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Abstract

F. Mora, C.A. Scapim, A. Baharum, and A.T. Amaral-Junior. 2010. Generalized composite 
interval mapping offers improved efficiency in the analysis of loci influencing non-normal 
continuous traits. Cien. Inv. Agr. 37(3):83-89. In genetic studies, most Quantitative Trait 
Loci (QTL) mapping methods presuppose that the continuous trait of interest follows a normal 
(Gaussian) distribution. However, many economically important traits of agricultural crops have 
a non-normal distribution. Composite interval mapping (CIM) has been successfully applied to 
the detection of QTL in animal and plant breeding. In this study we report a generalized CIM 
(GCIM) method that permits QTL analysis of non-normally distributed variables. GCIM was 
based on the classic Generalized Linear Model method. We applied the GCIM method to a F2 
population with co-dominant molecular markers and the existence of a QTL controlling a trait 
with Gamma distribution. Computer simulations indicated that the GCIM method has superior 
performance in its ability to map QTL, compared with CIM. QTL position differed by 5 cM 
and was located at different marker intervals. The Likelihood Ratio Test values ranged from 52 
(GCIM) to 76 (CIM). Thus, wrongly assuming CIM may overestimate the effect of the QTL by 
about 47%. The usage of GCIM methodology can offer improved efficiency in the analysis of 
QTLs controlling continuous traits of non-Gaussian distribution.

Key words: bioinformatics, Generalized Linear Model, molecular markers, Quantitative Trait 
Loci (QTL).

Introduction

The great majority of traits of agricultural crops 
are a result of the joint action of several genes 

with generally continuous phenotypic varia-
tion. The expression of these quantitative traits 
is controlled by loci termed QTL (Quantitative 
Trait Loci). There are two basic categories of 
molecular markers (Ovesná et al., 2002): mark-
ers that segregate and determine the presence of 
a single, dominant or recessive gene and QTL-
associated markers. It is much easier and eco-
nomic to develop markers for a trait inherited by 
a single gene than markers based on QTL.
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The accuracy of QTL mapping (i.e., detection or 
analysis) must therefore be as high as possible. 
Statistical procedures have been extensively 
studied because they are essential for improv-
ing the accuracy of genetic analyses (Mora et 
al., 2008a). In a simulation study on the accuracy 
of position and effect estimates of linked QTL, 
Mayer et al. (2004) found that the reduction of 
the marker interval size from 10 cM (centiMor-
gan) to 5 cM led to a higher power in QTL detec-
tion and to an improvement of the QTL position 
as well as the QTL effect estimates.

The statistical association between a marker 
locus and the genomic region of a QTL (QTL 
mapping within the chromosome) is an impor-
tant tool for genetic improvement programs. 
The genotypes of known QTLs can be added 
to the information about plant performance and 
together with genealogical information, can 
be used to increase the prediction accuracy of 
genetic values in traditional breeding methods 
(Gonçalves-Vidigal et al., 2008): as in the case 
of BLUP (Best Linear Unbiased Prediction). 
With the advancement of genomic studies, mo-
lecular markers linked to QTL are becoming 
increasingly available as additional information 
for genetic evaluation and could be used to in-
crease selection efficiency via marker-assisted 
selection (Liu and Zeng, 2005).

The strategy used to detect whether a marker 
and a QTL are linked is the statistical analysis 
of association between the phenotypic variation 
of the trait and markers. The methods of sim-
ple regression, maximum likelihood and those 
based on Monte Carlo Markov Chains have 
been frequently used to detect QTLs, which 
are focused mainly on a continuous distribu-
tion (Normal or Gaussian) of the trait of interest 
(Thomson, 2003). However, several studies re-
lated to plant breeding have shown that several 
traits of economic and scientific interest have 
non-Gaussian distribution (Spyrides-Cunha et 
al., 2000; Ribeiro et al., 2005; Mora et al., 2007; 
Mora et al., 2009). 

In this sense, the methodology of the Generalized 
Linear Models (GLM) was developed in the 70’s. 
It is based on distributions of the exponential 
type (termed exponential family distributions), 

and uses methods similar to traditional linear 
approaches for normal data distribution (My-
ers et al., 2002). Distributions such as: Gamma, 
Poisson, Binomial, Multinomial and Normal are 
some examples of distributions that belong to the 
exponential family, which are frequently found 
in agronomic experiments (Mora et al., 2008b; 
Mora et al., 2008c). In the GLM approach, the 
assumptions of normality required for conven-
tional analysis can be relaxed if the trait of inter-
est follows any exponential family distribution.

The current study has been motivated by the 
existence of traits of interest with other than 
Gaussian distributions (Mora et al., 2007; Mora 
et al., 2008b; Rodovalho et al., 2008; Mora et 
al., 2008d). Therefore, this study aimed to map 
a quantitative trait locus by using a generalized 
linear regression modeling approach where the 
agronomical trait is non-normally distributed. 
Knowledge about the statistical method used to 
map QTL will enhance the accuracy of genetic-
quantitative analyses and improve our under-
standing on the genomic regions that control 
agronomic traits of interest.

Material and methods 

The methodology of the generalized linear re-
gression was used to map a QTL that controls a 
trait of non-Gaussian distribution. For this pur-
pose, data of 11 codominant molecular markers, 
distributed within a chromosome of 105.6 cen-
tiMorgan (cM, a distance of Haldane), were sim-
ulated using the program GQMOL (Schuster and 
Cruz, 2004). The supposed breeding population 
consisted of a F2 population with 252 individuals.

It was assumed that the trait under selection is 
genetically controlled by an infinite number of 
additive loci, each one with an infinitesimal ef-
fect (poly-genes), plus a single two-allele QTL 
(alleles Q and q). The agronomical data were 
simulated in R program (Ihaka and Gentleman, 
1996) using statistical parameters from Mora 
et al. (2008b). Therefore, it was assumed a trait 
of interest with Gamma distribution, which 
was subsequently adjusted to data of molecular 
markers. The population was assumed to be a 
breeding F2 population.
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Let y1,…, yn denote n independent observations 
on a response; a realization of a random vari-
able Yi. According to previous assumptions, 
the quantitative trait simulated here has a dis-
tribution that belongs to the exponential family 
(Dobson, 2001). The density and probability 
function for the observed response y can be ex-
pressed as:
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where )(φia , )( ib θ  and ),( φiyc  are called 
specific functions. The parameter iθ  is related 
to the mean of the distribution. φ ,  called the 
dispersion parameter, typically is known and is 
usually related to the variance of the distribu-
tion (Dobson, 2001; Myers et al., 2002).

If Yi has a distribution in the exponential family 
then it has mean and variance:
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The generalized regression model, considering 
the composite interval mapping (CIM) of QTL 
(Haley and Knott, 1992), includes additive and 
dominant effects of the QTL.

Assuming a Generalized Composite Interval 
Mapping (GCIM) for QTL analysis with an ex-
ponential family distribution (in this case Gam-
ma), the model is constructed around the linear 
predictor:
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where 0β  and iβ  are the model parameters (in-
tercept, additive and dominance effects of the 
QTL and the markers considered as co-factors). 
The model is found through the use of a link 
function: )( ii g µη = . In this study, the logarith-
mic link function was used according to Myers 
et al. (2002).

The R program (Ihaka and Gentleman, 1996) was 
used for QTL mapping, according to Myers et al. 
(2002), to adjust the model of generalized linear 
regression. The Likelihood Ratio Test (LRT) 
was used to compare the models of each interval 
mapping. These results were compared with an 
analysis where a normal distribution of the agro-
nomic trait of interest was assumed (CIM).

Results and discussion 

The linkage group (chromosome) and the re-
spective distances between the co-dominant 
molecular markers are shown in Figure 1-A. 
The Haldane distance ranged from 5.5 cM (es-
timated between the markers SSR6 and SSR7) 
to 19.1 cM (between SSR2 and SSR3). The 
observed and expected distribution of the trait 
is shown in Figure 1-B (obtained using R pro-
gram). The relatively small asymmetry in rela-
tion to the normal distribution was confirmed 
by the statistical tests Shapiro-Wilk and Lillief-
ors (P < 0.01). The graphic analysis confirmed 
the Gamma distribution of the response vari-
able, according to Freund (1992).
The results of the markers associated with the 
trait of interest are shown in Table 1. This is a key 
procedure to identify co-factors that will be used 
in the composite interval mapping. The gener-
alized linear regression identified the markers 

A B

Figure 1. (A) Diagram of the linkage group constructed with 11 molecular markers (MM), in the lower part of the linkage 
group, the Haldane distances between MM are shown in cM; (B) Diagram of expected (Gaussian: dotted line) and observed 
(Gamma: continuous line) distribution of the quantitative trait. 
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SSR3 and SSR11 as significant (P < 0.05). A sim-
ilar analysis using stepwise regression (consider-
ing Normal error distribution) confirmed these 
molecular markers, but also indicated statistical 
significance for SSR9 (P < 0.05). Although the 
results of composite interval mapping showed 
no differences to the procedure with simple in-
tervals (data not shown) due to the simplicity of 
the genomic data, it is important to emphasize 
that the differences found in the selection of co-
factors can significantly affect QTL detection ac-
cording to Schuster and Cruz (2004). 

Figure 2 shows a diagram with the QTL loca-
tion depending on the analysis method used: 1) 
ignoring the real trait distribution that is, erro-
neously assuming normal distribution (QTL1) 

and 2) assuming the real distribution of the re-
sponse variable (Gamma) and therefore using 
the principle of Generalized Linear Models for 
QTL mapping (QTL2). The Likelihood Ratio 
Test (LRT) values ranged from 52 (QTL2) to 
76 (QTL1). Thus, wrongly assuming the nor-
mal distribution model, the real effect of the 
QTL was overestimated by about 47%.

In this study, it may be noted that the QTL 
analysis or mapping, where the normality rejec-
tion is disregarded, was relatively robust in the 
sense that both approaches detected significant 
evidence for a QTL (P < 0.01) within this ge-
netic linkage group. However, the QTL loca-
tion, between one methodology and the other, 
differed by 5 cM, despite the small deviation in 

Table 1. Generalized Linear Regression method used for the selection of molecular markers as co-factors for the composite 
interval mapping of QTL. In bold, the significant molecular markers (P < 0.05).

Marker Estimate Standard error

Wald Confidence limits

c2 P > c2 (95%)

SSR1 -0.0210   0.1595 -0.3336 0.2916 0.02 0.895
SSR2   0.1213   0.1845 -0.2403 0.4828 0.43 0.511
SSR3   0.4454   0.1553 0.1409 0.7498 8.22 0.004
SSR4   0.1952   0.1954 -0.1878 0.5782 1.00 0.318
SSR5   0.0605   0.2715 -0.4717 0.5927 0.05 0.824
SSR6  -0.1520   0.2813 -0.7034 0.3994 0.29 0.589
SSR7   0.2954 0.255 -0.2044 0.7952 1.34 0.247
SSR8  -0.2948   0.2304 -0.7464 0.1567 1.64 0.201
SSR9  -0.0398   0.1703 -0.3736 0.2941 0.05 0.816

SSR10  -0.1234   0.1796 -0.4754 0.2286 0.47 0.492

SSR11   0.3671   0.1586   0.0562 0.6780 5.36 0.021

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

LR

Recombination frequency

QTL1 QTL2

0.2 0.4 0.6 0.8 1

Figure 2. QTL location, which was dependent on the analysis method: erroneously assuming normal distribution (QTL1), 
and assuming the true distribution (Gamma) of the response variable (QTL2), which was analyzed by using a generalized 
linear regression model. LR is the likelihood ratio test; SSR1, SSR2... and SSR11 are the co-dominant markers.
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the trait distribution. Another important result 
is that the QTL was detected at different inter-
vals. The differences may seem relatively small, 
but we emphasize the fact that the results pre-
sented here are based on an extremely simple 
molecular data (only one linkage group and one 
QTL). The accuracy of QTL mapping must be as 
high as possible (Mora et al., 2008a). Mayer et 
al. (2004) for example, found that the reduction 
of the marker interval size from 10 cM to 5 cM 
led to a higher power in QTL detection and to a 
remarkable improvement of the QTL position as 
well as the QTL effect estimates.

The generalized linear model fitted to the data 
of this study was based on the logarithmic link 
function. Technically, this link is not the ca-
nonical (natural) function of the Gamma distri-
bution, but it is often used (Myers et al., 2002) 
since mathematical problems can be overcome 
with the use of the reciprocal function, which is 
the canonical link of the Gamma distribution. 

Application of molecular marker techniques 
has helped to better understand characters con-
trolled by multiple genes. In principle, QTL can 
be used for Marker Assisted Selection (MAS). 
Moreover, with the help of markers it is pos-
sible to begin with specific selection in earlier 
generations. For these reasons, the procedures 
for mapping quantitative trait loci must be me-
ticulously studied because they are essential for 
determining statistical association between mo-
lecular data and the agronomical trait of interest 
(Mora et al., 2008a). In the current study, the re-
sults by the approach of generalized linear mod-
eling for QTL mapping were promising. If we 
presume that 1 cM is equivalent to approximately 
1 million base pairs in this study, the differences 
between one procedure and the other can there-
fore be of the order of 5 million base pairs. Fur-
thermore, the fact that the QTLs were found at 
different intervals can mean the loss of important 
resources, when the QTL localization is needed. 

Originally, the theory of the GLMs is an alterna-
tive approach to data analysis where the normal-
ity assumption is unrealistic, as reported here. 
The use of the GLM method can be interest-
ing and effective in QTL mapping in situations 
where the distribution of the response variable 

belongs to the exponential family (Dobson, 
2001). Although there are several methods of 
detecting QTLs, from the simple regression to 
the Bayesian methods (Thomson, 2003), most 
procedures assume a normal trait distribution. 

As in our breeding programs, Thomson (2003) 
argued that many traits of both scientific and 
economic interests have non-normal distribu-
tion. For example, binary data are often found 
when the aim is to improve traits such as disease 
status (Setiawan et al., 2000; Park et al., 2001), 
mortality or survival (Mora et al., 2008d), flow-
ering (Missiaggia et al., 2005; Mora et al., 2007; 
Mora et al., 2009), among other traits. Yang et 
al. (2009) stated that deviations from this as-
sumption may affect the accuracy of QTL de-
tection and lead to detection of spurious QTLs. 
The current study confirmed that the mapping 
of QTLs on control traits of non-Gaussian dis-
tribution could be improved by the theory of 
Generalized Linear Models.

It is important to emphasize that various ap-
proaches have been studied to deal with non-
normal phenotypes in QTL mapping. The 
Generalized Estimating Equation procedure, 
for example, is a natural extension of general-
ized linear models, which has shown to be use-
ful for mapping QTLs affecting longitudinal 
non-normal traits (Lange and Whittaker, 2001; 
Mora et al., 2008a). Bayesian methods are also 
considered to be able to study QTL affecting 
non-normal traits. Recently, Yang et al. (2009), 
for example, studied the genetic architecture of 
quantitative trait by combining the flexibility of 
Bayesian approach in modeling multiple QTL 
and their interactions and the better phenotypic 
fitting of symmetric and long-tailed distribu-
tions in characterizing non-normal traits.

In the current study, the accuracy in QTL 
mapping depended on the methodological ap-
proach. Information about the distribution of 
agronomic data should be studied and included 
in breeding programs to improve the reliability 
of the QTL mapping. In this sense, the gen-
eralized composite interval mapping method 
can offer improved efficiency in the analysis 
of QTLs controlling continuous traits of non-
Gaussian distribution.
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Resumen

F. Mora, C.A. Scapim, A. Baharum y A.T. Amaral-Junior. 2010. Mapeo por intervalos 
compuestos generalizados entrega una mejorada eficiencia en el análisis de loci que 
afectan características continuas no-normales. Cien. Inv. Agr. 37(3):83-89. En estudios 
genéticos, la mayoría de los métodos de mapeo de Loci de Característica Cuantitativa (LCC) 
presupone que la característica de interés (continua) sigue una distribución Normal (Gaussiana). 
Sin embargo, muchas de las características económicamente importantes de cultivos agrícolas 
tienen una distribución no-normal. Mapeo por intervalos compuestos (MIC) ha sido aplicado 
exitosamente para la detección de LCC en el mejoramiento de plantas y animales. En este 
estudio se investigó el método generalizado de MIC (MICG) que permite el análisis de LCC de 
variables distribuidas no normalmente. MICG fue basado en el método clásico de los Modelos 
Lineales Generalizados. Se aplicó el MICG a una población F2 con marcadores moleculares co-
dominantes y la existencia de un LCC que controla una característica con distribución Gamma. 
Simulaciones de computador indicaron que el método MICG tiene un poder superior en su 
habilidad para mapear LCC, en comparación con MIC. La posición del LCC difirió en 5 cM, y 
fue localizado en diferentes intervalos de marcadores. Los valores de la prueba de la Razón de 
Verosimilitud variaron de 52 (MICG) a 76 (MIC). Por lo tanto, asumiendo erróneamente MIC, 
se podría sobreestimar el efecto del LCC en alrededor de 47%. El uso de MICG puede ofrecer 
una mejorada eficiencia en el análisis de LCC que controlan características de distribución 
diferente a la Gaussiana.

Palabras clave: bioinformática, Loci de Característica Cuantitativa (LCC), marcador molecular, 
Modelo Linear Generalizado.
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