
Regular Issue

-74-

Abstract — The appearance of a new programming language

gives the necessity to contrast its contribution with the existing

programming languages to evaluate the novelties and

improvements that the new programming language offers for

developers. These kind of studies can show us the efficiency,

improvements and useful or uselessness of the new programming

languages. Also these studies can show us the good or bad

properties of the existing programming languages. For these

reasons, these studies allow us to know if the new programming

language is offering improvements or relapses.

In this article, we compare the new programming language of

Apple, Swift, with the main programming language of Apple

before Swift, Objective-C. We are going to show the differences,

characteristics and novelties to verify the words of Apple about

Swift. With that we want to answer the next question: Is Swift a

new programming language easier, more secure and quicker to

develop than Objective-C?

Keywords — Object oriented programming, Programming,

Functional programming, Programming profession, Software

I. INTRODUCTION

WIFT is the new programming language created by Apple

and it was presented to the public on September 9, 2014

but developers could use it since June 6, 2014. It allows for

developing applications for the new version of operating

systems of Apple: iOS and OS X [1]. The Apple’s intention is

to offer a new programming language easier, simpler, more

flexible, quicker, funnier and friendly to program than

Objective-C [2] to facilitate the applications development for

platforms of Apple [1].

Swift was launched to offer an alternative to Objective-C

because this has a syntax which barely evolved from it was

created and has a great difference with other programming

languages that have appeared in the latest years, because these

have based on the C++ syntax. For this, Swift is inspired in

new programming languages like C++11, C#, F#, Go, Haskell,

Java, JavaScript, Python, Ruby, or Scala. Then his syntax is

totally different than its predecessor. The Swift’s syntax is

more simplified because it does not use pointers and includes

improvements in its data structures and in its syntax. As we

will see, Swift has an easier syntax which helps to developers

to have less mistakes and incorporates new functionalities and

a new programming paradigm [1].

Mainly, Swift is an object-oriented and imperative

programming language as Objective-C but Swift incorporates

the functional programming. Some examples of this are the

closures, maps and filters.

Due to this facts, it is necessary a study about Swift to

check if Swift could be a programming language adapted to

the new times and if it could facilitate the application

development for platforms of Apple [1].

The remainder of this paper is structured as following: in

section III we present the differences among versions. In

section IV we discuss the different changes introduced in

Swift in front of Objectice-C. Section V explains the new

language characteristics. Section VII talks about the novelties

that Swift incorporates. In section VI we present the

methodology, results and the discussion. Finally, section VII

contains the conclusions.

II. VERSIONS

Swift have had different versions with changes in it syntax

and functionality since that the first version to developers

appeared on June 6, 2014 [1]. At present, Swift is in its third

version, Swift 1.2.

The first public version, Swift 1.0 GM, was presented on

June 06 2014. It was a Golden Master (GM) version because

Apple announced that it will continue adding changes and

improvements in the programming language. Swift 1.0 GM

presented a lot of changes in its syntax, native libraries and the

value type of some function, variable to use the new type

“optional” and the syntax of some reserved words like arrays,

dictionaries and open range operators.

Swift 1.1, the second version, appeared on October 22,

2014. This update added the “failures initializers”, changed

some “protocols” and some internal functionalities of Swift.

Swift 1.2 appeared on April 8, 2015. It was a major update. It

arrived with the new version of Xcode 6.3. It introduced

different improvements in the compiler: the compiler started

to create incremental builds; better compilation velocity;

improved the error and warnings messages; better stability to

avoid the “SourceKit warning”. The new language features

were: a new reserved word “as!” to clear to readers and

developers; the nullability in Objective-C headers; the

possibility to export “enumerations” from Swift to Objective-

Swift vs. Objective-C: A New Programming

Language

Cristian González García, Jordán Pascual Espada, B. Cristina Pelayo G-Bustelo, and Juan Manuel

Cueva Lovelle,

 University of Oviedo, Department of Computer Science

S

DOI: 10.9781/ijimai.2015.3310

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-75-

C with the attribute “@objc”; changes in constants (let); a new

native collection: Set.

III. CHANGES RESPECT TO OBJECTIVE-C

Swift and Objective-C use the same compiler, the Low

Level Virtual Machine (LLVM). LLVM was created for a

student at the University of Illinois in 2000 and it is

programmed in C++ [3], [4]. LLVM transforms the Swift

source code in optimise native source code for the elected

hardware (Mac, iPhone, or iPad) [2].

Swift provides full compatibility with Objective-C and old

projects because it allows to use the same libraries, primitive

types, control flow and other functions that has Objective-C.

However, Swift has various libraries translated to Swift’s

native code [5].

Furthermore Swift introduces new changes to search to

abstract this programming language to the same level that

modern programming languages, and in some cases, it

obtained more abstraction than them [2], because this is one

of the current ways in computer science to help developers

when they programme applications and they need to improve

their programming [6]–[9]. Also, it has renovated the old

syntax of Objective-C. Some examples of this are the classes,

protocols, control flows and variables. We are going to explain

these similarities and differences in this section.

A. Pre-processor

Swift does not have pre-processor as occurs in C and

Objective-C. To achieve the same functionality in Swift, users

must use constants instead of the simple macros, namely,

define a constant variable and in the case of complex macros,

functions [2].

B. Syntax

As in other programming languages (JavaScript, Ruby),

Swift allows the optional use of the semicolon character (“;”)

at the end of the line. Besides, Swift uses as access operator

the point character (“.”) like many programming languages

instead the square brackets (“[“, “]”) as Objective-C. This

allows more legible code because it has a syntax more similar

to the most used programming languages [10], [11].

Furthermore it contains changes in the flow structures’

syntax. Now, these must use braces (“{” and “}”) to enclose

the scope to avoid programming problems. For example, in

conditional flow structure (“if”), in some programming

languages, in the case that we do not use braces, the first

sentence is the sentence that the flow structure will do when

the condition will be true and the other sentences will execute

in the other cases (“else”). With these changes, Apple wants to

do a more legible and easier syntax to developers.

C. Collections

Objective-C has three collections: NSArray, NSSet, and

NSDictionary. Initially, Swift only had two collections: Array

and Dictionary but in Swift 1.2 Swift added the Set collection.

The Swift collections are implemented using structures which

differ from the implementation of Objective-C which uses

classes.

This difference implicates that in Swift, when these

collections are assigned to a constant, variable or they are sent

as a function’s parameter, Swift creates a copy of them to

work with this copy instead the original collection.

Meanwhile, Objective-C collections work with the original

collection because Objective-C passes references to the

original collections instead a copy.

D. Variables

1) Labeled statements

One of the changes in Swift with respect to Objective-C is

the functionality of the reserved word “goto”. Objective-C

allows to use this reserved word to go to any part of the

current scope. On the other hand, Swift removed this reserved

word and created the “Labeled Statements” [2]. The “Labeled

Statements” have a similar functionality as the “goto” but

these operate in a smaller scope than the “goto” in Objective-

C. Exactly, they have the same scope as other programming

languages like C#, Java, and PHP: allow to go to a tag inside a

"nested loop" or "switch".

2) Boolean type

Swift, Boolean types have been simplified. Now there only

exist the variables “true” and “false”. In Objective-C it exists

“true”/“false”, 0/1, and “TRUE”/”FALSE”.

3) Property observers

With Swift has simplified the process to add observers to the

variables. To do this, Swift provides two new reserved words:

“willset” and “didset” [2]. “willset” is called before the value

is assigned to the variable and “didset” is called after the value

was assigned to the variable. However, these observers are

never called in the first assignation of the instance.

E. Classes and Structures

In Swift, the syntax to create a class or structure is very

similar as C++, C#, and Java. Besides, Swift only uses one

file (“.swift”) to define a class, contrary to Objective-C that

uses two files (“.h” and “.m”). For that, in Swift, you have to

define all the class or structure in the same file.

The Fig. 10 contains an example about a definition of a class

in Swift. In the first part, it uses a default method, “init”, to

define the constructor. It keeps the same way and reserved

word as Objective-C.

So, to access to the object, Swift still uses the reserved word

“self” instead the operator “->”. Furthermore, Swift facilitates

the access to the properties of the object because it uses the

dot operator (“.”) like C#, Java, JavaScript and Python instead

the bracket operators (“[” and “]”) as Objective-C. It was

possible because Swift removed pointers and it allowed to

facilitate the syntax and operators to work with the different

properties of the object. For this reason, now, we do not have

to allocate a memory block as in Objective-C. Moreover, in

Swift we do not have to use the reserved word “new” as in

other programming languages when we create an object.

About the inheritance in Swift, it keeps the same way as

Objective-C despite now we have to specify when we override

the father’s method with the reserved word “override” before

the child’s method and with the reserved word “super” and the

dot operator before the father's method when we have to call

it.

Regular Issue

-76-

Fig. 10. Class example

Apart from this, Swift still allows to avoid the overwriting of

a variable, method or class if you include, in the father’s part,

the reserved word “final”. This system uses the same way as

C++ and C#.

F. Enumerations

“Enumerations” still have the same functionality. The only

changes that they have had are in their syntax. Now, they have

a clearer syntax and more similar to a class. Nevertheless,

Swift allows to define barcodes, QR codes and raw data with a

easier form than Objective-C [2].

G. Extensions

Extensions are used to add new functionalities to an existing

class, structure or enumeration to which you cannot access it

code. The restriction is that you cannot overwrite the existing

functionalities. Extensions are similar to Objective-C

categories but without a name [2]. Owing to, for instance,

developers can extend the functionality of the String class or

others to add new variables or methods.

IV. LANGUAGE CHARACTERISTICS

Swift introduced various changes in how to program and it

have added new characteristics: it have added changes in

variables, it have modified functions and methods to

incorporate multiple return and diverse functional

programming characteristics. All this will be explained with

more details in this section.

A. Variables

Swift is more restrictive than Objective-C because Swift has

a strong typing to avoid insecure code [2]. Swift obliges to

initialise the variables before their first use. Moreover, you

must too specify if the variable is a variable (“var”) or a

constant (“let”) using these reserved word before the name.

Besides, Swift checks possible arrays and integer overflow

and auto-manages the memory stack using the Automatic

Reference Counting (ARC) [2].

Swift allows to the developer to specify explicitly the value

type or let the compiler infers the type (Fig. 11), although

Swift is strongly typed, for that, when you set a variable in the

first time, the compiler assigns it the type and you cannot

assign a new value with different type later but you could do

an explicit type conversion for changing the type of the value

that you want to assign to the type of the variable.

Fig. 11. Variable examples

B. Functions

Swift allows to send functions as parameter of other

functions. Known as Lambda function, Anonymous function,

Function literal or Lambda abstraction in Functional

Programming. This is one of the characteristics of the

Functional programming that Swift has. We show an example

in Fig. 12: A – this function receives a function; B it has

multiple return; C - one of these return values is a function.

Fig. 12. A function that receives a function and returns multiple parameters

C. Classes

Classes incorporate two changes: a new type of constructor,

thr “Convenience Initializer” and changes in destructors now

known as “Deinitialization”. Next, we are going to explain

both concepts.

1) Convenience Initializer

The “Convenience Initializer” is an optional constructor

that, in case of it exists, it is always called before of the main

constructor. Thus, Apple pretends to do the creation of

constructors clearly and easier because developers would use

different “Convenience Initializer” as alternative constructors

[2]. So, normal constructors would have the generic code to

the all possible cases. To create a “Convenience Initializers” it

is necessary to use using the reserved word “convenience”

before the constructor (Fig. 13).

2) Deinitialization

Due that Swift incorporates ARC, for that, destructors are

not needed to release memory as occur in C, C++ and

Objective-C but Swift incorporates the “Deinitialization” [2].

A “Deinitialization” is a method which is called

immediately after an instance is released and it cannot be

called explicitly. Using “Deinitialization”, developers have a

mechanism to do a special clean of different resources or to do

actions when the object dies. For example when the object

have to work with files. In this case, when the object dies, the

program releases the memory that the object had used but the

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-77-

program cannot close the file because ARC cannot infer this

[2]. Then, you can implement a “Deinitialization” to close the

file when the object dies. To create a “Deinitialization” you

only need to add and implement the method “deinit” as we

show in Fig. 13.

Fig. 13. Class example with Convenience Initializers and a Deinit

V. NOVELTIES

In this section we are going to explain the novelties that

Swift introduced in relation to Objective-C. The most notable

is the "Playground", a sandbox to programming. Also, we are

going to explain the novelties in the operators, the new type of

variables and some characteristics of the functional

programming that Swift introduced as the “Closures”. Finally,

we are going to talk about the generic which Apple have

introduced in Swift, the novelties in the “Switch” flow

structure and how to work in Objective-C with Swift and vice

versa.

A. Playground

Swift incorporates a new technology in the Integrated

Development Environment (IDE) Xcode 6 [12], the

“Playground [1], [2]. The “Playground” is a "compiler-in-real-

time" which executes the code immediately while the user

develops. It provides the value of the execution in different

parts of the program (assignments, operations, returns),

because the compiler auto-executes itself when it detects a

change in the code. Therefore, the “Playground” is a terminal

which can execute Swift as other programming languages

have like Bash, PHP, Python, and Ruby but with an IDE and

some utilities.

This allows to be able to test algorithms in a quick, easy,

efficient and isolated way because it gives the possibility to

encapsulate the algorithm in a clean sandbox without any

relationship to the final application to avoid collateral

damages [2].

B. Operators

Swift has all the unary operators (++, --, !), binary operators

(+, -, *, /), ternary operators (a:b?c), logical operators (!, &&,

||, true, false), and the assignment of C. Even so, Apple added

Range Operators, Overflow Operators and Custom operators.

We are going to explain these three operators in the next lines.

1) Range operators

The “Close Range Operator” uses the ellipsis (a…b) as we

show in Fig. 14. It defines a range from “a” to “b” and includes

both. It is used to iterate on a range where both limits are

included.

Fig. 14. Closed Range Operator example

On the other hand, the “Half-Open Range Operator” symbol

is composed of two dots and the less-than symbol (a..<b) as

we can see in Fig. 15. The difference with the “Close Range

Operator” is that the “Half-Open Range Operator” does not

include the “b” into the range. It defines a range from “a” to

“b-1.

Fig. 15. Half-Closed Range Operator

Using this two operators, we can define in a quick way the

creation of a list, array or their iteration.

2) Overflow Operators

In Swift the arithmetic operators (+, -, *, /) do not have

“overflow” by default [2]. In case that we want it, we have to

add the ampersand sign (&) before the arithmetic operator as

we can see in Fig. 16. For example, to apply overflow to the

addition, we must use the combination “&+”. If we want to

have underflow in the subtraction, we have to use “&-”. Swift

also allows to control the division by zero with the

combination “&/” and “&%”. For the multiplication we have

to use the “&*”.

Fig. 16. Overflow Operators examples

3) Custom operators

Swift allows to define new operators using the existing

arithmetic signs [2]. This is impossible in Objective-C while

C++ affords this functionality.

To create a new “Custom Operator”, we must to declare its

header and do his implementation. There are three ways to do

a “Custom Operator”: prefix, infix, and postfix (Fig. 17).

Regular Issue

-78-

Fig. 17. Custom Operator

C. Variables

Swift has new data variable types: tuples, “optionals” and

“Lazy Stored Property”. Some programming languages

already incorporated some of these variable types. Then, with

this new variable types, Swift offers new ways to work with

more flexible and facilities for developers.

1) Tuples

Tuples allow group together multiple values in a unique

component. Therefore, one of its uses is to allow the return of

multiple values in a function. The Fig. 18 contains an example

with tuples.

Fig. 18. Tuples in Swift

2) Optionals

The “Optional” is a new value type in Swift which neither

exist in C nor Objective-C. It is used to assign a type when the

value could be of different type or nil [2]. In this way, if a

conversion cannot be done, the variable would take a “nil”

value. To declare an “optional” variable you must write a

question mark (?) after the type. In the example of the Fig. 19,

the variable “convertedNumberImplicit” can never be “nil”

and in the case that the assignment value would be “nil”, the

program will break. In the next variable,

“convertedNumberExplicit”, the type is an Optional Integer.

In this case, the value could be “nil”.

Fig. 19. Example that assign value to Optional Variables

This allows to use an optional value in a conditional flow

because the “nil” value is the same as a “false” value.

However, you can force to read the “optional” value if you

write an exclamation mark (!) after the “optional” variable

(Fig. 20).

Fig. 20. Example about how to print Optional Variables

3) Lazy Stored Property

The “Lazy Stored Property” is a class or structure property

which value is not calculated until its first use. Until then, it

has not value [2]. It uses is similar than other programming

languages like C# and Python. In Fig. 21 we create a “Lazy

Stored Property” using the declaration “lazy” before the

variable.

Fig. 21. Lazy Properties

D. Closures

Swift incorporates the “Closures” as a part of the functional

paradigm. The “Closures” allows to evaluate a function in a

context which contains one or more variables depending of

another context. In Fig. 22, the internal function is executed by

the “map function” and it depends on the parameters of the

array.

Fig. 22. Applying a Closure using a Map function

Swift allows to create the “Closures” with other simpler

ways: implicit return which implicates to not so specify the

return; the possibility to use the “Shorthand Argument

Names”, default arguments created automatically by Swift to

work with the parameters sent to the “Closure” without a

previous declaration; including just the operator (<, >, +, -,…)

in the case that the function only has two parameters and only

need to return the result.

E. Generics

Swift adds as a novelty the “Generics”, known as

“Templates” in other programming languages like C++, and

Java. In Objective-C, to have this functionality, you must

implement this part of the code in C++.

The incorporation of “Generics” allows to do easier, more

flexible, more reusable and more functional with any other

data type, avoiding the redundancy of code. This is one of the

most powerful functionalities of Swift [2]. As occurs in C++

and Java, the data type used to do the method is generic

“<T>”. We can see an example in Fig. 23.

Fig. 23. Generic Function

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-79-

F. Switch

The “Switch” in Swift has improvements in relation with

Objective-C [2]. Now, the “break” sentence is optional

because the compiler automatically breaks the “switch” when

finishes the “case”. With this way, Apple pretends to do an

easier use and with less programming mistakes. Due to this, it

is impossible to have empty “cases” except if you use the

reserved word “fallthrough”. The reserved word “fallthrough”

does that the execution continue to the next “case”. The same

functionality is in the “Switch” of C#.

As well allows for introducing several verifications in the

same “case”: you can separate them with commas (,), you can

use “Range Operators” or tuples. Also, the “Switch” allows

the combination between “Range Operators” and tuples to

allow to developers the evaluation of mathematical functions

in an easier and quicker way.

Another improvement is the optional clause “where”. It

allows to add a new additional check in a “case”.

G. Objective-C in Swift

Swift allows to incorporate and use Objective-C code in the

same Swift program [13]. To insert the Objective-C code, you

must insert the Objective-C files (“.h” and “.m”) in the project

and import the Objective-C header in the “Bridging-Header”

file which you need to create in the Swift project. This file

contains the import all the Objective-C headers (.h) which we

will use. After this step, we must connect this file with the

configuration through the “Build Settings” configuration.

When it is configured, you can work with the Objective-C

code using Swift syntax and rules. To import C++ code, you

have to create an Objective-C or C wrapper around the C++

code.

H. Swift in Objective-C

To use Swift code in an Objective-C project, the Xcode

auto-generates a file when you import the Swift code. This

importation allows the layer to access to all the functionalities

of the Objective-C code [13]. These files keep the original

name but with the additional postfix “-Swift” and the

extension “.h”. When the importation is done, it just needs to

import the Objective-C header files. In this way, you can use

the Swift code in an Objective-C project.

VI. EVALUATION AND DISCUSSION

In this section we are going to explain in detail the different

process of evaluation and then we show the results. Firstly, we

will describe the used methodology. After that, we will show

the results and discuss them.

A. Methodology

We have evaluated the implementation of the same code in

each different programming language: Objective-C and Swift.

We have chosen an example of an XML parser, exactly, using

the Foundation XMLParser. In our case, we implemented a

main method and override two methods: “didStartElement”

and “foundCharacters”. The first one, “didStartElement”, is

called when the parser needs to process a new XML node. The

second one, “foundCharacters”, is called when the parser find

text into a node.

After that, we evaluate the code using two ways. Firstly, we

analysed and compared the syntax. Secondly, we did a

quantitative analysis based on source code: we counted the

lines with code; the words, reserved words and the numbers of

“Switch cases”; the characters that developers need to write

that code.

B. Results

In this section, we are going to explain the two ways that we

used to compare Objective-C with Swift. Firstly, we are going

to talk about the syntax analysis where we have implement

three methods in both programming languages. Later, we are

going to present the quantitative analysis where we compare

both in base on their lines, words, and characters using the

same three methods of the syntax analysis.

1) Syntax Analysis

Firstly, we analysed the “beginParsing” method in both

programming languages (Fig. 24 and Fig. 25). As we can see,

the Objective-C implementation uses a pointer. Furthermore,

when it initialise the parser, it needs to allocate memory.

Fig. 24. “BeginParsing” method in Objective-C

Fig. 25. “BeginParsing” method in Swift

Secondly, in the “didStartElement” method (Figure 17 and

Figure 18) we can observe similarities with the previous

method. Objective-C uses pointers and need to allocate

memory. Besides, you have to create a copy to avoid the use

of the original. Another difference between Objective-C and

Swift is the obligatory use of the “at sign” character (@)

before a “string”.

Regular Issue

-80-

Fig.26. “didStartElement” method in Objective-C

Fig. 27. "didStartElement" method in Swift

Finally, we show the implementation in Objective-C (Fig.

28) and Swift (Fig. 29) of the method “foundCharacters”. In this

case, we can see the same differences again. In addition, Swift

needs less characters because it omitted the use of the reserved

word “break”.

Fig. 28. Implementation of the "foundCharacters" method in Objective-C

Fig. 29. Implementation of the "foundCharacters" method in Swift

1) Quantitative Analysis

Now, we show the quantitative analysis about the three

methods which were implemented. First of all, we show the

comparison between Objective-C (OC) and Swift (S) about

the lines with code in the Table 1. As we can see, the

difference depends on the method but it is irrelevant. For this

reason, we cannot say that with Swift you could write much

less code lines.

TABLE 1
COMPARISON: LINES WITH CODE

Lines OC S Difference %

beginParsing 6 6 0 0

didStartElement 6 7 -1 14,28

foundCharacters 12 9 3 -33,33

SECONDLY, IN THE

Table 2 we show the comparison about the numbers of

words that we had needed to implement the methods. In this

case, we used less words in the case of Swift but the difference

is insignificant. Swift is a few less verbose than Objective-C

as we explained in the previous sections.

TABLE 2
COMPARISON: WORDS

Words OC S Difference %

beginParsing 23 22 1 -4,54

didStartElement 34 31 3 -9,67

foundCharacters 30 28 2 -7,14

Finally, we measured the number of characters of each

method in both programming languages. In this case, we did

not count the whitespaces. In the Table 3 we can see that Swift

needs around 11% less characters than Objective-C. This is

because Swift has changed the access operators, does not use

pointers and removed the obligation of the use the semicolon

and some reserved words.

TABLE 3

COMPARISON: CHARACTERS WITHOUT SPACES

Characteres OC S Difference %

beginParsing 256 226 30 -13,27

didStartElement 401 360 41 -11,38

foundCharacters 211 187 24 -12,83

VII. CONCLUSION

Apple has achieved to create a modern programming

language with same of the best functionalities of other

programming languages like C#, Java, JavaScript, PHP,

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-81-

Python, Ruby, and Scala, among others. Furthermore, Swift

incorporates the functional programming as other

programming languages have adopted to provide more

possibilities to developers. In addition, Swift adds new

possibilities for doing easier and more effective the

applications development owing to the fact that: they have

done change in the syntax, classes, variables, functions,

operators, and data structures; they have improved the

“Switch”; they have removed of the pointers.

Furthermore, we can see that using Swift, developers need

less characters to program the same code because Swift has

simplified the syntax but they need the same numbers of lines

and words to program.

Because of these reasons, it seems a wise decision of Apple

the creation of a new programming language with more

abstraction level than Objective-C to facilitate the application

development but with all power of other current programming

languages and the elimination of the obsolete Objective-C

syntax. Moreover, this abstraction allows to make less

mistakes and be more comfortable to developers without a

flexibility loss and maintenance the retro-compatibility with

previous code.

In conclusion, Apple has created a programming language

with the necessary abstraction and functionalities of this age

and, in certain cases, they have improved the current

functionalities as they have done with the “Switch”. Besides,

they have created a programming language to improve their

ecosystem due to the fact that Swift is not a competitor of

Objective-C nor its evolution, Swift is a programming

language ready to coexist with Objective-C and to give

another possibility to develop to developers.

ACKNOWLEDGMENT

This work was performed by the “Ingeniería Dirigida por

Modelos MDE-RG” research group at the University of

Oviedo under Contract No. FUO-EM-086-14 of the research

project “Proyecto Visio”. Project partially-financed by Zed

Worldwide S.A.

REFERENCES

[1] Apple Inc., “Swift,” https://developer.apple.com/swift/, 2015. [Online].

Available: https://developer.apple.com/swift/. [Accessed: 17-Apr-2015].
[2] Apple Inc., The Swift Programming Language. 2014.

[3] “LLVM,” http://llvm.org/, 2000. [Online]. Available: http://llvm.org/.

[4] C. A. Lattner, “LLVM : An Infrastructure for Multi-Stage
Optimization,” University of Illinois, 2002.

[5] @adamjleonard, @thinkclay, and @cesar_devers, “Swift Toolbox,”

http://www.swifttoolbox.io/, 2014. [Online]. Available:
http://www.swifttoolbox.io/. [Accessed: 17-Apr-2015].

[6] E. González, H. Fernández, and V. Díaz, “General purpose MDE tools,”

Int. J. Interact. Multimed. Artif. Intell., vol. 1, pp. 72–75, 2008.
[7] E. R. Núñez-Valdez, O. Sanjuan-Martinez, C. P. G. Bustelo, J. M. C.

Lovelle, and G. Infante-Hernandez, “Gade4all: Developing Multi-

platform Videogames based on Domain Specific Languages and Model
Driven Engineering,” Int. J. Interact. Multimed. Artif. Intell., vol. 2, no.

Regular Issue, pp. 33–42, 2013.

[8] R. Gonzalez-Crespo, S. R. Aguilar, R. F. Escobar, and N. Torres,
“Dynamic, ecological, accessible and 3D Virtual Worlds-based Libraries

using OpenSim and Sloodle along with mobile location and NFC for

checking in,” Int. J. Interact. Multimed. Artif. Intell., vol. 1, no. 7, pp.
63–69, 2012.

[9] C. G. García, C. P. García-Bustelo, J. P. Espada, and G. Cueva-

Fernandez, “Midgar: Generation of heterogeneous objects

interconnecting applications. A Domain Specific Language proposal for

Internet of Things scenarios,” Comput. Networks, vol. 64, no. C, pp.
143–158, 2014.

[10] TIOBE Software BV, “TIOBE Index,”

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html,
2014. [Online]. Available:

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

[Accessed: 15-May-2015].
[11] C. Zapponi, “GitHub,” 2014. [Online]. Available: http://githut.info/.

[Accessed: 15-May-2015].

[12] Apple Inc., “Xcode.” 2015.
[13] Apple Inc., Using Swift with Cocoa and Objective-C. 2014.

Cristian González García is a Technical Engineering in
Computer Systems and M.S. in Web Engineering from

School of Computer Engineering of Oviedo in 2011 and

2013 (University of Oviedo, Spain). Currently, he is a
Ph.D. candidate in Computers Science.

His research interests are in the field of the Internet of

Things, Web Engineering, Mobile Devices and Modeling
Software with DSL, and MDE.

Jordán Pascual Espada is a Research scientist at
Computer Science Department of the University of

Oviedo. Ph.D. from the University of Oviedo in

Computer Engineering.
His research interests include the Internet of Things,

exploration of new applications and associated human

computer interaction issues in ubiquitous computing and
emerging technologies, particularly mobile and Web.

B. Cristina Pelayo G-Bustelo is a Lecturer in the
Computer Science Department of the University of

Oviedo. Ph.D. from the University of Oviedo in

Computer Engineering.
Her research interests include Object-Oriented

technology, Web Engineering, eGovernment, Modeling

Software with BPM, DSL and MDA.

Juan Manuel Cueva Lovelle is a Mining Engineer from

Oviedo Mining Engineers Technical School in 1983
(Oviedo University, Spain). Ph. D. from Madrid

Polytechnic University, Spain (1990). From 1985 he is

Professor at the Languages and Computers Systems Area
in Oviedo University (Spain). ACM and IEEE voting

member.

His research interests include Object-Oriented
technology, Language Processors, Human-Computer Interface, Web

Engineering, Modeling Software with BPM, DSL and MDA.

