefore months with more spatially variable precipitation 
patterns (e.g., due to convection) have higher interpolation errors than months with 
more spatially homogeneous precipitation patterns (e.g., due to mid-latitude cyclones). 
The higher errors in August and July are associated with mesoscale convective systems 
(Velasco and Fritsch, 1987; Ashley et al., 2003; Murray and Colle, 2010), tropical cyclone 
systems (Larson et al., 2005) and the North American Monsoon (Adams and Comrie, 
1997). 

In the West, the largest errors occur in July and the lowest errors occur in December, 
so clearly the amount of precipitation is not directly driving the seasonal variation in 
errors since July is one of the driest months in this region and December is one of the 
wettest months (not shown). In the NorthWest, the errors are relatively high from January 
through July and then they decrease, with minimum error in October. This region has the 
lowest seasonal variation in drought index interpolation error. Precipitation patterns in 
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the West and NorthWest are quite different from other regions because both of these two 
regions have a winter precipitation maximum. 

Figure 4. Seasonal variations in mean absolute error for (a) 1-month SPI and (b)  
1 month SPEI.

SPEI is dependent on both precipitation and temperature and therefore the seasonal 
variations in error are driven by temperature and precipitation patterns in each region. 
It is interesting to note that there is much less seasonal variation in error for the SPEI 
as compared to the SPI in most of the climatic regions (Figure 4b). This suggests that 
the higher summer temperatures (and therefore higher PET) reduce the impact of the 
spatial variability in precipitation. The differences in the seasonal variations in error 
for the SPI and SPEI are particularly notable in the SouthEast, South, Central, and 
WestNorthCentral regions. The maximum error tends to occur in August (about 1 month 
later than the maximum error for SPI). The minimum error tends to occur in spring 
(April or May) and autumn (October and November). 

Paired t-tests (90% confidence level) are used to compare the relative accuracy of 
the interpolated drought indices in January versus July and July versus October (Table 
2). The interpolation error across the 9 climatic regions is lower in January than July 
(21 out of 27 combinations have lower errors in January based on COOP stations and 
19 out of 27 combinations show lower error based on USHCN stations). Similarly, the 
interpolation error in October is also lower than in July in 22 out of 27 cases for the 
COOP network and 19 out of 27 cases for the USHCN network. This demonstrates 
that there are significant seasonal variations in the accuracy of drought index maps. 
In most locations within the United States, the depictions of drought conditions are 
more accurate during the winter (January) and fall (October), than they are in summer 
(July). This presents a challenge given that drought impacts are often most pronounced 
during the summer.



Yuan et al.

178 CIG 42 (1), 2016, p. 167-183

Table 2. Paired t-test (90% confidence level) for January versus July and July versus October 
(n = 27; 3 drought indices and 9 climatic regions). The results show, for example, the number of 

times that the interpolation in January is more accurate than July.

Comparison Results
Number of Occurrences

COOP USHCN

January vs. July

Interpolation in January performs better than in July 21 19
Interpolation in January performs worse than in July 0 0

No statistically significant difference 6 8

July vs. October

Interpolation in July performs better than in October 2 3

Interpolation in July performs worse than in October 22 19
No statistically significant difference 3 5

3.4.  Spatial Variations

Figure 5 shows the spatial distribution of error over CONUS based 1-month SPI 
and 1-month SPEI in January and July (using USHCN data). Figure 5a shows that in 
January the majority of CONUS has relatively low errors that range from 0.2 to 0.4 for 
the 1-month SPI. The highest errors tend to occur in the WestNorthCentral region. This 
region has complex terrain (from Rocky Mountains to Great Plains) and it has a relatively 
low station density (1.38 stations per 10,000 km2). Together, these two factors account for 
the higher errors in this region. 

Figure 5. Spatial patterns of mean absolute error for 1-month SPI and 1-month SPEI in January 
(top row) and July (bottom row) based on USHCN data.
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Figure 5b shows that the errors for the 1-month SPI across most of the U.S. 
are higher in July (0.4 to 0.6) than in January. The highest errors are found in the 
SouthEast, SouthWest and WestNorthCentral regions in July. These regions are 
influenced by tropical storms, North American monsoon and summer convective 
storms in July and therefore have more spatially heterogeneous precipitation 
patterns that other regions of the U.S. (or other months of the year). In contrast, the 
errors in the 1-month SPI are relatively consistent from January to July in the west 
coast of U.S. because these regions receive relatively little precipitation during the 
summer. 

The spatial distribution of error for 1-month SPEI in January and July is shown 
in Figure 5c and 5d, respectively. In January, the 1-month SPEI (Figure 5c) is 
very similar to the 1-month SPI (Figure 5a), which confirms the results described 
in Section 3.2. However, in July it is apparent that the 1-month SPEI (Figure 5d) 
has lower MAE than the 1-month SPI (Figure 5b). This is because SPEI considers 
the difference between precipitation and potential evapotranspiration and, as noted 
above, the higher summer temperatures (and therefore higher PET) reduce the impact 
of the spatial variability in precipitation. The spatial patterns of error in the SPEI 
are relatively consistent between January and July, although in July there are higher 
errors along the Gulf Coast and in Florida due to the heterogeneity of precipitation 
in these regions. 

3.5.  Comparison of Station Density

Two networks with different station densities (COOP has a higher station density 
than USHCN) were compared to evaluate how station density influences interpolation 
accuracy. We found that using the COOP network results in a small improvement in 
interpolation accuracy over CONUS (Figure 2). Table 3 shows the monthly averaged 
MAE from COOP and USHCN for the two drought indices and 9 climatic regions. 
The 1-month SPI has lower error (10% to 23%) when it is based on the COOP in all 
9 climatic regions. The MAE shows that the largest difference is in the West region 
(23%). This makes sense because the mean station density for the COOP network 
is ~5.80 stations per 10,000 km2 versus ~1.50 stations per 10,000 km2 for USHCN. 
Therefore, the COOP network is able to more accurately resolve precipitation 
heterogeneity. 

The COOP network is also more accurate than USHCN for the 1-month 
SPEI. However, the differences in MAE are much smaller, ranging from a 0% to 
15% reduction in MAE. The largest difference in MAE for SPEI occurs in the 
EastNorthCentral region. The results suggests that station density is not as important 
for SPEI as SPI because the SPEI includes the influence of PET which is a more 
spatially homogenous field than precipitation and therefore it is not as sensitive to 
station density.
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Table 3. MAE for 1-month SPI and 1-month SPEI based on COOP and USHCN networks.

Number of Stations MAE of 1-month SPI MAE of 1-month SPEI

COOP USHCN COOP USHCN ∆ COOP USHCN ∆

NorthEast 261 135 0.37 0.41 -0.04 0.36 0.37 -0.01

SouthEast 382 121 0.41 0.46 -0.05 0.34 0.34 0.00

Central 512 164 0.37 0.42 -0.05 0.32 0.33 -0.01

EastNorthCentral 385 96 0.38 0.46 -0.08 0.35 0.41 -0.06
South 658 184 0.39 0.45 -0.06 0.31 0.31 0.00

SouthWest 415 118 0.41 0.45 -0.04 0.37 0.39 -0.02

WestNorthCentral 543 166 0.42 0.48 -0.06 0.33 0.36 -0.03

West 225 60 0.31 0.40 -0.09 0.33 0.36 -0.03

Northwest 299 103 0.35 0.40 -0.05 0.34 0.36 -0.02

4.  Conclusions

The objective of this study was to quantify how five factors (drought index, 
interpolation method, seasonality, climate region, and station density) influence the 
spatial and temporal variability in the accuracy of interpolated maps of meteorological 
drought indices. Seasonality was found to have the greatest impact on accuracy 
followed by climate region. Both of these factors are important because they are 
associated with temporal and spatial variations in meteorological conditions. Time 
periods and locations with more spatially heterogeneous precipitation are associated 
with larger errors. The highest errors were consistently observed for 1-month SPI and 
1-month SPEI in months with high precipitation (generally summer) in climatic regions 
dominated by convective precipitation, tropical storms or monsoon regimes. Even with 
the use of the best interpolation method and highest station density, relatively large 
interpolation errors were found during these months. 

The accuracy of maps of meteorological drought indices varies significantly 
from region to region and from season to season. Errors are consistently higher in 
July than January. Regions such as the WestNorthCentral have high errors because 
of the significant topographical variation, while other regions such as the SouthEast 
have higher errors in the summer and fall due to sea-breeze and tropical storm 
activity. The lowest errors are generally found in the Great Plains, Midwest and 
Northwest U.S. The spatial and temporal variations in the accuracy of drought maps 
poses a significant challenge for communicating drought information to decision 
makers and the general public because they are unlikely to be familiar with the 
precipitation climatology and most operational drought products do not provide 
estimates of uncertainty/error. Therefore, there is a need to develop better methods for 
representing and visualizing the inherent uncertainty in maps of drought conditions. 
This is a fertile area for future research.

The choice of drought indices also has an influence on the accuracy of drought 
maps. This study compared the 1-month SPI and 1-month SPEI and found that the SPEI 
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has slightly lower interpolation errors than the SPI. We conclude that the accuracy of 
maps based on drought indices that only use precipitation (e.g., SPI) are more variable 
than those based on drought indices that use both temperature and precipitation (e.g., 
SPEI). Therefore, the selection of a drought index can have an important influence 
on the accuracy of drought maps. Based on the results of this study, the SPEI is more 
suitable for mapping meteorological drought conditions than the SPI. 

Station density has less influence than season, climate region or drought index, 
but it can be important in regions where station density is very low. For example, our 
results showed that using the denser COOP network in the West and EastNorthCentral 
regions lead to a significant reduction in interpolation error as compared to the less 
dense USHCN network. However, in most locations, using a different station network 
had a relatively small impact on the interpolation error for the SPEI. Also, mapping 
drought conditions in regions with complex topography requires a higher density of 
stations. We found that the relatively low density of stations and complex topography 
in the WestNorthCentral region lead to high interpolation errors.

In this study, the selection of interpolation method had the least influence on the 
accuracy of the drought index maps. Although the differences were relatively small, 
OK consistently performed better than IDW across all season, regions, drought indices 
and station densities. Therefore, OK is the recommended method for interpolating 
drought indices. IDW is a reasonable choice in most situations and using a weighting 
parameter of 2.5 was consistently better than a weighting parameter of 2.0. The 
interpolation methods applied in this study are all geospatial interpolation methods. 
Developing and evaluating more advanced interpolation methods may improve the 
accuracy of drought mapping.

Future research will focus on evaluating how accuracy of drought maps produced 
using other indices such as the Palmer Drought Severity Index (PDSI). The PDSI is 
a widely used drought index that integrates weather conditions over many months. 
The characteristic timescale of the PDSI is on the order of 9 to 12 months (Dai and 
National Center for Atmospheric Research Staff, 2015). Therefore, evaluating indices 
such as the PDSI will be useful for examining how the accuracy of maps of longer-
term drought conditions (i.e., 6-month, 9-month and 12-month). In addition, this study 
only used MAE to evaluate the accuracy of drought maps. Future research should 
utilize a more comprehensive set of performance evaluation statistics (e.g., correlation, 
coefficient of efficiency and skill scores).
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