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Abstract 
 

In this paper is carried out a comparative study between Self-Organizing Maps (SOM) and Bayesian Networks, to evaluate 

their performance in the field of structural health as damage detector of structural failures type III, which detects where the 

damaged area is and percentage of damage within this the area. The implemented classifiers are trained to detect structural 

failures in a simply supported beam and a truss of 13 elements, the detection is performed using modal information from 

different test scenarios, obtained by OpenSees® and MATLAB®. The simulations show a satisfactory performance of Bayesian 

networks to provide the range of stiffness variation in each element of the studied systems. Meanwhile, SOM networks are 

useful in predicting the decrease in elastic modulus, which is assumed as specific percentage of damage. Based on this results 

is proposed a hybrid methodology (BAYSOM) seeking to reduce computational cost and improve performance in diagnosis 

and detection of fault conditions in structures.  

 

Keywords:  (SOM) Self-Organizing Maps, Bayesian Networks, (SHM) Structural Health Monitoring, Damage Detection 

 

Resumen 

 
En el presente artículo se realizó un estudio comparativo entre redes de mapas auto-organizados (Self-Organizing Map, SOM) 

y redes bayesianas, evaluando su desempeño en el campo de la salud estructural al determinar la ubicación y porcentaje de 

daño en fallas estructurales tipo III. Los clasificadores implementados se entrenan para monitorear una viga simplemente 

apoyada y una armadura de 13 elementos, esto gracias a la información modal de los distintos escenarios de prueba, obtenida 

mediante OpenSees® y MATLAB®. La simulación muestra un desempeño satisfactorio de las redes Bayesianas para 

suministrar el rango de variación en la rigidez de cada uno de los elementos bajo estudio. Por otra parte, las redes SOM se 

muestran útiles al estimar la reducción en el módulo de elasticidad de cada elemento, lo cual se interpreta como un porcentaje 

específico de daño. Con base en los resultados se propone una metodología hibrida (BAYSOM) buscando reducir el costo 

computacional y obtener un mejor desempeño en el diagnóstico y detección de condiciones de falla en estructuras. 

 

Palabras clave:  (SOM) Mapas auto-organizados, Redes Bayesianas, (SHM) Monitoreo de salud estructural, Detección de 

daño. 
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1. Introduction 

 
Nowadays, it is not enough to determine the causes by which 

a structure may fail (fatigue, overloading, chemical 

degradation, etc.) it is just as important to implement an 

early detection of the fault conditions. Online fault detection 

systems must compensate the weaknesses of current 

methods in the detection of damage (X-ray, ultrasound, 

acoustic inspection, etc.) that require a priori knowledge of 

the possible fault location and a degree of accessibility to 

that location.  

 

All approaches to Structural Health Monitoring (SHM), as 

well as all traditional nondestructive evaluation procedures 

can be cast in the context of a statistical pattern recognition 

problem [1]. In particular the vibration-based methods have 

received increasing attention in engineering structures. 

Recently, ambient modal analysis techniques have focused 

on civil engineering structures since this technique is based 

on extracting the dynamics characteristics of a structure 

using ambient excitation (wind, traffic, loading, etc). 

Assuming that modal parameters of a structure are available 

a fault detection system can be implemented tracking 

changes in local stiffness. In a deterministic SHM scheme, 

differences in the stiffness parameters estimated from 

different modal data sets would be used as indicators of 

damage [2]. Because of the complexity associated to regard 

all possible damage scenarios, probabilistic methods are 

required to consider uncertainties in the identified model by 

treating the problem within a framework of plausible 

inference in the presence of incomplete information [3]. 

 

Another approach available for SHM is SOM methodology, 

the architecture and the training of a neural network depends 

on which level of damage identification is required [4], but 

it appears that often simple unitary networks are not enough 

for complex pattern recognition tasks. In such cases 

networks can be combined, using different approaches [5]. 

 

Previously SOM and Bayesian networks have been 

implemented in the field of SHM [2, 5, 6, 7, 8, 9, 10, 11], but 

generally these techniques have been used as a complement 

of other methodologies. In [6] a SOM network is considered 

as an accurate classifier of different kind of fault, after a 

detection stage. Also, SOM networks are used to reduce the 

number of input signals without reducing the classification 

accuracy required [7].  

 

Although, Bayesian Networks (BNs) are powerful tools for 

knowledge representation and inference under uncertainties 

in [8] is claimed that BNs present an acceptable performance 

as classifiers in SHM systems. In [9] BNs have been 

complemented with other concepts to structural damage 

localization by using of modal strain energy and frequency 

data, but the damage quantification continues to be a 

challenge. In order to reduce the high computational cost 

that a successful prediction entails, a simplified approach is 

required, seeking a successful methodology with a less 

computational cost. 

In this paper, a comparison between SOM networks and 

Bayesian Networks is presented. Both approaches are used 

as fault predictors in two structures. Simulations show pros 

and cons of SOM networks and Bayesian networks as fault 

diagnosis systems. Finally, a novel approach BAYSOM is 

proposed to improve detection and quantification of 

structural damage. 

 

2.  Theoretical Framework 

2.1. Dynamics of Structures 

The structural dynamics theory states that an undamped 

structure with multiple degrees of freedom has a simple 

harmonic movement without changing the shape of 

deflection, this information consists of N natural 

frequencies, 𝜔𝑟, and N vibrational modes, 𝜓𝑟  ∈  ℝ𝑁0, where 

𝑁0 represents the number of degrees of freedom. These 

modal parameters can be analytically determined in the 

system in time domain, using (1):  

 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = 𝑓(𝑡)                                                           (1) 

 

Where 𝑓, 𝑥 ∈  ℝ𝑁𝑜 , and 𝑀, 𝐶, 𝐾 ∈  ℝ𝑁𝑜𝑋𝑁𝑜 . The mass 

matrix is assumed known with sufficient accuracy from the 

definition of the structure, it is common to neglect the 

damping matrix in civil structures, and the stiffness matrix 

can be determined via the values of elastic modules in the 

structure. 

2.2. Structural Health Monitoring 

 

Structural Health Monitoring (SHM) is a technique to 

monitoring the condition of structural systems using the 

dynamic information of the excited system. Data are 

captured from a non-destructive sensor network to produce 

fault indicators to detect anomalies (damage or degradation) 

caused by deterioration, corrosion, fatigue, chemical 

reactions, moisture, changes in environmental variables and 

physical properties, stress, displacements, strains, 

vibrations, or dislocations in the structure.  

Changes in the spatial model (defects) produce observable 

variations in the dynamic response of the system, the 

diagnosis algorithms are based on tracking those 

fluctuations along the structure. The fault condition in the 

system is obtained comparing the dynamic response of the 

healthy system with the damaged structure. 
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2.3. Bayesian Networks 

 
A Bayesian network is a directed acyclic graph where nodes 

correspond to random variables and arrows correspond to 

the direct influence of one variable on another. For discrete 

random variables, this conditional probability is often 

represented by a table, listing the local probability that a 

child node takes on each of the feasible values – for each 

combination of values of its parents. The joint distribution 

of a collection of variables can be determined uniquely by 

these local Conditional Probability Tables (CPTs). 

BNs are both mathematically rigorous and intuitively 

understandable. They enable an effective representation and 

computation of the Joint Probability Distribution (JPD) over 

a set of random variables [12]. Although the arrows 

represent direct causal connection between the variables 

(Fig. 1), the reasoning process can operate on BNs by 

propagating information in any direction. 

 

 

 
Figure 1 Graph and conditional probability table 

 

A Bayesian network represents a Joint Probability 

Distribution (JPD) between its variables X1, …, Xn by 

means of the chain rule for BNs (2): 

 

𝑃(𝑥1, … , 𝑥𝑛) = ∏𝑃(𝑥𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

𝑛

𝑖=1

                            (2) 

 
Bayesian Networks provide a compact method to specify the 

joint distribution of a cluster of variables. The probabilistic 

terms used in BNs approach are: 

“A priori” probability: It is the probability of a variable in 

the absence of evidence. Knowing “a priori” probability of 

x and the conditional probability 𝑃(𝑦1|𝑥), is possible to 

calculate the probability of 𝑦1 by the total probability 

theorem, as shown in (3): 

 

𝑃(𝑦1) = ∑𝑃(𝑦1|𝑥)𝑃(𝑥)                                                     (3) 

 
“A posteriori” probability of 𝑋 when available evidence “e” 

is calculated as (4): 

 
𝑃∗(𝑥) = 𝑃(𝑥|𝑒)                                                                        (4) 
 

Given the evidence 𝑒 = {𝑦𝑖}  

𝑃∗(𝑥) = 𝑃(𝑥|𝑦) =
𝑃(𝑥)𝑃(𝑦|𝑥)

𝑃(𝑦)
                                           (5) 

We can see it in standard form in (6): 

 

𝑃∗(𝑥) = 𝛼𝑃(𝑥)𝜆𝑦(𝑥)                                                              (6) 

 
Where: 𝜆𝑦(𝑥) = 𝑃(𝑒|𝑥) =  𝑃(𝑦|𝑥)  𝑎𝑛𝑑 𝛼 = [𝑃(𝑒)]−1 

As some variable values are known, it is possible to update 

the value of the rest of the variables. The inference is the 

process to introduce new observations to calculate the new 

probabilities for the rest of the variables. Therefore, the 

inference process corresponds to a posteriori probability 

𝑃(𝑋|𝑦) = 𝑥𝑖 of a set of variables X for a set of observations 

𝑌 = 𝑦𝑗 where “𝑌” is the list of observed variables and “𝑦𝑗” 

corresponds to the observed values: 

The probabilistic networks operate using the Bayes’ theorem 

expressed in (7) as: 

𝑃(𝑥𝑖|𝑦𝑗) =
𝑃(𝑥𝑖)𝑃(𝑦𝑗|𝑥𝑖)

𝑃(𝑦𝑗)
=

𝑃(𝑥𝑖)𝑃(𝑦𝑗|𝑥𝑖)

∑𝑃(𝑦𝑗|𝑥𝑖) 𝑃(𝑥𝑖)
               (7) 

According to Bayes’ theorem given 𝑒 = {𝑦1, 𝑦2} applying 

conditional independence in (8): 

𝑃(𝑦1, 𝑦2|𝑥) = 𝑃(𝑦1|𝑥)𝑃(𝑦2|𝑥) ≡  𝜆𝑦(𝑥) 
 

𝜆𝑦(𝑥) = 𝜆𝑦1(𝑥)𝜆𝑦2(𝑥)                                                          (8) 
 

Bayesian Networks provide two types of inference support: 

predictive support for node Xi , based on evidence nodes 

connected to Xi through its parent nodes (also called top-

down reasoning), and diagnostic support for node Xi, based 

on evidence nodes connected to Xi through its children nodes 

(also called bottom-up reasoning) [13]. 

 

The BN learning problem, which can be stated as follows: 

Given training data and prior information (e.g., expert 

knowledge, casual relationships), estimate the graph 

topology (network structure) and the parameters of the JPD 
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in the BN. The learning is performed assigning a prior 

probability density function to each parameter vector and 

use the training data to compute the posterior parameter 

distribution and the Bayesian estimates. 

2.4. Self-Organizing Maps (SOM) 

 
A self-organizing map (SOM) is a type of neural network 

trained using unsupervised learning to produce a n-

dimensional, discretized representation of the input space of 

the training samples, called a map. The map can be described 

as an array of elementary processors (i, j) arranged in two 

dimensions, which store a synaptic weight vector 𝑤𝑖𝑗(𝑡), 

where {𝑤𝑖𝑗(𝑡); 𝑤𝑖𝑗 ∈ ℜ𝑚 1 ≤ 𝑖 ≤ 𝑛𝑥, 1 ≤ 𝑗 ≤ 𝑛𝑦}.  

 
SOM operate in two modes: training and mapping. Training 

builds the map using input examples; it is a competitive 

process, also called vector quantization, whilst mapping 

automatically classifies a new input vector according to that 

map. A self-organizing map consists of components called 

nodes or neurons, in which each node is a weight vector of 

the same dimension as the input data vectors and a position 

in the map space. The first step in the procedure for locating 

a vector from data space onto the map, it’s to obtain the node 

with the closest weight vector to the data space vector. Once 

the closest node is located it’s assigned the values from the 

data space vector. 

 

The objective of training in the SOM is to produce different 

elements of the network which respond similarly to certain 

input patterns. The weights of the neurons are initialized to 

small random values. The training uses competitive 

learning, when a training example, input vector x, 

{𝑥𝑘 ∥ 1 ≤ 𝑘 ≤ 𝑚} and its own synaptic weight vector 𝑤𝑖𝑗  is 

fed to the network, its Euclidean distance or another criterion 

of similarity to all weight vectors is computed, as shown in 

(9): 

 
𝑑(𝑤𝑔, 𝑥) = 𝑚𝑖𝑛𝑖𝑗{𝑑(𝑤𝑖𝑗 , 𝑥)}                                                 (9) 

 

The neuron with weight vector most similar to the input 

vector is called the Best Matching Unit (BMU). The weights 

of the BMU 𝑊𝑔and neurons close to it in the SOM lattice are 

adjusted towards the input vector. In this manner, each 

neuron acts as a detector of specific behavior, and the 

winning neuron indicates the kind of features or pattern 

detected in the input vector. During training the SOM 

network is a static network that tends to take the shape of the 

cloud of data (training set). 

In the learning phase each neuron of the map tuned to 

different ranges of the input space. The SOM network 

usually consists of a two-dimensional grid of map units, each 

map unit i is represented by a prototype vector 𝑚𝑖 =
[𝑀𝑖1, … . ,𝑀𝑖𝑑] where d is the size of input vector, each unit 

is linked to the adjacent through neighborly relations. The 

process is as follows: SOM network are trained iteratively, 

in each training step the distance between a sample vector x 

of the training set and the vectors of grid of map units are 

calculated and also the Best Match Unit (BMU), which is 

denoted by b is mapped unit closest to the prototype vector 

x: 

∥ 𝑥 − 𝑀𝑏 ∥ = min
𝑖

 {∥ 𝑥 − 𝑚𝑖 ∥}                                        (10) 

Prototype vector is updated, the BMU and its topological 

neighbors are moved closer to the input vector in input 

space, the update rule for vectors is: 

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡)ℎ𝑏𝑖(𝑡)[𝑥 − 𝑚𝑖(𝑡)]                (11) 

Where t is the time, 𝛼(𝑡) is the adjustment coefficient, 

ℎ𝑏𝑖(𝑡) is the centering function of the winning unit: 

ℎ𝑏𝑖(𝑡) = exp (
∥ rb − ri ∥2

2σ2(t)
)                                               (12) 

Where 𝑟𝑏 𝑎𝑛𝑑 𝑟𝑖  are the position of b and i neurons in the 

SOM network. Both functions 𝛼(𝑡) 𝑎𝑛𝑑 𝜎(t) decrease in 

time. 

The error can be observed from the following expression: 

 

𝐸 = ∑∑ ℎ𝑏𝑗

𝑀

𝑗=1

𝑁

𝑖=1

∥ 𝑥𝑖 − 𝑚𝑗 ∥                                                (13) 

Where N is the number of training iterations and M is the 

number of map units. 

The neighborhood function ℎ𝑏𝑖 is centered in the unit b, 

which is the BMU of the input vector 𝑥𝑖 , and is assessed on 

each unit j.  

 

3. Analyzed Structures 

In this paper, a simply supported beam and a truss are used 

to evaluate the performance of the SOM and BNs in fault 

detection and diagnosis. The parameters of the beam, shown 

in Fig. 2, are: length L=6 m, equally discretized in 10 

elements, as shown in Figure 2, A= 0.12 m2, Iz=1.6x10-3 m4, 

built in concrete of 3000 Psi, E= 2.153x1010 Pa, and mass 

per unit volume = 2402.769 kg/m3. 

 
Figure 2 Simply supported beam 

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Vector_quantization
http://en.wikipedia.org/wiki/Competitive_learning
http://en.wikipedia.org/wiki/Competitive_learning
http://en.wikipedia.org/wiki/Euclidean_distance
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In Figure 3 is shown the truss used in this study. The 

parameters of the truss are: 13 elements, with a height of 2.4 

m and a total length of the base of 7.28 m, horizontal 

elements of 1.82 m of length are evenly spaced, as shown in 

Figure 3, A= 4x10-4 m2 and steel material A-36 with 

E=2.0x1011 Pa. 

 

Figure 3 13th elements’ truss 

 

The beam and the truss were discretized as shown in Figures 

(2-3). OpenSees® software is used to analyze and describe 

the dynamic behavior, which is condensed in a vector 𝛼𝑖.The 

vector 𝛼𝑖 contains the first four natural frequencies and the 

vibrational modes of the analyzed structures represented as 

the position in the vertical axes of each node in the 2-d graph 

shape of each mode. 

 

4. Implementation and Experimentation 

 
The dynamic responses of the structures, frequencies and 

modal information, are determined using the free software 

OpenSees®. Using the follows information: 

 

 Reductions of E (Elastic modulus) between 0 -     

30%. 

 Linear response of the structure. 

 No damping is considered. 

 
For the study of the fault conditions, the damage is emulated 

in MATLAB® decreasing the value of E in one or multiple 

elements of the structure. This new version of the structure 

is introduced in OpenSees®, for determining the dynamic 

response. This information is used for training propose and 

validation using the SOM and BN approaches. In the case of 

the beam and the truss, the input vector includes modal 

information of the first four vibrational modes of the 

structure, as it was described in [14].  

Since, SOM networks provide the probable E values for each 

element of the structure and BNs determinate the most 

probable damage category of this element; different 

indicators are used for performance evaluation of SOM and 

Bayesian networks. 

4.1. Bayesian Methodology 

A new approach is proposed using BNs for monitoring the 

structure. The predictive procedure is implemented in 

MATLAB® environment.  

The Bayesian network is trained to obtain the parameters 

such as: nodes, connections and probabilistic parameters. 

The Bayesian inference algorithm provides the probability 

values of damage occurrence on each element of the 

structure for each test scenario.  

 
Parametric Training  

1. The entry vector 𝛼𝑖 is organized as follows in (14): 

𝛼𝑖 = [𝐹𝑖1, 𝛷𝑖1, 𝐹𝑖2, 𝛷𝑖2, 𝐹𝑖3, 𝛷𝑖3, 𝐹𝑖4, 𝛷𝑖4]                           (14) 

 

𝛷𝑖𝑗 = [𝜑𝑖𝑗1, 𝜑𝑖𝑗2, 𝜑𝑖𝑗3, … , 𝜑𝑖𝑗𝑚]     𝑖 = 1…… …𝑛 

Where i is the damage scenario, n represents the number of 

analyzed scenarios, Fij is the natural frequencies of each 

damage scenario i in each vibrational modes j and Φij is a 

vectors for each vibrational mode containing the 

displacements φijk of the nodes, where k varies from 1 to the 

total number of nodes m. The vector αi is linked with the 

damage distribution βi (15). 

𝛽𝑖 = [𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, … , 𝑋𝑖𝑒]                                                    (15) 

and E in normal conditions, where ℎ varies from 1 to the 

number of elements of the structure (e). Additionally, vector 

𝛽𝑖 is simplified to a binary form (𝜉𝑖), where 𝑋𝑖ℎ is changed 

by 𝑆𝑖ℎ where: 

 
  
𝑆𝑖ℎ

  {
0.7 ≤ 𝑋𝑖𝑗 ≤ 0.85       0  "𝐹𝑎𝑙𝑠𝑒"

 0.85 < 𝑋𝑖𝑗 ≤ 1              1  "𝑇𝑟𝑢𝑒"
 

                  
 

 

Where “false” denotes damage 

The simplified vector  𝜉𝑖 is shown as follows in (16): 

𝜉𝑖 = [𝑆𝑖1, 𝑆𝑖2, 𝑆𝑖3, … , 𝑆𝑖𝑒]                                                       (16) 

2. A parameter 𝛹𝑖𝑗  based on the modal information is 

determined to label each damage scenario: 

𝛹𝑖𝑗 = (∑ 𝐹𝑖𝑗 . 𝜑𝑖𝑗𝑘
𝑚
𝑘=1 )

2
 | Beam 

 𝛹𝑖𝑗=A𝑏𝑠(∑ 𝐹𝑖𝑗 . 𝜑𝑖𝑗𝑘
𝑚
𝑘=1 ) | Truss 

 

Then a new vector for each mode of vibration is created as 

follows in (17): 
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𝑉𝑖𝑗 = [𝛹𝑖𝑗 , 𝜉𝑖]                                                                            (17) 

3. The vectors 𝑉𝑖𝑗 are arranged in a matrix 𝑀𝑗organized 

according to 𝛹𝑖𝑗, where vectors 𝑉𝑖𝑗 with higher 

numerical values of  𝛹𝑖𝑗  are translated to the top of the 

evidence matrix 𝑀𝑗 , for instance: 

𝑀𝑗 =

[
 
 
 
 
 
𝑉5𝑗

𝑉7𝑗

⋮
𝑉3𝑗

𝑉1𝑗]
 
 
 
 
 

  ;  𝛹5𝑗 > 𝛹7𝑗 > ⋯ > 𝛹3𝑗 > 𝛹1𝑗 

This matrix 𝑀𝑗 is divided in a z number of evidence sub-

matrices 𝑁𝑗𝑧
 according to numerical proximity between 𝛹𝑖𝑗  

values: 

𝑁𝑗1 = [
𝑉5𝑗

𝑉7𝑗
] , …        , 𝑁𝑗𝑧 = [

𝑉3𝑗

𝑉1𝑗
]  

The z value depends of the number of evidence nodes that 

will be used in the Bayesian network, because each evidence 

sub-matrix originates one conditional probability table, 

which is related with one evidence node.  

 

4. Conditional Probability Table (CPT). 

The CPT matches the damage probability of the element to 

its neighborhood elements trying to recreate a real situation 

of dynamic response variations around the location of the 

fault. This organization creates 3 graphs to reduce the 

complexity of the calculation of a posteriori probability 

 

Table 1 Example of conditional Probability table 
 

𝑆𝑖1 𝑆𝑖2 𝑆𝑖3 Yes Not Total Yes% Not% 

0 0 0 0 15 15 0 1 

0 0 1 2 13 15 0,13 0,87 

0 1 0 0 15 15 0 1 

0 1 1 4 11 15 0,27 0,73 

1 0 0 0 15 15 0 1 

1 0 1 6 9 15 0,4 0,6 

1 1 0 2 13 15 0,13 0,87 

1 1 1 1 14 15 0,07 0,93 

Source: the author 

 

Each table contains information of its corresponding sub-

matrix 𝑁𝑗𝑧. The table is organized according to the different 

combinations of damage based on the 𝑆𝑖𝑒  values, so each 

combination of damage has associated a number of 𝜉𝑖 

vectors. Then, it is possible to correlate the fault condition 

with the 𝛹𝑖𝑗  values, used as reference in the construction of 

the CPT.   

 

5. The Bayesian network structure is determined with the 

definition of structural elements as parents and ranges of 

probabilities values as children. The training 

corresponds to the information contained in the CPT’s, 

which provides the probability values to its related 

evidence node (probabilistic parameters). 

 

6. The classification process of a new input vector in the 

most probable CPTs is performed by the value of 𝛹𝑖𝑗, the 

classification actives the evidence node related with each 

CPTs where the new input vector is stored, which allows 

to obtain probabilities about presence of damage in each 

analyzed element using Bayesian inference. 

4.2. SOM Methodology 

In this research the U matrix is used to evaluate the SOM 

training. The U matrix indicates the synaptic weights of the 

neural network as a distance from one neuron respect to 

another, showing the training quality of the network, the 

error rate of proximity and finally, the position of the 

winning neuron. SOM approach is implemented as follows: 

 

1. Generation of the training set, with random damage 

scenarios in the complete structure (total uncertainty). 

2. Setting the feature vector using modal information for 

each fault scenario, including the Minimum Euclidean 

Distance (MED) and a second criterion as follows:: 

𝑀𝐸𝐷𝑖𝑗 = ∑ (𝐹𝑖𝑗 . 𝜑𝑖𝑗𝑘)2𝑚
𝑘=1      𝑀𝐸𝐷𝑀𝑖𝑗 =

(∑ 𝐹𝑖𝑗 . 𝜑𝑖𝑗𝑘
𝑚
𝑘=1 )

2
 

3. Reorganization and normalization of eigenvectors and 

eigenvalues as the training set. 

4. Labeling the vectors of each scenario with the 

corresponding damage scenario for each element 

(percentage of damage assigned to each element). 

5. SOM training using U matrix, the quantization error and 

topological error as a performance criterion. 

6. Validation. 

7. If the response of the trained SOM to the validation set 

is not acceptable a new training is performed varying 

training parameters such as: time in ages, topology, size, 

unit radio.  
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A set of 1000 cases of study are used for training process. 

Each case of training corresponds to a faulty condition. Fault 

conditions in the structure are emulated varying the number 

of damaged element and the level of severity.  

In order to assess prediction capabilities a set of validation 

is used. Each faulty scenario is tested 6 times to verify the 

repeatability of the proposed SOM network after the training 

stage. 

 

5. Simulations and Results 

5.1. Bayesian Results 

 
The performance of the proposed Bayesian network is 

evaluated using the following criteria: 

 

Significant damage [0.7E-0.85E]. 

Tolerance range [0.83E - 0.88E]. 

 
The experimental results are shown in Figures 4, where 

significant error is when the fault condition is identified but 

the damage value is out of the tolerance range, negative 

false, if the element is assumed without damage when the 

fault condition is presented, and serious errors, when the 

negative false prediction exhibits high damage values. 

A training set of 1000 damage scenarios is used in the 

training stage. In Figure 4 is shown the statistical behavior 

of the Bayesian prediction using the cross-validation set 

composed by 50 different structures under diverse damage 

conditions 

 
 

Significant 

errors 

24

% 

Negative 

false 

15

% 

Serious 

errors 

11

% 

  

    

      

Figure 4 Bayesian results for beam 

5.2 SOM Results 

 
In this study x denotes the relation between the simulated E 

and E in normal conditions. Additionally a faulty condition 

is considered if 0.7 < x < 0.85, and an undamaged element if 

0.85 < x < 1. 

A correct prediction is assumed when x calculated is around 

of + 0.03 from real value of x, and an approximate prediction 

if it ranges + 0.05, identification of condition (only fault 

condition is identified), positive false (prediction of damage 

in an undamaged element), negative false (prediction of 

healthy condition in a damaged element). 

The SOM methodology is susceptible to be affected by 

duplicity in the dynamic response, i.e. the same dynamic 

response for a different fault scenario. Therefore, SOM 

performance depends on the ability to limit the range of 

values where network can be trained. 

Figure 5 shows the low performance of the SOM network 

evaluating the condition of different scenarios in this case is 

shown the statistical behavior in the diagnosis of 50 different 

damage scenarios.  

 

 
Figure 5 SOM results for beam 

 
As described above SOM and Bayesian networks present a 

relatively acceptable performance in fault detection and 

diagnosis in structures using the dynamics characteristic as 

a fault indicator. A novel approach BAYSOM is proposed to 

enhance the fault detection and diagnosis performance based 

on the advantages associated to SOM and Bayesian 

networks 
 

6. Baysom a new Approach 

 
In this novel approach the fault detection system is divided 

in two stages. In the first stage, the BNs is used to predict 

the element under fault condition and estimates the range of 

variation of the elastic modulus E, this process is conducted 

as it was specified in BNs’ Training, but probabilities about 

the presence of damage in each element are modified to the 

most probable range of E variations (where that element is 

located). The first stage is achieved because the criterion 

used for simplification from vector 𝜷𝒊 to vector 𝝃𝒊  can be 

manipulated, for instance: if 0.7 < x < 0.75, then 𝑺𝒊𝒉= 0, and 

if 0.75 < x < 1, then 𝑺𝒊𝒉= 1. The process of variation in the 

simplification criterion provides the range of E variations 

with the highest probability values for the analyzed element. 

In the second stage, the SOM network is fed with the 

intervals obtained in the first stage to predict the change of 

E. 
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Figure 6 BAYSOM methodology diagram 

 
BAYSOM network is evaluated following the next criteria: 

 Correct prediction (real damage value, located into the 

range). 

 Approximate prediction (real damage value, located to 

+ 0.03 to range limit). 

 Error (real damage value, out of range). 

 

In Figure 7 can be observed the results obtained using the 

first stage of the BAYSOM approach. In this Figure is noted 

the performance of the proposed methodology in 

determining the faulty element and the variation range E. 

 

As shown in Figure 8 the correct prediction of BAYSOM 

methodology is promising compared with SOM and 

Bayesian networks dealing individually, achieving an 80% 

of success in the detection of the fault conditions. Although 

the percentage of errors is around 20% only less than 5% 

correspond to negative false. 

  

 

 

Figure 7 BAYSOM’s results for damage ranges in the 

beam 

 

Figure 8 BAYSOM’s results for fault conditions in the 

beam 

 

 

Figure 9 BAYSOM’s results for damage ranges in the Truss 

In Figure 9 can be observed the prediction of the 

implemented approach used in the truss. Simulation results 

in Fig. 10 shows a reduction in performance of the 

BAYSOM fault detection system, this phenomenon can be 

attributed to a limited number of training cases available for 

describing the complete dynamic response (greater amount 

of damage scenarios) due to the high dynamic complexity of 

the truss. 
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Figure 10 BAYSOM’s results for fault conditions in the 

truss 
 
7. Conclusions 

In this paper, a fault detection system for a truss and a beam 

is studied. A Bayesian network and a SOM network are used 

for fault location and fault severity estimator. Simulations 

show a computational time ratio of around 2:1 between 

Bayesian network and SOM trainings. The experimental 

results for the beam show success rate of 53.8% for SOM 

network and 66% for Bayesian network respectively. The 

results obtained for the truss were not considered because 

the poor performance of both approaches. So, as a 

conclusion, the use of a simple approach i.e. SOM or 

Bayesian networks presents an inadequate performance as 

predictors of the actual condition of the studied structures. 

Based on the mentioned above, a novel approach is 

proposed, the BAYSOM methodology, which combines the 

ability of Bayesian inference to obtain the most probable 

ranges of damage value with the SOM network’s ability to 

find the closest value of E variations using a trained 

database.   

In the case of the beam, the success rate obtained by 

implementing the BAYSOM methodology is 90% for range 

identification and 80% for damage value estimation. For the 

truss the success rate is 63% for range identification and 

62% for damage estimation. Therefore, a reduction of 

performance is presented as complexity of the structure 

increases. In order to improve the operation a more 

extended database is needed. 

Based on simulation results, high hits percentage, and its low 

computational cost BAYSOM can be considered as an 

efficient theoretical approach in the field of simulation and 

detection of structural faults. 
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