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Abstract

According to the semantic view, a theory is characterized by a class of mod-
els. In this paper, we examine critically some of the assumptions that underlie
this approach. First, we recall that models are models of something. Thus we
cannot leave completely aside the axiomatization of the theories under consider-
ation, nor can we ignore the metamathematics used to elaborate these models,
for changes in the metamathematics often impose restrictions on the resulting
models. Second, based on a parallel between van Fraassen’s modal interpre-
tation of quantum mechanics and Skolem’s relativism regarding set-theoretic
concepts, we introduce a distinction between relative and absolute concepts in
the context of the models of a scientific theory. And we discuss the significance
of that distinction. Finally, by focusing on contemporary particle physics, we
raise the question: since there is no general accepted unification of the parts
of the standard model (namely, QED and QCD), we have no theory, in the
usual sense of the term. This poses a difficulty: if there is no theory, how
can we speak of its models? What are the latter models of? We conclude by
noting that it is unclear that the semantic view can be applied to contemporary
physical theories.

1. Considerations on the semantic approach

As is well known, the motto of the semantic approach to scientific theories is that
a theory is characterized by a class of models. The word “model” is, of course,
used in distinct ways in the current literature. According to Suppes, the main
forerunner of the semantic view, the various kinds of ‘models’ we consider, e.g.
in biological and social sciences, in applied mathematics and in other areas, can
be reduced to set-theoretic models, that is, to mathematical structures satisfy-
ing the theory’s postulates (or equivalently, satisfying the set-theoretic predicate
that axiomatizes the theory). As he says, “a possible realization of a theory is a
set-theoretic entity of the appropriate logical type” (Suppes 2002, p. 21). Van
Fraassen acknowledges this point by noting that “[a]ny structure that satisfies
the axioms of a theory [. . .] is called an model of that theory” (van Fraassen 1980,
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p. 43). However, he seems to take the point back, when he asserts that “[t]he
semantic view of theories makes language irrelevant to the subject”, and that
Suppes’ idea is that “to present a theory is to define a class of its models directly, with-
out paying any attention to questions of axiomatizability” (van Fraassen 1989,
p. 222, emphasis in the original).

But it’s important to acknowledge that models are models of something, and
that in Suppes’ approach (which van Fraassen endorses in part), the models in
question are models of a set-theoretic predicate (a suitable formula written in
the language of set theory) which stands for the conjunction of the theory’s pos-
tulates. Suppes’ slogan is that “to axiomatize a theory is to define a set-theoretic
predicate” (2002, p. 30). Thus, language is of fundamental importance in this
approach, and so are the theory’s postulates. Without the latter, there are no
models of a theory, for there are no models tout court. The models must be col-
lected in some way to form the extension of the relevant set-theoretic predicate.
In general, we have a proper class whose elements are precisely the models of the
predicate.

Although the point can be resisted, it is generally agreed by the defenders
of the semantic view that the relevant models are mathematical structures. But
mathematical structures are built in a suitable mathematical framework. De-
pending on the theory we are considering, we have several possible alternatives
for this (meta)mathematical framework, such as higher-order logics or category
theory. However, typically these mathematical structures are set-theoretic, that
is, built in a certain set theory. Usually, the framework that is employed is infor-
mal (non-axiomatized) set theory. But if pressed, the scientist can turn, say, to
ZF (Zermelo-Fraenkel) set theory. (By the way, this point was made by Patrick
Suppes himself in conversation with one of us, DK.)

Thus, we should acknowledge that the models of a certain scientific the-
ory T are usually built in a certain set theory. For the sake of precision and
without loss of generality, we can assume that set theory to be ZF. In this case,
“classical particle mechanics” (that is, the models of a classical particle mechan-

ics) emerges from structures of the form 〈P,−→s ,m,−→f ,−→g 〉, where P is the set of
“particles”, −→s is the position function, m is the mass function,

−→
f stands for the

internal forces, and −→g represents the external force function—all of them obey-
ing certain postulates (Suppes 2002, pp. 319ff). As for non-relativistic quan-
tum mechanics, a mathematical structure that can be taken as a model of this
theory is: 〈M0, S,Q0, . . . ,Qn, ρ〉, where M0, the mathematical part of the struc-
ture, is a model of standard functional analysis, while 〈S,Q0, . . . ,Qn〉 is the “op-
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erative part” of the structure, and ρ is an interpretation function that assigns
an element of M0 to each element of the operative part—once again, each of
these components also obey specific postulates (Dalla Chiara and Toraldo di
Francia 1981, p. 85). As we see, there is sensitivity to language, and there is a
(meta)mathematical framework in which these structures are built.

But this approach faces considerable problems, particularly if we take into ac-
count contemporary physics. Here, we will only raise the issues without detailed
discussion. Our first problem concerns the mathematics used in the metatheory;
that is, the set theory we employ to build the models of a given theory. Let’s
consider an example. An important concept in quantum mechanics is that of an
unbounded operator. For instance, the position and momentum operators in the
Hilbert space L2(R) of the equivalence classes of square integrable functions are
unbounded; that is, if A is an operator, then for any M > 0 there exists a vector
α such that ‖A(α)‖ � M‖α‖. However, consider the theory ZF+DC, where DC
stands for a weakened form of the axiom of choice entailing that a ‘countable’
form of the axiom of choice can be obtained. (In particular, if {Bn : n ∈ ω} is a
countable collection of nonempty sets, then it follows from DC that there exists
a choice function f with domain ω such that f(n) ∈ Bn for each n ∈ ω.) It can
then be proven, as Solovay showed, that in ZF+DC (which is supposed to be
consistent) the proposition “Every subset of R is Lebesgue measurable” cannot
be disproved. This proposition is false in standard ZFC. The same happens with
the proposition: “Each linear operator on a Hilbert space is bounded” (Mait-
land Wright 1973). This kind of result poses a difficulty to the defenders of the
semantic view: when we speak of the models of a scientific theory, such as quan-
tum mechanics, which metamathematics should we use to define its models?
Presumably, it cannot be Solovay’s model in ZF+DC, since we need unbounded
operators. So, the choice of a suitable metamathematics is crucial.

Here is another example. In the standard Hilbert space formalism, we deal
with bases for the relevant Hilbert spaces. More specifically, we deal with or-
thonormal bases formed by eingenvectors of certain Hermitean operators. This
is possible because we can prove, using the axiom of choice (which is part of the
metatheory used here) that any Hilbert spaceH has a basis. Moreover, it can also
be shown that each basis has a specific cardinality, which is the same for all bases
of H (this is defined to be the dimension of the space). But in certain set theories
in which the axiom of choice does not hold in full generality, such as in Laüchi’s
permutation models, we obtain: (a) vector spaces with no basis, and (b) a vector
space that has two bases of different cardinalities (Jech 1977, p. 366). Now, if a
vector space has no basis, it cannot be used as part of the standard formalism of
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quantum mechanics. The latter formalism presupposes the availability of suitable
bases. As a result, the formalism depends crucially on the metamathematics that
is used.

It should be noted that, despite all the discussion about the concept of ‘model’
of a physical theory in the literature, the precise characterization of this concept
remains elusive. Model theory, which has been the inspiration for much that has
been said on models of scientific theories in general, articulates the notion of a
model for formal first-order axiomatic systems only. Due to the fact that funda-
mental theorems, such as compactness, completness, and Löwenheim-Skolem,
do not hold in higher-order logics (with standard semantics), we can say that
there is no higher-order model theory. But scientific theories, in general, are
described only informally (consider, for instance, the theories in biology), and in-
volve more than first-order languages. As a result, we don’t have a corresponding
well defined “model theory” in such cases.1 Despite this, a model for a scientific
theory in standard texts on the semantic view, has been typically taken in its
“first-order” sense, roughly, as a set-theoretic structure that satisfies the axioms
of the theory. Now, suppose that we are considering theories that are stronger
than first-order theories. Which metamathematical framework should we use to
describe their models? If we do not specify the metatheory that we are using, we
cannot guarantee that that certain entities—such as certain models—that we
assume that exist do in fact exist. Furthermore, important concepts, such as the
concept of truth (Tarskian or not), will depend on the metamathematics too. To
know the features of the metamathematics that is used in the understanding of
scientific theories seems to be central in philosophy of science.

2. Skolem’s and van Fraassen’s paradox

Let us suppose that we have somehow solved the problem just raised, and so, we
have offered grounds to choose a suitable set theory, such as ZF (more precisely,
a particular model of ZF), as our metamathematical framework.2 Thus, we may
assume that we have a set-theoretic predicate and a class of models for this pred-
icate. We can now raise a problem related to Skolem’s concept of relative and
absolute concepts in set theory. But let us first contextualize the problem.

In the 1920’s, Thoralf Skolem realized that there are concepts that are, as it
were, the same in all models of, say, ZF (which is supposed to be consistent). For
instance, the concept of ‘ordinal’ does not change from model to model as the
concept of ‘cardinal’ does. For example, if ZF is formulated as a first-order theory
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(as Skolem himself supposed), if consistent, it will have a countable model due
to the Löwenheim-Skolem theorem. But, in this model, the set of real numbers,
which can be constructed in ZF, must be countable—a fact that apparently con-
tradicts Cantor’s theorem, according to which there is no bijection between the
set of real numbers and the set of natural numbers. However, as Skolem himself
noted, this result does not lead to a “real” paradox, for the bijection must ex-
ist outside the countable model (Skolem 1922). This result, known as “Skolem’s
paradox”, shows that the set of real numbers may have different cardinalities de-
pending on the model we consider, and this happens in general for other sets.
The concept of cardinal is relative (to the model under consideration), while the
concept of ordinal (which is “the same” in all models) is absolute.

We will not examine here the formal definitions, keeping the discussion at
an intuitive level. But let us just give a short account on the relevant concepts
by considering a countable transitive model M of ZFC (Zermelo-Fraenkel set
theory with the axiom of choice). A formula ϕ(x, y) is absolute if for a, b ∈ M,
we have that M |= ϕ(a, b) iff ϕ(a, b) is in fact true (Burgess 1977, p. 408). For
example, the following formulas are absolute: y =

⋃
x, z = x ∩ y, z = x ∪ y, and

z = {x, y} (these expressions can be rewritten as formulas of ZFC, satisfying the
required condition). However, y = P(x) is not absolute. After all, y may be the
set of all subsets of x in the model M, without being the true power set of x. So,
card(x) < card(y) is not absolute, for even if there is no one-one mapping of x
onto y in M, this does not imply that the mapping does not exist (recall Skolem’s
paradox). How can these points be applied to our discussion of scientific theories
and their models?

To translate these points, that make sense in a precise context, to a general
discussion of theories and models in science is not a straightforward problem.
But, as will become clear, we can explore certain aspects of the technical re-
sults mentioned above. Let’s consider a situation that is similar to the one above
involving models of ZF. After having presented his modal interpretation of quan-
tum mechanics, Bas van Fraassen addresses the problem of identical particles in
quantum physics, which he regards as one of the three main issues in the philo-
sophical discussion on quantum mechanics (see van Frassen 1991, p. 193). And
he notes: “identical particles [. . .] are certainly qualitatively the same, in all the
respects represented in quantum-mechanical models—yet still numerically dis-
tinct” (1991, p. 376). In a previous paper, he was still more explicit, insisting that
“if two particles are of the same kind, and have the same state of motion, nothing
in the quantum-mechanical description distinguishes them. Yet this is possible.”
(van Fraassen 1984)
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Van Fraassen’s quotations are intriguing. Particles of the same kind and in
the same state of motion are ‘identical’, in the physicists’ jargon, and accord-
ing to their standards, nothing can distinguish them. So, if they cannot be
distinguished in the quantum-mechanical formalism, how can they still be dis-
tinguished at all? The answer, we suggest—following the parallel case made by
Skolem in set theory—is that the particles can be distinguished outside the frame-
work of quantum mechanics. But what does this mean? As we have seen, in the
foundations of set theory, considerations regarding what holds inside or outside a
certain model, are quite common. But can we make sense of this way of speaking
in philosophy of science as well?

In order to answer this question, recall that van Fraassen’s modal interpre-
tation of quantum mechanics takes quantum propositions as modal statements,
which give “first and foremost about what can and what must happen, and only
indirectly about what actually does happen” (van Fraassen 1980). In other words,
the modal account, by offering an interpretation of quantum mechanics, spells
out how the world could be if quantum mechanics were true (van Fraassen 1991,
p. 242). To motivate his proposal, van Fraassen recalls one of the most intriguing
features of quantum physics, namely, the sense in which quantum mechanics is
an indeterministic theory. Although the dynamics of an isolated system evolves
according to Schrödinger’s equation (hence deterministically), the system as a
whole cannot be analyzed in terms of its component parts. So, apparently, the
quantum mechanical state of the whole system contains only incomplete infor-
mation about the system. Bohr’s proposal, recalls van Fraassen, emphasizes that
it is still possible to have complete information about the system, given that the
states of the system’s components and the state of the whole system do not de-
termine each other (van Fraassen 1980). As a result, on the basis of the state of
a complete system X+Y, we can in general ascribe at most mixed states to X and
Y, but from them nothing can be said back about the state of the whole system.
As van Fraassen notes:

[I]f we can predict the future states of an isolated system on the basis
of its present state [by means of Schrödinger’s equation], then how can
we be ignorant about the future events involving its components unless
the information in those total states is incomplete? For surely any true
description of a component is a partial but true description of the whole?
(ibid.)

Van Fraassen’s answer is obtained from a distinction between quantum dy-
namical states and experimental events. The former are what a vector or a sta-
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tistical operator represents. They are things completely embedded in the theory,
whose evolution is governed by dynamical laws. In other words, we can say that
dynamical states are described in the formalism of quantum mechanics. Events,
on the contrary, are extra-theoretic entities that satisfy the probability calculations.

The same conceptual distinction can be drawn by distinguishing between state
attributions and value attributions of a physical system. The former is a theoretic
construct, and part of the challenge involved in theory’s construction depends
upon a proper representation of these states. Value attributions, in turn, express
values that an observable actually have. Since the point is important for our
argument, let us consider it in more detail.

A value state is specified by stating which observables have values and what
they are. A value-attributing proposition then states that an observable m actu-
ally has a value in a (Borel) set E. (In symbols, 〈m,E〉.) The connection between
them is that value states are truth-makers of value attributing propositions (van
Fraassen 1991, pp. 275–6). On the other hand, we have the dynamic state,
which states how the system will evolve, either in isolation or in interaction with
another system. A state-attributing proposition then states that a measurement
of an observable m must have a value in a (Borel) set E. (In symbols, [m,E].)
Again, dynamic states and state-attributing propositions are connected by the
fact that the former are what make the latter true. Now, the crucial feature
of the modal account is to distinguish value- and state-attributing propositions.
The motivation for this distinction comes from difficulties faced by the standard
interpretation of quantum mechanics, as articulated by von Neumann, for not
distinguishing them (see van Fraassen 1991, and Bitbol 1996).

Von Neumann’s interpretation of quantum mechanics identifies these two
concepts. After all, not only von Neumann considers that a system can be said to
posses a value of a certain variable when it is in an eigenstate of the correspond-
ing observable, but he also accepts that if the state vector is not an eigenstate of
some observable, then it has no value at all (van Fraassen 1991, and Bitbol 1996,
p. 149). In this case, the system is supposed to be characterized by a well-defined
value of the observable when the probability is 1. But if this probability is not 1,
then the observable is supposed to have no value at all. To remove this disconti-
nuity, van Fraassen offers an account according to which probability ascriptions
are not equivalent to value ascriptions (1991).

On von Neumann’s interpretation, attributions of values and classification
of states are closely related: an observable B has value b if and only if a B-
measurement is certain to have outcome b (where b is a real number). The
problem here is that in order to accommodate states for which measurement has
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uncertain outcomes, von Neumann made a radical move: if the outcome of a
measurement of B is uncertain, B has no value at all (van Fraassen 1991, p. 274).
To avoid this answer, the modal interpretation introduces the distinction between
values and states. With this distinction in place, the introduction of ‘unsharp’
values of observables is allowed. And this is how the possibility of uncertain
outcomes in measurement can be accommodated.3 As van Fraassen points out
(1991, pp. 280–1), if a physical system X has dynamic state (represented by an
operator) W at a time t, the state-attributions [M,E] which are true are those
such that Tr(WIME ) = 1.4 As opposed to state-attributions, value-attributions
cannot be deduced from the dynamic state. But, according to van Fraassen, they
are constrained in three ways:5 (i) If [M,E] is true, so is the value-attribution
〈m,E〉; that is, observable M has value in E; (ii) all true value-attributions could
have probability 1 together; and (iii) the set of true value-attributions is maximal
with respect to feature (ii) (see van Fraassen 1991, p. 281). So, the assignment
of truth-conditions to state- and value-attributing propositions is crucial to spell
out the difference between them (the former, but not the latter, can be deduced
from the dynamic state).

To sum up, there is an important distinction between state attribution and
value attribution, or between states and events, and this distinction cannot be
reduced to something more basic. States, as already noted, are described in the
scope of (the formalism of) quantum mechanics by vectors of an appropriate
Hilbert space, while events are not. After all, events are statements such as:
Observable B pertaining to system X has value b, and such events are described if
they are assigned probabilities, but “they are not the same thing as the states
which assign them probabilities” (van Fraassen 1991, p. 279).

The distinction between states and events is similar to the distinction be-
tween absolute and relative notions in set theory discussed above, at least in the
following way: we are contrasting intra-theoretic properties with properties that
hold outside the models under consideration. It’s curious that when Skolem in-
troduced his ‘paradox’, he intended to use it to show the inadequacy of set theory
as a foundation for mathematics. The outcome, however, was precisely the oppo-
site. His result was incorporated as part of the rich conceptual framework offered
set-theoretic notions. Similarly, van Fraassen developed the modal interpretation
of quantum mechanics as part of a defense of an empiricist view. In the end, how-
ever, the modal interpretation became part the revival of realist interpretations
of quantum theory.

It should now be clear that both in the philosophy of science and in the foun-
dations of set theory there is room for discussing what holds “inside” a particular
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model (or formalism) and what holds “outside” the model (formalism). If a the-
ory is presented as a class of models, it makes perfect sense to ask whether there
are concepts that remain the same in all models, and concepts that change from
model to model; that is, that have a certain extension “inside” a model, but a
different one in another model or when considered outside the model.

To begin the search for examples, let’s examine a tentative case. Consider the
concept of indistinguishable (or indiscernible) object. The idea of indiscernibility
is of fundamental importance in contemporary physics (for a historical account
and further discussion, see French and Krause 2006). Standard mathematics and
classical logic imply that every object is an individual, in the sense that each
object can always be distinguished from any other.6 As a result, to accommodate
indistinguishable objects some mathematical trick needs to be introduced.

In quantum physics, this is done by imposing some kind of symmetry con-
dition. Suppose we are to describe how two identical bosons, 1 and 2, can be
distributed in two possible states, A and B. As is well known, the vectors in
the relevant Hilbert space are |ψA

1 〉|ψA
2 〉, which states that both bosons are in A;

|ψB
1 〉|ψB

2 〉, which states that both are in B, and 1√
2 |ψA

1 〉|ψB
2 〉 + 1√

2 |ψA
2 〉|ψB

1 〉, which
states that one of them is at A and the another is in B. Thus, the indistinguisha-
bility between 1 and 2 (in the third case) emerges from the symmetry of the
function, which is invariant by permutations of the labels. Some people claim
that the individuality of quantum objects is then lost. According to our point of
view, there is nothing to lose, for in one of the possible approaches to the subject,
these objects do not have identity to begin with (see French and Krause 2006).
The artificiality of the problem is that these objects were first assumed to be in-
dividuals by their labels 1 and 2. Thus, by an adequate choice of the relevant
vectors, we have made them indiscernible. However, the objects cannot be said to
be indiscernible outside the framework, since we can distinguish them—e.g., by
their labels 1 and 2. In this way, the notion of indistinguishable object seems to
be relative.

The mathematical trick we used consists in limiting the discourse to the scope
of a certain set-theoretic structure (as we saw, the models of quantum physics can
be taken to be such kind of structure). We then consider as indiscernible those
objects that are invariant by the automorphisms of the structure. Now, in ZF any
structure can be extended to a rigid structure, that is, to a structure where the
only automorphism is the identity function. Hence, in the rigid structure (the
whole ZF “model” Z = 〈Z, ∈〉, seen as structure, is rigid), any object is an indi-
vidual. In short, there are no truly indiscernible objects in standard mathematics
(and logic).
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Of course, we need to find more conclusive examples of absolute and relative
concepts in particular scientific theories. And to do that, the first step is to
characterize the relevant concepts in a precise way. Since the present paper is
just a preliminary piece, in which we just outline the main problems, we leave
the emerging details for another occasion.

3. Driving without knowing how the car works

In discussing whether quantum field theory (QFT) needs a foundation, the Nobel
Prize winner Stanley Lee Glashow notes that, for many particle physicists, QFT is
just a useful tool, which is used without much concern for its logical foundation.
And he suggests that physicists generally work just like someone who “drives
without knowing how the car works” (Glashow 1999, p. 77). The link between
using a mathematical model and establishing it as a theory stricto sensu is clearly
described by him as follows:

[A] theory cannot become an established part of the scientific edifice
until, first, its implications are shown to accord with experiment, and,
second, its domain of applicability is established. Newtonian mechan-
ics is absolutely true—within a well-defined envelope defined by c and
�. Similarly for classical electrodynamics and non-relativistic quantum
mechanics. Like its predecessors, quantum field theory offers—and will
always offer—a valid description of particle phenomena at energies lying
within its own domain of applicability. This domain extend all the way
to the Planck scale, but its limits of applicability have yet not be probed.
From this point of view, we are discussing the foundations of a theory
that, whatever its successes, cannot be accepted as true (Glashow 1999,
p. 77).

The reason why Glashow thinks that QFT is not true is that the standard
model does not encompass gravitation. At the Planck scale (near 10−33cm and
high energies), gravitation becomes important, but the unification between the
standard model of particle physics and general relativity has not been achieved
yet. Some physicists suggest that a new theory needs to be developed, and they
indicate possible directions to take, such as string theories, which describe “new”
symmetries called supersymmetries, and quantum gravitation. The future of phys-
ics will show whether these proposals work.

The important point to us is that the standard model of particle physics—
which describes the weak, electromagnetic and strong interactions between the
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most basic constituents of matter, leptons and quarks (Cottingham and Green-
wood 2007)—is formed by mainly two apparently irreconcilable “theories” (or
mathematical models): quantum electrodynamics (QED) and quantum chromo-
dynamics (QCD). Both QED andQCD are used with great success, but physicists
acknowledge that there is no Grand Unified Theory (GUT) that satisfactorily
unifies both of them. In other words, we know quite well the symmetry gauge
groupU(1)×SU(2) of QED, and the group SU(3) of QCD. However, the unified
group U(1)× SU(2)× SU(3) is still a mystery in the sense that the resulting the-
ory, whose laws would be invariant under this group, offers several consequences
not yet fully explained. Some physicists have proposed alternatives to this uni-
fying group, such as Glashow’s SU(5), but there is no general agreement about
this proposal. Glashow himself says that this “theory” is false, given that protons
live more than what is predicted by SU(5) (Glashow 1980). This means that we
have no theory of the standard model in the strict sense discussed above.

Even if we consider only QED, we should probably agree with Arthur Jaffe in
that “[a]s a consequence of renormalization, most physicists today believe that
the equations [we would say, “the postulates”] of quantum electrodynamics in
their simple form are inconsistent; in other words, we believe that the equations
of electrodynamics have no solution at all!” (Jaffe 1999, p. 136).7 A similar point
could be made about to the so-called M-theory, which would unify superstring
theories, and which is recognized as not complete, although it can be applied to
many physical situations.

All of this shows that scientists work by applying particular “mathemati-
cal models” (a term that, in this context, is better than “theory”) to particular
situations—sometimes without paying attention to the fact that there are no
“theories”, in a strict sense, behind the mathematical frameworks they use. In
other words, we are driving to beautiful landscapes without the knowledge of
how our vehicle works. For instance, Tian Cao acknowledges that the unifica-
tion achieved by the standard model is only partial, for “the electroweak theory
and quantum chromodynamics (QCD) for the quark-gluon interaction are still
separate pieces” (Cao 1999, p. 1). This apparent incompatibility does not stop
physicists of using both of them. As the Nobel Prize winner David Gross notes:
“there may be more than one, equally fundamental, formulation of a particular
QFT, each appropriate for describing physics at a different scale of energy” (1999,
pp. 59–60). It seems that the axiomatization of theories (i.e. their presentation
as being grounded on principles or postulates) seems to come only after their ap-
plication in science; that is, after the application of mathematical models suitable
for specific situations.
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Yuri Manin seems to be right here: we have learned much about formalisms
in the 20th century, but it is time to look to the world again—in order to get
additional motivations for mathematical theories (Manin 1976). The current sit-
uation in physics seems to suggest that to formulate theories in the formal way—
that is, by presenting formally their language, axioms, and underlying logics—
seems to be an important goal to be pursued. But the risk is that, due to quick
progress in physics, the issue becomes a dead matter. To quote Cao once more,
perhaps we should agree that “a completely consistent theory [that is, one formu-
lated according to the strict logical standards] is a dead theory” (1976, p. 281).
We might even suggest that, due to the quick development of science and due
to the difficulties in developing axiomatic versions for new theories (the stan-
dard model, M-theory, etc.), scientists work as if the mathematical models were
kinds of mosaics to be placed together, even inconsistently, to solve particular
problems, or to “cover” a particular field of knowledge. As an illustration, recall
Bohr’s theory of the atom, which combines classical mechanics, electrodynamics
and quantization in an inconsistent way. In some cases, such as in Bohr’s the-
ory, we can formulate the theory in an axiomatic form, perhaps by using a non-
classical logic—in the case of Bohr’s theory, a paraconsistent one (see da Costa
et al. 2007). However, in order to combine QED and QCD, no proposed GUT
has been universally accepted. The same difficulty is found, as is well known,
with quantum physics and general relativity.

Now, in cases such as these, if there are no theories, in a strict sense, how
can we speak of models? Of course, we can say that QCD applies to situations
involving high energies where asymptotic degrees of freedom are weakly coupled
(Gross 1999, p. 60). But in terms of models and the semantic approach, what
does this statement really mean? Can we simply say that all weak interactions
are models of QED? It seems that something is lacking here. In the end, it seems
to us that the semantic view of theories needs to be re-conceptualized in light of
current physics.
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Resumo

De acordo com a abordagem semântica das teorias científicas, uma teoria é
caracterizada por uma classe de modelos. Neste artigo, discutimos algumas hi-
póteses que subjazem a essa concepção. Em primeiro lugar, recordamos que
modelos são modelos de algo, e portanto não podemos desconsiderar a axio-
matização das teorias consideradas, bem como a metamatemática usada para
elaborar esses modelos, uma vez que uma mudança na metamatemática pode
ocasionar restrições nesses modelos. Em seguida, baseados em um paralelo pos-
sível entre a interpretação modal da MQ de van Fraassen e o relativismo dos
conceitos conjuntistas de Skolem, sugerimos que deveríamos considerar, tam-
bém no que diz respeito às teorias e seus modelos, uma possível distinção entre
conceitos relativos e absolutos. Finalmente, levando em conta a presente física
de partículas, colocamos uma questão que nos parece básica: uma vez que não
há unificação aceita universalmente das partes que constituem o chamado mo-
delo standard, a saber, a eletrodinâmica quântica e a cromodinâmica quântica,
não temos aqui uma teoria, no sentido usual que se emprega esse termo nas
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discussões em filosofia da ciência. Isso coloca um problema: se não há teoria,
como falar em seus modelos? Modelos de quê? Concluímos observando que
não é claro como a visão semântica das teorias científicas se aplica às teorias
físicas de hoje.

Palavras-chave
Abordagem semântica, paradoxo de Skolem, interpretação modal, teorias, física
de partículas.

Notes
1 It has being claimed that the first (first-order) formal axiomatization of orthodox quan-
tum mechanics was proposed in McCall 2001. We will not discuss this issue here.
2 When we speak of a “model” of a set theory such as ZF, we are not thinking of set-
theoretical structures, such as a structure G = 〈G, ∗〉, which can be a model for group
theory, where G is a nonempty set and ∗ a binary operation on G. The “models” of
ZF cannot be constructed as sets of ZF. These “models” are, in a certain sense, informal
structures, built in informal mathematics. They model a theory like ZF in the sense that
we can “see” that its axioms are (intuitively) true in those structures.
3 Note that the value-state distinction is cashed out in terms of the concept of truth. The
relationship between these ideas and the concept of quasi-truth is developed in Bueno
2000.
4 A few comments about the notation: (a) Tr is a linear functional of operators into num-
bers (the trace map), which gives us the probability that a measurement of the observable
m has a value in the Borel set E; (b) IME is an Hermitean operator such that IME (x) = x
if M(x) = ax for some a ∈ E, and is the null vector if M(x) = bx for some value b � E,
where M is the Hermitian operator which represents m. (c) That the trace function Tr
provides a probability is due to the fact that Pm

x (E) = (x · IME x) = Tr(IxIME ), where Pm
x (E)

is the probability that a measurement of m has a value in E, (x · IME x) is the inner product
of x and IME x and Ix is the projection on the subspace [x] spanned by x. (For details, see
van Fraassen 1991, pp. 147–52, 157–65, and 280–1).
5 Which again are spelled out in terms of truth.
6 Although the concepts of individuality and distinguishability should not be confused;
see French and Krause 2006.
7 See also Jafee in Cao 1999, p. 165, as well as discussions in the same volume by
Schnitzer, p. 163, and Rohrlich, p. 257.

Principia, 11(2) (2007), pp. 187–201.


