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1 Introduction

Strategy-proofness is a demanding condition that most mechanisms will fail to satisfy, unless
they are de�ned on properly restricted environments. Group strategy-proofness is an even
more stringent requirement, but also a much more attractive one. Indeed, what use would
it be to guarantee that no single individual could cheat, if a handful of them could jointly
manipulate the system? Yet, the literature on mechanism design has concentrated mostly
in analyzing the weakest of these two conditions: after all, it is hard enough to meet, and
often impossible except for trivial procedures.
We are now well beyond the disquieting negative message of the Gibbard-Satterthwaite

theorem (Gibbard, 1973 and Satterthwaite, 1975). After years of research, we know of a
considerable number of instances where non-trivial mechanisms can be found to be strategy-
proof when de�ned on some domains of interest. They include the case of voting when
preferences are single-peaked or separable, or when the outcomes are lotteries; they also
include families of cost sharing, matching and allocation procedures, again for the case where
the preferences of agents are conveniently restricted. When looking at the rich literature on
strategy-proof rules over restricted domains, one discovers, somewhat surprisingly, that some
of the non-trivial strategy-proof mechanisms that arise in these environments are, indeed,
also group strategy-proof or non manipulable by groups of size k > 1! It is as if, after a hard
search for a solution to the challenge of strategy-proofness, the additional blessing of non
manipulability by groups of size k > 1 would arise automatically, as an extra gift. In Barberà,
Berga, and Moreno (2010; say BBM) we exhibit conditions on families of preference pro�les
such that any strategy-proof social choice function whose domain is one of these families will
also be necessarily group strategy-proof.
In this work we de�ne weaker variants of group strategy-proofness and discuss their

connection with strategy-proofness. These variants are important, because it would be hard
to avoid manipulations if groups of agents could distort the rules to their advantage, even if
no single individual was able to. For this same reason, it is also interesting to examine those
cases where groups could only manipulate if they were large enough. In these second best
worlds, one could still hope that coordination costs and other restrictions might avoid actual
manipulation. In this paper we discuss an adaptation of sequential inclusion sequential
inclusion, de�ned in our previous work, guaranteeing that, when strategy-proof rules exist
on given domains, they are also immune to manipulations by groups smaller than a given
size.
Similarly, we know that on any given domain of preferences, individual and group

strategy-proofness can be obtained at the cost of reducing the range of social choices to
only include two alternatives. And we also prove in this paper that both conditions be-
come equivalent if we restrict the range when the domain of preferences satis�es sequential
inclusion on that range.
There are interesting frameworks where this range restriction is reasonable and our results

in this paper can be applied and allow us to state the equivalence between individual and
group strategy-proofness while our previous results in BBM did not.
For example, range restrictions have been analyzed in the following problems: in the

problem of provision of public bad when agents are single-dipped, it is known that strategy-
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proof rules de�ned on single-dipped preferences have at most two alternatives in the range
(see Manjunath, 2009, Barberà, Berga and Moreno, 2010). Also, in exchange economies, 2
agents and 2 goods and classical preferences, Lemma 3 in Barberà and Jackson (1995) state
that "the range of each strategy-proof social choice function is diagonal". Thus, our result
would allow us to a¢ rm in both settings that strategy-proof rules with range B are group
strategy-proof (already proved by the corresponding papers).
The paper is structured as follows: in Section 2 we describe the model and de�ne the weak

variants of group strategy-proofness. In Section 3 we introduce our new domain conditions
based on weakening sequential inclusion in two di¤erent directions: to get immunity to
manipulations by groups that are not "too large" and controlling for the alternatives in
the range. We state the two main results. In Section 4 we mention some applications to
emphasize the relevance of our contribution. Section 5 concludes.

2 The model and weak variants of group strategy-proofness

Note that the model we de�ne below is the one de�ned in Barberà, Berga, and Moreno
(2010).1 Our model encompasses problems related to the provision of public good(s), voting
for candidates to join a club, house allocation, exchange economies, among others.
Let A be the set of alternatives and N = f1; 2; :::; ng be the set of agents (with n > 2).

Let capital letters S; T � N denote subsets of agents while lower case letters s; t denote their
cardinality.
Let R be the set of complete, re�exive, and transitive orderings on A and Ri � R

be the set of admissible preferences for agent i 2 N . A preference pro�le, denoted by
RN = (R1; ::; Rn); is an element of �i2NRi. As usual, we denote by Pi and Ii the strict and
the indi¤erence part ofRi, respectively. We will write the pro�leRN = (RC ; RNnC) 2 �i2NRi

(or like (RC ; R�C)) when we want to stress the role of coalition C. Then the subpro�les
RC 2 �i2CRi and RNnC 2 �i2NnCRi denote the preferences of agents in C and in NnC,
respectively.
The following concept is crucial in all our analysis. For any x 2 A and Ri 2 Ri, de�ne

the lower contour set of Ri at x as L(Ri; x) = fy 2 A : xRiyg : Similarly, the strict lower
contour set at x is L(Ri; x) = fy 2 A : xPiyg.
A social choice function (or a rule) is a function f : �i2NRi ! A. Let Af denote the

range of the social choice function f .
We will focus on rules that are nonmanipulable, either by a single agent or by a coalition

of agents. We �rst de�ne what we mean by a manipulation and then we introduce the well
known concepts of strategy-proofness and group strategy-proofness.

De�nition 1 A social choice function f is group manipulable on �i2NRi at RN 2 �i2NRi

if there exists a coalition C � N and R0C 2 �i2CRi (R0i 6= Ri for any i 2 C) such that
f(R0C ; R�C)Pif(RN) for all i 2 C. We say that f is individually manipulable if there exists
a possible manipulation where coalition C is a singleton.

1We introduce the basic aspects here. The interested reader can check more details in Barberà, Berga,
and Moreno (2010) when required for going through the proofs.
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De�nition 2 A social choice function f is group strategy-proof on �i2NRi if f is not group
manipulable for any RN 2 �i2NRi. Similarly, f is strategy-proof if it is not individually
manipulable.

These concepts are well-known in literature. They were the crucial properties in Barberà,
Berga, and Moreno (2010) where we motivated their interest.
Let us present an example to motivate the interest of the research in this paper. The

example, that extends to larger k0s; n0s and di¤erent q0s, it not only proves that one can have
strategy-proof rules that are not group strategy-proof on that domain, but it also suggests
that the rules may be extremely fragile, as they can be manipulated by groups composed of
two agents alone. So, a natural question would be if this is always the case of there exists the
possibility of having group strategy-proofness for low-size group of agents without having
full group strategy-proofness. This is a point we try to answer in the paper.

Example 1 Separable preferences and its subdomains
The domain of separable preferences, which are described in Barberà, Sonnenschein, and
Zhou (1991), is an example of a domain admitting strategy-proof rules that are not group
strategy-proof. Yet, we will also de�ne a subdomain of these preferences where the equiva-
lence still holds.
Barberà, Sonnenschein, and Zhou (1991) analyze the problem of selecting subsets from a set
K of objects and k its cardinality. They have characterized the family of social choice func-
tions on the domain Sk of separable preferences on 2K that are strategy-proof. In separable
preferences objects are divided between good and bad ones. Then, a preference relation is
separable if for any set A � K, and any object x =2 A, fxg [A is preferred to A if and only
if x is a good object.
An example of these rules, which are in addition neutral and anonymous, is given by quota
rules. When society consists of n agents, a quota is a number between 0 an n. Then, given
the preferences of the agents, the rule with quota q chooses the objects that are ranked �rst
for at least q agents.
Consider the case K = fa; bg; n = 2; q = 1: The following preferences are separable.

P1 P2
a b
? ?

fa; bg fa; bg
b a

Under the quota 1 rule, the outcome is fa; bg; and no individual can manipulate. Yet, both
agents would prefer ?; and they can obtain this result if they both declare ? to be their best
alternative: Observe that this preference pro�le does not satisfy sequential inclusion.

By requiring group strategy-proofness we avoid manipulations by means of coalitions of
any size. However, we could be interested in a strategic concept avoiding manipulations
by coalitions of particular sizes. Speci�cally, we could weaken the requirement of group

3



strategy-proofness by just imposing that we want to avoid manipulations of coalitions of size
less or equal than k; for a �xed k < n; that is, imposing "k-group strategy-proofness".
First, we formally introduce our new property that we call k-group strategy-proofness.2

From now on, let k 2 Z such that k < n.

De�nition 3 A social choice function f is k-group strategy-proof on �i2NRi if for any
RN 2 �i2NRi, there is no coalition C � N with #C � k that manipulates f on �i2NRi at
RN .

Note that if f is k-group strategy-proof then f is also l-group strategy-proof for l < k:
The converse is not true (see Example 2).

Example 2 Let N = f1; 2; 3g and A = fy; z; a1; a2; a3g: Suppose that Ri = fR1i ; R2i ; R3i g
for each agent i 2 N and is given by:

R1i R2i R3i
a1 a2 a3
y y y
a2 a3 a1
z z z
a3 a1 a2

De�ne a social choice function f as follows:

R13
R12 R22 R32

R11 a1 a1 a1
R21 a1 a2 z
R31 a1 a1 a1

R23
R12 R22 R32

R11 a1 a2 a3
R21 a2 a2 a3
R31 y a2 a3

R33
R12 R22 R32

R11 a1 y a3
R21 a2 a2 a3
R31 a3 a3 a3

We can check that f is 2-group strategy-proof (thus, strategy-proof) but not (3-)group strategy-
proof. To see the latter, consider the pro�le RN = (R21; R

3
2; R

1
3) and R

0
N = (R31; R

1
2; R

2
3).

Observe that f(RN) = z while f(R0N) = y: Since y is strictly preferred to z by all agents, the
whole coalition manipulates f at RN via R0N .

3 Domain conditions and results

In Barberà, Berga, and Moreno (2010) we introduced a domain condition called sequential
inclusion (also its indirect version) that if satis�ed, any strategy-proof rule de�ned on it
was also group strategy-proof. After understanding sequential inclusion and observing why
it failed in some frameworks, we realized that our domain condition could be weakened
in two reasonable directions. Moreover, these weakened versions still allow us to obtain

2This generalizes Serizawa�s (2006) concept of "e¤ectively pairwise strategy-proofness". His concept
requires that not only agents, but also pairs of agents should not be able to manipulate. In our case, we
require that no group of size less than k can do it.
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equivalence results with the same �avour as the ones in our original paper but with important
consequences that will be worth to mention.
In this section we de�ne our two new domain restrictions and state our new equivalence

results, emphasizing in each case its peculiarities and importance.

3.1 Immunity to manipulation by groups that are not �too large�

First we propose a condition on preference pro�les, that we call k-size sequential inclusion.
Then, we establish the equivalence between individual and k-group strategy-proofness for
social choice functions de�ned on domains satisfying that condition. Before that, let us
introduce some notation that will be important and was already relevant for sequential
inclusion.
LetRN 2 �i2NRi; and y; z be a pair of alternatives. Denote by S(RN ; y; z) � fi 2 N : yPizg ;

that is, the set of agents who strictly prefer y to z according to their individual preferences
in RN .

De�nition 4 Given a preference pro�le RN 2 �i2NRi and a pair of alternatives y; z 2 A;
we de�ne a binary relation % (RN ; y; z) on S(RN ; y; z) as follows:3

i % (RN ; y; z)j if L(Ri; z) � L(Rj; y).

Note that the binary relation % must be re�exive but not necessarily complete. As usual,
we can de�ne the strict and the indi¤erence binary relations associated to %. Formally, i � j
if L(Ri; z) � L(Rj; y) and L(Rj; z) � L(Ri; y): We say that i � j if L(Ri; z) � L(Rj; y) and
:[L(Rj; z) � L(Ri; y)]:
Now, we formally de�ne k-size sequential inclusion, a weaker version of sequential inclu-

sion.

De�nition 5 A preference pro�le RN 2 �i2NRi satis�es the k-size sequential inclusion
condition if for any pair y; z 2 A; % (RN ; y; z) on S(RN ; y; z) is complete and there is no
cycle of l agents, for any l � k: A domain �i2NRi satis�es k-size sequential inclusion if any
preference pro�le RN 2 �i2NRi satis�es k-size sequential inclusion.

Some observations and an important Remark are in order:
First, note that by de�nition, if a preference pro�le RN satis�es k-size sequential inclusion

it also satis�es the l-size version, where l � k. The converse does not hold. In particular, if
a domain satis�es sequential inclusion (i.e. n-size sequential inclusion) it also satis�es k-size
sequential inclusion for each k < n. However, the converse does not hold as we show in
Example 3.

Example 3 Consider the data in Example 2. It is easy to see that �i2NRi satis�es 2-size
sequential inclusion. To see a violation of (3-size) sequential inclusion, consider the following
pro�le RN = (R11; R

2
2; R

3
3) and the pair of alternatives y, z. Note that S(RN ; y; z) = f1; 2; 3g:

3In what follows, and when this does not induce to error, we may omit the arguments RN , y and z and
just write %.
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Since L(R11; z) � L(R22; y) but :[L(R22; z) � L(R11; y)] then 1 � 2. Since L(R22; z) � L(R33; y)
but :[L(R33; z) � L(R22; y)] then 2 � 3. Since L(R33; z) � L(R11; y) but :[L(R11; z) � L(R33; y)]
then 3 � 1. Therefore, 1 � 2 � 3 and 3 � 1: there is a cycle involving three agents and
thus RN violates 3-size sequential inclusion implying that �i2NRi violates(3-size) sequential
inclusion.4

Second, note also that if a preference pro�le satis�es 2-size sequential inclusion, this
means that for any pair y; z 2 A; the relation % (RN ; y; z) on S(RN ; y; z) is complete. If a
preference pro�le satis�es k-size sequential inclusion, for k > 2, this means that for any pair
y; z 2 A; % (RN ; y; z) on S(RN ; y; z) is not only complete but also that there are no cycles
of any number of agents lower or equal than k.
In the following result we show that if the k version of sequential inclusion holds then

strategy-proofness implies k-group strategy-proofness.

Theorem 1 Let �i2NRi be a domain satisfying the k-size sequential inclusion condition.
Then, any strategy-proof social choice function on �i2NRi is k-group strategy-proof.

The proof follows a similar argument to that of Theorem 1 in Barberà, Berga, and Moreno
(2010).
Examples 2 and 3 illustrate the interest of the result in Theorem 1. Note that since

sequential inclusion is violated in the framework de�ned the mentioned examples we can not
apply the result in Barberà, Berga, and Moreno (2010). However, we know that there exist
strategy-proof rules that although violating group strategy-proofness satisfy an intermediate
version of it. Theorem 1 tells us that this is not by luck, but it is because the preference
domain satis�es the "adequate" condition, 2-size sequential inclusion in the example.

3.2 Controlling for the alternatives in the range

In this section we also provide a result that could be used by a designer to eventually decide
whether or not to limit the range of a social choice function, as a method to enhance some
of the good properties of a mechanism. In our case, limiting the range could help avoiding
manipulation by groups, but the type of analysis we suggest here might be applicable for
other purposes as well.
When there are only two social alternatives to choose from, it is possible to design non-

dictatorial and (group) strategy-proof social choice functions on the universal domain of all
possible preference pro�les. The same is also true if society faces more alternatives, but
the range of the social choice function is restricted to only contain two of them. Of course,
arti�cially restricting the range, so that it does not contain all conceivable alternatives, may
have some negative consequences, especially in terms of e¢ ciency. But it may also have the
advantage of limiting the strategic behavior of agents. Therefore, it is useful, in this and

4The way to construct this example is the following: there is a pair of alternatives y; z that are the second
best and second worst alternatives, respectively in all individual preferences. Moreover, we need additional
k alternatives, each one being the best for some individual preference and the worst for some other. The
other k � 2 alternatives are worse than y and better than z.
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other contexts, to study the trade-o¤s that a designer may face when deciding whether or
not to allow all alternatives to be in the range of a social choice function.
The literature has seldom mentioned the possibility of imposing limits to the range as

part of a deliberate action of design (except, of course, that it has spent much e¤ort to study
the case where there are only two possible social choices). Our speci�c results suggest that
we may gain by paying attention to such possibility.
Our next result suggests possible limitations of the range as a tool to strengthen the

resilience of functions to be manipulated by large groups. What will matter is no longer
the number of alternatives that may be chosen, but their speci�c names. The idea is that,
if our condition of either direct or indirect sequential inclusion holds for a given subset of
alternatives, then the range independent functions de�ned on this subset will satisfy our
equivalence result.
Let us now de�ne sequential inclusion on B � A.5

De�nition 6 Given a preference pro�le RN 2 �i2NRi and a pair of alternatives y; z 2 B;
we de�ne a binary relation % (RN ; y; z) on S(RN ; y; z) as follows:

i % (RN ; y; z)j if L(Ri; z) \B � L(Rj; y) \B.

De�nition 7 A preference pro�le RN 2 �i2NRi satis�es sequential inclusion on B � A for
y; z 2 B if the binary relation % (RN ; y; z) on S(RN ; y; z) is complete and acyclic.

De�nition 8 A preference pro�le RN 2 �i2NRi satis�es sequential inclusion on B � A if
for any pair y; z 2 B the binary relation % (RN ; y; z) on S(RN ; y; z) is complete and acyclic.
A domain �i2NRi satis�es sequential inclusion on B if any preference pro�le in this domain
satis�es it.

Note that, by de�nition, sequential inclusion is equivalent to sequential inclusion on
B = A. Thus, sequential inclusion implies sequential inclusion on B, for any B � A.
However, sequential inclusion on B for some B $ A does not in general imply sequential
inclusion: our new condition is weaker as we show in Example 4.

Example 4 Consider the data in Example 2. Let B = fz; a1; a2; a3g $ A. The domain
�i2NRi satis�es sequential inclusion on B. To check it we �rst need to observe that for each
RN , and each pair x; t 2 B, #S(RN ;x; t) � 2 (this is obvious). Then, we have to prove that
the relation % (RN ;x; t) is always complete. To check the latter, consider the case where
x = a1, t = a2 (a similar argument - or trivial whenever #S = 1- can be done for any other
pair of alternatives in B). Note that L(R3; a2)\B = fa2g � L(R1; a1)\B = fa2; z; a3g but
:[L(R1; a2) � L(R3; a1)]; thus the agent with type 3 �agent with type 1 preference. Thus,
the relation % (RN ; a1; a2) is complete. This �nishes the proof.
As we already checked in Example 3, �i2NRi violates sequential inclusion.

5We could have also de�ned indirect sequential inclusion on a subset B � A and obtain similar results
imposing our indirect sequential in Barberà, Berga, and Moreno (2010) on B. For sake of simplicity, we stick
to the sequential inclusion version. Moreover, we could have complicated even more our search for further
equivalence results by combining restrictions on the set of alternatives with those on the subsets of agents
analized in the previous subsection. Similar equivalence results would be obtained. We prefer to keep our
analysis neat and leave the interested reader go deeper to check the details.
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An important consequence of this example is that with the new domain constraint we are
able to analyze some frameworks not encompassed in Barberà, Berga, and Moreno (2010).
Before stating the main result in this subsection, two interesting results are in order.

First, we observe that sequential inclusion is guaranteed as a direct consequence of a very
speci�c range restriction.

Proposition 1 Let f be a social choice function on �i2NRi such that #Af � 3. Then, any
pro�le of preferences RN 2 �i2NRi satis�es sequential inclusion on Af .6

Proof of Proposition 1.
If #Af = 2 or #Af = 1 sequential inclusion on Af trivially holds. Therefore, we concentrate
on the case where Af consists of three distinct alternatives x, y, and z and RN 2 �i2NRi.
Without loss of generality, choose two of these three alternatives, say y and z. De�ne
the following partition: S(RN ; y; z) = Sz(RN ; y; z) [ Sfx;zg(RN ; y; z) where Sz(RN ; y; z) =
fj 2 S(RN ; y; z) such that L(Rj; z) \ Af = fzgg and Sfx;zg(RN ; y; z) = fk 2 S(RN ; y; z)
such that L(Rk; z) \ Af = fx; zgg, respectively. Since their lower contour set in Af at z
coincide, for any j; l 2 Sz(RN ; y; z), j � (RN ; y; z)l. Similarly, for any k; h 2 Sfx;zg(RN ; y; z),
k � (RN ; y; z)h. Moreover, for any j 2 Sz(RN ; y; z), fzg = L(Rj; z) \ Af � L(Rk; y) \ Af
for any k 2 Sfx;zg(RN ; y; z), thus j % (RN ; y; z)k. Therefore, % (RN ; y; z) is complete and
acyclic showing that sequential inclusion on Af holds.

Second, notice that there are two distinct ways to violate sequential inclusion on B
(similarly for k-size sequential inclusion): by lack of completeness and because of cycles.
Both aspects of the de�nition are essential in what follows, but could be factored out for
other purposes, as their implications are di¤erent. The following result states the relevance
of completeness in the de�nition of sequential inclusion on B. We say that a preference
pro�le RN 2 �i2NRi satis�es completeness on B � A if for any pair y; z 2 B the binary
relation % (RN ; y; z) on S(RN ; y; z) is complete. A domain �i2NRi satis�es completeness if
each preference pro�le in it satis�es completeness.

Proposition 2 Let f be a social choice function on �i2NRi such that the domain satis�es
completeness on Af and #Af � 4. Then, any pro�le of preferences RN 2 �i2NRi satis�es
sequential inclusion on Af .

We state and prove a useful lemma.

Lemma 1 Let RN 2 �i2NRi and y; z 2 Af such that % (RN ; y; z) on S(RN ; y; z) has a
cycle of size k, 3 � k � s but % (RN ; y; z) does not have any cycle of lower size. Then,
there exist at least k + 2 alternatives in Af ; say y, z, a1, a2,...,ak 2 Af . There also exist k
individual preference relations in RN , say R1, R2, ..., Rk; such that for any l = 1; :::; k 2 N ,
the following holds: [(1) alRly, (2) zRlal�1, for any j = 1; :::; k � 2; (3) yP lal+j; and (4)
al+jP

lz]. Moreover, if for any alternative w 2 Af , the binary relation % (RN ; y; w) on
S(RN ; y; w) is complete, then (5) for any l = 1; :::; k, [al+jP lal+1+j, for j = 1; :::k � 3].

6Its proof is similar to the proof of Proposition 1 in Barberà, Berga, and Moreno (2010). We include it
to show the readers how one can proceed to check sequential inclusion on a subset.
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Proof of Lemma 1. We �rst prove that there must exist alternatives and individuals whose
preferences satisfy (1) and (2).
Without loss of generality, let the cycle of k agents be 1 � 2 � 3 � ::: � k and k � 1.
Thus, their individual preferences in RN ; say R1, R2, ..., Rk; are such that L(Rl; z) \ Af �
L(Rl+1; y) \ Af and :

�
L(Rl+1; z) \ Af � L(Rl; y) \ Af

�
for l = 1; :::; k: From the latter ex-

pression, for any l = 1; :::; k, there exists al 2 Afnfz; yg such that zRl+1al and alRly. Note
that for any l = 1; :::; k, al 6= z and al 6= y since yPlz and yPl+1z, respectively. Thus, there
exist k individual preference relations in RN , in particular: R1, R2, ..., Rk; such that the
following expressions hold: [(1) alRly and (2) zRlal�1, for any j = 1; :::; k � 2]. We now
show that the alternatives al so de�ned are all distinct. Note that we only need to show the
following:

For any i, 1 � i � k � 1, [ai 6= aj, for any j, k � j > i]:
Case 1. Let i; j such that j � i = 1. Given the above cycle of k agents, j � j + 1, thus
aj�1 2 L(Rj; z) \ Af � L(Rjy) \ Af . But we also proved that aj =2 L(Rj; y) \ Af . Thus,
aj 6= aj�1:
Case 2. Let i; j such that j � i = 2. Given the above cycle of k agents, j � 1 � j, thus
aj�2 2 L(Rj�1; z) \ Af � L(Rj; y) \ Af . But since j � j + 1, by aj =2 L(Rj; y) \ Af . Thus,
aj 6= aj�1:
Case 3. Let i; j such that j � i = t, for 3 � t � k � 1. By assumption, there is no cycle of
agents in S(RN ; y; z) of size t: Thus, given the above cycle of k agents, i+ 1 � i+ 2 � ::: �
i+(t�1) � j and i+1 % j: Thus, ai 2 L(Ri+1; z)\Af � L(Rj; y)\Af . But we also proved
that aj =2 L(Rj; y) \ Af . Thus, ai 6= aj.

We now prove that the preferences in question satisfy expression (3).
For any l = 1; :::; k, [al+jPlz for any j = 1; :::; k � 2].
Take any j: By assumption, there is no cycle of agents in S(RN ; y; z) of size j + 1 (since
2 � j+1 � k�1): Thus, given the above de�ned cycle of k agents, l � l+1 � ::: � l+ j � j
and l % l + j: Thus, L(Rl; z) \Af � L(Rl+j; y) \Af . If zRlal+j then al+j 2 L(Rl+j; y) \Af
which contradicts expression (1) above proved.

We now show that the preferences also satisfy expression (4).
For any l = 1; :::; k, [yPlal+j for any j = 1; :::; k � 2].
Take any j: By assumption, there is no cycle of agents in S(RN ; y; z) of size k � j (since
2 � k�j � k�1): Thus, given the above de�ned cycle of k agents l�(k�j�1) � l�(k�j) �
l� (k� j+1) � ::: � l� 3 � l� 2 � l� 1 � l and l� (k� j� 1) % l: Using our equivalence,
l + j + 1 � l + j + 1 � k (mod k) and thus Rl+j+1 = Rl+j+1�k. Thus, L(Rl+j+1; z) \ Af �
L(Rl; y) \ Af . By the previous lemma, we know that al+j 2 L(Rl+j+1; z) \ Af ; and thus
al+j 2 L(Rl; y) \ Af .
For k = 3 the Lemma is proved.

For k � 4, we �nally prove that the preferences also satisfy expression (5).
For any l = 1; :::; k, [al+jPlal+1+j, for j = 1; :::; k � 3].
We �rst show that for any l = 1; :::; k, al+1Plal+1+j for j = 1; :::; k � 3. (*)
Fix l and j. By contradiction, suppose that al+1+jRlal+1. Consider the pair of alternatives
(y; al+1+j). By hypothesis, the binary relation % (RN ; y; al+1+j) on S(RN ; y; al+1+j) is com-
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plete. Since l; l+1 2 S(RN ; y; al+1+j), either l % l+1 or l+1 % l should hold. By hypothesis,
al+1 2 L(Rl; al+1+j)\Af and, by conditions (1) to (4) already proved, al+1 =2 L(Rl+1; y)\Af .
Then, :

�
L(Rl; al+1+j) \ Af � L(Rl+1; y) \ Af

�
, or equivalently, : [l % l + 1]. On the other

hand, by conditions (1) to (4), al =2 L(Rl; y) \ Af ; but also al 2 L(Rl+1; z) \ Af and
al+1+jPl+1z holds. The latter two expressions imply that al 2 L(Rl+1; al+1+j) \ Af . Then,
:
�
L(Rl+1; al+1+j) \ Af � L(Rl; y) \ Af

�
, or equivalently, : [l + 1 % l] which is the desired

contradiction.

For k = 4 the Lemma is proved.

Now, for k > 4, we show that for any l = 1; :::; k, al+tPlal+t+1 for any t, t = 2; :::; k � 3:
Fix l and t. By contradiction, suppose that al+t+1Rlal+t. Consider the pair of alterna-
tives (y; al+t+1). By hypothesis, the binary relation % (RN ; y; al+t+1) on S(RN ; y; al+t+1) is
complete. Since l; l + t 2 S(RN ; y; al+t+1), either l % l + t or l + t % l should hold. By
hypothesis, al+t 2 L(Rl; al+t+1) \ Af and, by conditions (1) to (4), al+t =2 L(Rl+t; y) \ Af .
Then, :

�
L(Rl; al+t+1) \ Af � L(Rl+t; y) \ Af

�
, or equivalently, : [l % l + t]. On the other

hand, by conditions (1) to (4), al =2 L(Rl; y) \ Af : Using the modulo k equivalence, and by
the previous statement (*) applied for j = k � 1� t and for l � l + t, al+t+1Pl+tal (that is,
al 2 L(Rl+t; al+t+1) \ Af). Then, :

�
L(Rl+t; al+t+1) \ Af � L(Rl; y) \ Af

�
, or equivalently,

: [l + t % l] which is the desired contradiction.
Observe that the preferences of the k agents, 1; :::; k, satisfy the conditions predicated by
the lemma. Again de�ne Ri = Ri for all i = 1; :::; k: This ends the proof.

Now we prove Proposition 2.

Proof of Proposition 2. Suppose that a pro�le RN violates sequential inclusion on Af :
Let RN 2 �i2NRi and y; z 2 Af such that % (RN ; y; z) on S(RN ; y; z) has a cycle of size
k, 3 � k � s. Without loss of generality, assume that k is the minimum cycle size, that is,
% (RN ; y; z) on S(RN ; y; z) has a cycle of size k, 3 � k � s but % (RN ; y; z) does not have
any cycle of lower size.
By Lemma 1, there exist at least k + 2 di¤erent alternatives in Af . Observe that this is
the desired contradiction since this would mean that there exist at least 5 alternatives in Af
which is not the case.

The following example show the relevance of completeness in Proposition 2.

Example 5 Let N = f1; 2g, A = fx; y; z; t; w; sg; and eR = fR1; R2; R3g where:

R1 R2 R3

t s s
x w t
y y y
z z x
w x w
s t z
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Take y, z 2 A and consider RN = (R1; R2). Observe that R1 and R2 are not comparable
according to % (RN ; y; z): Although, R3 % R1, R3 % R2. De�ne a social choice function f
as follows:

f R1 R2 R3

R1 x z x
R2 z w w
R3 x w y

Thus,
� eR�n is not complete in Af = fx;w; y; zg. Moreover, observe that f is strategy-proof

but violates group strategy-proofness: N manipulates f at RN = (R1; R2) via R0N = (R
3; R3)

since f(RN) = z while f(R0N) = y.

To �nish this subsection we now state the main equivalence result.

Theorem 2 Let �i2NRi be a domain of preferences satisfying sequential inclusion on B �
A. Then, any strategy-proof social choice function with range B is also group strategy-proof.

The proof follows a similar argument to that of Theorem 1 in Barberà, Berga, and Moreno
(2010).
We should notice that Theorem 2 allows us to state the equivalence between individual

and group strategy-proofness in settings not encompassed in our previous work. For example,
the framework de�ned in Example 2. In purpose, we use an abstract but easy framework to
check several properties and results along the paper. However, in Section 4 we present more
interesting and well-known frameworks that can also be embedded in our framework.

3.3 Necessity

We �nish the section providing a result that establishes the partial necessity of k-size sequen-
tial inclusion to guarantee that individual and k-group strategy-proofness become equivalent.
In fact, this result generalizes the one in Theorem 4 in Barberà, Berga, and Moreno (2010).

Theorem 3 Let 2 � k � n: Let �i2NRi be a domain that allows for opposite preferences
and such that any strategy-proof social choice function on �i2NDi � �i2NRi is also k-group
strategy-proof. Then, �i2NRi satis�es k-size sequential inclusion.

The proof of Theorem 3 follows the same lines as Theorem 4 in Barberà, Berga, and
Moreno (2010).7

7In fact, we do prove the k = 2 version of Theorem 3 as part of the proof of Theorem 4 in Barberà, Berga,
and Moreno, 2010 (see Lemma 3 there).
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4 Applications of range restrictions

An interesting point we want to make in this paper is that we can encompass interesting
economic frameworks that could not be analyzed in Barberà, Berga, and Moreno (2010) since
sequential inclusion was violated, mainly because of intrinsic characteristics of the setting
itself. We present below a house allocation framework where we are able to apply the results
in the present paper. Some results in exchange economies mentioned in the introduction can
be obtained too.
A second point we make is that given Theorem 2 we can obtain some existing results in

the literature as corollaries.

4.1 Single-dipped preferences

We de�ne now the domain of single-dipped preferences. They allow us to analyze cases where
distance to a reference "worse" point is preferred, as it is the case when one must allocate
a public bad. This is in contrast with the opposite motivation of single-peaked preferences,
where being closer to the reference "best" point is preferred. Formally:

De�nition 9 A preference pro�le RN is single-dipped i¤ there exists a linear order > of the
set of alternatives such that
(1) Each of the voters�preferences has a unique minimal element di(A), called the dip of i,
and
(2) For all i 2 N , for all di(A), and for all y; z 2 A

[z < y 6 di(A) or z > y > di(A)]! zPiy.

Two recent works have deeply analyzed di¤erent aspects related to the set of single-dipped
preferences (see Manjunath, 2010 and Barberà, Berga, and Moreno, 2012). In the latter
papers the authors showed that when agents�preferences are single-dipped, any strategy-
proof rule has at most two alternatives in the range. That is, a range restriction appears.
Considering the mentiones result and Proposition 1, by applying Theorem 2 we ob-

tain that "any strategy-proof rule de�ned on single-dipped preference pro�les is also group
strategy-proof", a result already stated in the literature (it was obtained as a corollary of
Theorem 1 in Barberà, Berga, and Moreno, 2010).

4.2 House allocation

First we show how to �t the classical house allocation model in ours. For each agent i, let
Bi be the set of individuals objects or houses that agent i can be assigned to. De�ne the set
of alternatives A � B1� :::�Bn be the set of possible assignments of houses to agents such
that each agent receives a distinct house.
Each agent i has preferences denoted by Ri 2 Ri on A. From preferences on A we

can induce preferences on Bi as follows: For any a; b 2 Bi; aiRibi if and only if aRib.
That is, when evaluating di¤erent alternatives, agents are sel�sh and care only about their
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assignment. Note that, abusing notation we use the same symbol Ri to denote preferences
on A and on Bi.
For any i 2 N , we assume that the set of preferences Ri are all possible strict orders

over objects (for example, for 3 objects there are 6 linear orders). Note, however, that
by sel�shness preferences on assignments are not strict and have many indi¤erences: two
di¤erent alternatives assigning the same object to agent i are indi¤erent for i.
We use an example to make our point clearer. Consider an example where N = f1; 2g;

B1 = fa1; a2; a3g and B2 = fa1; a2g; that is, two agents and three objects, but agent 1 can
not be assigned to object 3 (suppose that owner of house 3 does not want pets and agent 1
has a pet). Thus, we have an exante range constraint and the set of feasible assignments is
B = f(a1; a2); (a1; a3); (a2; a3); (a2; a1)g $ A. Note that for each agent i, #Ri = 6, that is, i
has six strict preferences over objects. Such preferences induce other 6 preferences for agent
i over A:
As an example: let R1 be such that a1P 1a2P 1a3, then the preference of agent 1 over A is

R11 : f(a1; a2); (a1; a3)gP 11 f(a2; a3); (a2; a1)gP 11 f(a3; a1); (a3; a2)g where assignments (a1; a2)
and (a1; a3) are indi¤erent for agent 1 since he obtains the same object. Similarly, the pref-
erence of agent 2 over A is R12 : f(a2; a1); (a3; a1)gP 11 f(a1; a2); (a3; a2)gP 11 f(a1; a3); (a2; a3)g.
Note that we can not apply our results in Barberà, Berga, and Moreno (2010) about

equivalence of individual and group strategy-proofness since the domain �i2NRi violates
sequential inclusion (i.e. sequential inclusion on A). Take pro�le RN = (R11; R

3
2) and alter-

natives y = (a1; a2), z = (a2; a1) where yP 11 z and yP
3
2 z; observe that L(R

1
1; z) � L(R32; y)

((a3; a2) 2 L(R11; z), (a3; a2) =2 L(R32; y)) nor L(R32; z) � L(R11; y) holds ((a1; a3) 2 L(R32; z),
(a3; a2) =2 L(R11; y)), thus, RN does not satisfy sequential inclusion on A since the binary
relation % (RN ; y; z) on S(RN ; y; z) is not complete.
Observe that although RN above satis�es sequential inclusion on B not any pro�les does:

(R41; R
6
2) with (a2; a3), (a1; a2):

However, by Proposition 1 above, if #B = 3 then any pro�le satis�es sequential inclusion
on B. Thus, applying our Theorem 2, any strategy-proof rule with range B is also group
strategy-proof.

5 Public domains

Let Ri = eR � R for any i 2 N . Let y; z 2 A be a pair of alternatives. Denote by
R(y; z) �

n
R 2 eR : yPz

o
; that is, the set of preferences for which y is strictly preferred to

z.

De�nition 10 Given a pair of alternatives y; z 2 A; we de�ne a binary relation % (y; z) on
R(y; z) as follows:8

R % (y; z)R0 if L(R; z) � L(R0; y).

Note that the binary relation % must be re�exive but not necessarily complete. As usual,
we can de�ne the strict and the indi¤erence binary relations associated to %. Formally, R �

8In what follows, and when this does not induce to error, we may omit the arguments y and z and just
write %.
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R0 if L(R; z) � L(R0; y) and L(R0; z) � L(R; y): We say that R � R0 if L(R; z) � L(R0; y)
and :[L(R0; z) � L(R; y)]:If R % R0, we�ll say that R may precede R0. If R � R0, then we�ll
say that R must precede R0.
We say that an individual set of preferences eR is complete if for all pair of alternatives

y; z 2 A, % (y; z) on R(y; z) is complete. We say that a individual set of preferences eR is
transitive if for all pair of alternatives y; z 2 A, and for any triple R, R0, R00 2 S(y; z), if
R % R0 and R0 % R00 then R % R00:
Observe that the set of separable preferences is neither complete nor transitive.

Example 6 Consider eR the set of all separable preferences over two candidates a and b.

R1 R2 R3 R4 R5 R6 R7 R8

? ? a a b b fa; bg fa; bg
a b ? fa; bg ? fa; bg a b
b a fa; bg ? fa; bg ? b a

fa; bg fa; bg b b a a ? ?

Take alternatives y = a, z = b and consider % (y; z) on S(y; z) = fR1; R3; R4; R7g. Note
that neither R1 % R7 nor R7 % R1, thus eR is incomplete. Observe also that R1 � R4,
R4 � R7 but neither R1 % R7 nor R7 % R1, thus eR is not transitive.

Proposition 3 Let each individual set of preferences eR be complete. Any anonymous and

strategy-proof social choice function f on
� eR�n such that #Af = 5 is also group strategy-

proof.

Proof. To be �nished.
By contradiction, suppose that f is manipulable by some coalition C � N . That is, there
exist a coalition C, RN 2 �i2NRi, and eRC 2 �i2CRi, such that for any agent i 2 C,
f( eRC ; R�C)Pif(RN). Let y = f( eRC ; R�C) and z = f(RN). If RN satis�es sequential
inclusion, by applying the same argument as in the proof of Theorem 1 in Barberà, Berga, and
Moreno (2010) we get a contradiction to strategy-proofness. Thus, RN violates sequential
inclusion and, by completeness of eR, % (RN ; y; z) on S(RN ; y; z) = C has a cycle. Moreover,
by Lemma 1 and the fact that #Af = 5, the cycle can not be of size strictly higher than
3. That is, % (RN ; y; z) on S(RN ; y; z) has a cycle of size k = 3. Lemma 1 then ensures us
that 3 individual preference relations in RN , say without loss of generality by anonimity R1,
R2, R3, must be such that for any l = 1; 2; 3, the following holds: [(1) alRly, (2) zRlal�1, for
any j = 1; :::; k � 2; (3) yPlal+j; and (4) al+jPlz]. Observe also that the preferences in RN
of agents in Cnf1; 2; 3g can not be such that a cycle of a larger size is formed.9
Step 1: Assume that we have only three agents and that eR = fR1; R2; R3g.
Example 7 shows the relevance of completeness in the result: in it we present a domain

violating completeness for which there exist anonymous and strategy-proof rules violating
group strategy-proofness.

9One can check considering all possible preferences in Af = fa1; a2; a3; y; zg such that y is strictly preferred
to z that no higher cycle will be formed.

14



Example 7 Let N = f1; 2g, A = fy; z; a1; a2; a3g; and eR = fR1; R2; R3g where:

R1 R2 R3

y; a1 a2 a3
a2 y a1
z a3 y
a3 z z

a1 a2

Take y, z 2 A and consider % (y; z) on R(y; z) = eR. Observe that R3 % R1, R1 % R2 but
:R3 % R2. Thus, eR is not transitive. De�ne a social choice function f as follows:

f R1 R2 R3

R1 y a2 a1
R2 a2 a2 z
R3 a1 z z

Note that f is strategy-proof but violates group strategy-proofness: N manipulates f at R =
(R3; R2) via R0 = (R1; R1) since f(R) = z while f(R0) = y.

6 Conclusions

To be written.

An open question that remains is to study the relationship between k-group strategy-
proofness and group strategy-proofness. De�ning a domain condition guaranteeing the equiv-
alence of these two strategic properties would be one of interesting point in the literature.
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