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Abstract

We consider a model of process (cost-reducing) R&D investments with spillovers in

Cournot oligopoly, and in which R&D cooperation cannot be disentangled from cooper-

ation in the product market because of cross-shareholdings or because cooperation in R&D

extends to cooperation in the product market. We characterize how R&D and output behave

in response to a change in the degree of cooperation, and identify three distinct regions. We

derive the threshold values of spillover above which some cooperation in both dimensions is

optimal for welfare and consumers, and examine the optimal degree of cross-ownership or

toughness of the antitrust policy. If the objective is to maximize total surplus then there

is scope for cooperation in both dimensions when spillovers are su¢ ciently large (and the

scope is larger the more �rms there are in the market), but if the objective is to maximize

consumer surplus, then the scope for cooperation is greatly reduced. Furthermore, entry

need not optimally induce more cooperation under the consumer surplus standard.
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1 Introduction

Any agreement on price or output that harms consumers is typically forbidden by antitrust laws.

By contrast, R&D cooperation is widely allowed (and even encouraged) by public authorities.1

R&D cooperation in the presence of spillovers is generally seen as welfare enhancing in part

due to the results of the theoretical IO literature. d�Aspremont and Jacquemin (1988) is the

seminal paper that provides a theoretical basis for the favorable attitude of antitrust authorities

towards cooperative R&D; they show that when spillovers are high enough, R&D cooperation

(with subsequent competition at the output stage) leads to more output, innovation, and welfare.

The reason is that in the presence of spillovers, �rms (partially) bene�t from the innovation

e¤orts of their rivals. As a result, if spillovers are high, �rms may free ride and lower their

investment in innovation. However cooperative R&D allows them to internalize externalities,

and thereby, to preserve their incentives to invest in R&D.

d�Aspremont and Jacquemin�s paper and some previous works2 inspired a vast literature3

that has thrown light on many aspects of R&D cooperation in oligopolistic markets. The pri-

mary objective of this literature is to examine underprovision of R&D and the welfare e¤ects of

moving from a non-cooperative to a (full) cooperative regime. The present paper aims to answer

the following questions: What degree of cooperation is optimal in the presence of R&D invest-

ment and spillovers? How does it depend on structural parameters (such as demand and cost

conditions, technological opportunity of industry and level of spillovers)? How does it depend on

the objective of the competition authority (be it maximize total surplus or consumer surplus)?

In particular, we look at the degree of cooperation among �rms in terms of cross-shareholdings

and, in a more reduced form way, the degree of toughness of competition policy. Our main

focus is on whether cross-ownership (or intermediate degrees of collusion) sti�e innovation or

help internalize spillovers. Our model is general and integrates and extends previous models in

the literature obtaining new results and characterizations.

Minority shareholdings are widespread in many industries, in particular they have become

1For a comparison of US policy in cooperative R&D with the policy of the European Union and Japan see
Martin (1996). For Europe see also Jacquemin and Soete (1994).

2Brander and Spencer (1984), Spence (1984) and Katz (1986) are pioneering works in the analysis of multiple
stage strategic investments with spillovers.

3Among others, Suzumura (1992) extends the analysis to multiple �rms and general demand and cost func-
tions in Cournot competition. Ziss (1994) does the same but also considering product di¤erentiation and price
competition. Kamien et al. (1992) analyze the e¤ects of R&D cartelization and research joint ventures. Leahy
and Neary (1997) present a general analysis of the e¤ect of strategic behavior and cooperative R&D in the
presence of price and output competition. They also study optimal public policy towards R&D in the form of
subsidies. For a survey see Gilbert (2006), Suetens (2004a), and de Bondt (1996).
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more important in telecommunications and high technology industries (Salop and O�Brien,

2000). There are generally two types of minority shareholding: (i) Financial interest, which

refers to the right of the acquiring �rm to receive a share of the pro�ts of the target �rm; (ii)

Corporate control, which refers to the right of the acquiring �rm to control or in�uence the

target �rm�s decisions (in prices, output, product selection and other competition variables).

We focus on the �rst type, also called silent �nancial interest or passive structural links.

There is growing interest among competition authorities in assessing the competitive e¤ects

of �nancial interest, in part due to the rapid growth of private-equity investment observed in

recent years, in which private-equity �rms often hold partial ownership interests in competing

�rms (Wilkinson and White, 2007), and because of some notorious cases (such as Ryanair�s

acquisition of Aer Lingus�s stock) that have triggered discussion in Europe on the potential

anticompetitive e¤ects of partial ownership. In Canada and the United States minority share-

holding is subject of scrutiny under merger control rules. In particular, in the U.S. minority

shareholding are often examined under Section 7 of the Clayton Act and the Hart-Scott-Rodino

Act.4 Although no threshold is clearly established, acquisitions of less than 25%, and at least of

15%, have been found to violate Section 7 (Salop and O�Brien [2000], Miller, Raven and Went,

[2012]).

The European Commission, however, does not have competence under its merger con-

trol rules to examine passive investments, although it recognizes that "Acquisitions of non-

controlling minority shareholdings may in some cases lead to anticompetitive e¤ects" (EC, June

2013), and currently proposes5 to extend the scope of the Merger Regulation to be able to inter-

vene in some potential problematic cases such as those involving minority shareholding among

competitors or in a vertical relationship.6 Yet there are European countries, such as Austria,

Germany and the UK, in which national merger control rules give competition authorities the

competence to examine minority shareholdings.7

4Section 7 prohibits acquisitions (of any part) of a company�s stock that "may" substantially lessen competition
by either (a) enabling the acquiring �rm to raise prices or decrease output by controlling or in�uencing the target
�rm; or (b) altering the incentives of the acquiring �rm to compete with the target �rm.

5Commission consults on possible improvements to EU merger control to deal with anticompetitive e¤ects
arising from minority shareholding (Commission Sta¤ Working Document "Towards more e¤ective EU merger
control", Brussels, 25.6.2013 SWD(2013) 239 �nal).

6Currently, the EC can only consider the competitive e¤ects of (pre-existing) minority shareholdings in the
context of a noti�ed merger (in which the merging �rms have stakes on a third �rm). EC (2013) highlights that
there are many instances in which the merger is allowed on the basis of remedies that entail a divestiture of the
(pre-existing) minority shareholding.

7E.g., the minority shareholding of Ryanair in Aer Lingus and the BskyB�s acquisition of 17.9% of ITV would
result according to the UK CC in a substantial lessening of competition (resp. on routes between Great Britain
and Ireland and in the UK TV market). In August 2013, UK CC ordered Ryanair to sell its 29.8% stake in Aer
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Anticompetitive e¤ects of cross-ownership were �rst derived in Reynolds and Snapp (1986),

and Bresnahan and Salop (1986). They consider the Cournot model and show that the presence

of �nancial interests in the industry may result in less output and higher prices (even if interests

are relatively small). The reason is that the competitive decision of one �rm that has �nancial

interests in its competitors�pro�t will take into account that by reducing output (or increasing

the price) it will increase the competitors�pro�t and therefore its �nancial pro�t.

While the anticompetitive e¤ects tend to be weaker than those of a merger, minority share-

holdings do not o¤er signi�cant e¢ ciencies as those that may arise with mergers (like rational-

ization or avoiding cost duplication). The common view is therefore that passive investments

tend to lessen competition. Contrary to this view, we show that minority shareholdings may

increase total surplus, and even consumer surplus, in industries where investment in R&D is

important and spillover is su¢ ciently high.

An attractive feature of considering partial cross-ownership is that it also encompasses the

case in which R&D cooperation cannot be disentangled from cooperation in the product market.

In most of the literature on R&D, cooperation does not necessarily lead to coordination in the

product market. Nevertheless, it is an old suspicion that R&D cooperation may facilitate

coordination in the product market (see e.g. Pfe¤er and Nowak [1976], Grossman and Shapiro

[1986], Jacquemin [1988], Brodley [1990], Geroski [1992], and Jacquemin and Soete [1994]).8 If

this suspicion turns out to be true, then optimal public policy must balance a trade-o¤ between

market power and e¢ ciency. Indeed there is growing evidence that R&D cooperation facilitates

product market cooperation, such as empirical results (Goeree and Helland (2010), Duso, Röller

and Seldeslachts (2010)), experimental results (Suetens, 2008), antitrust cases9, and the theory

of ancillary restraints10 and multimarket contact.11 By considering partial cross-ownership,

Lingus down to 5%.
8Martin (1995), van Wegberg (1995), Greenlee and Cassiman (1999), Cabral (2000), Lambertini et al. (2002),

and Miyagiwa (2009) analyze various channels through which cooperative R&D may facilitate coordination in
the product market.

9There are many examples of cases in which R&D collaboration lead to anticompetitive abuses. Goeree
and Helland (2010) gather a number of recent cases in the petroleum industry, the computer industry, the
semiconductor memory market and in telecommunications.
10For example, when the research joint venture stipulates downstream market division for any patents that

may result from the venture, or when there are collateral agreements that impose cross-licensing of old patents
or a per-unit output royalty for using new patents since this chills the incentives for �rms to increase output (see
Grossman and Shapiro, [1986], and Brodley [1990]).
11Firms can sustain collusion more easily when they interact in multiple markets as compared to the situation

in which they interact in one market only (Bernheim and Whinston [1990]; see also Spagnolo [1999]). Vonortas
(2000) study whether large diversi�ed �rms use research joint ventures (RJVs) to create links to competitors in
order to facilitate collusion across many markets. Using an extensive database of RJVs registered with the U.S.
Department of Justice and the Federal Trade Commission from the mid-1980s to the mid-1990s, he �nds evidence
that the scope for collusion in the product market is larger in the presence of multi-R&D project and multimarket
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our analysis therefore extends the traditional framework in two directions: the presence of

intermediate degrees of collusion and no separation between coordination in R&D and output.

While we focus on R&D investments, examining a framework in which cooperation in one

dimension may facilitate cooperation in another dimension is relevant insofar as this situation

may arise in other interesting applications. A clear case is joint marketing alliances (patent

pools). In a recent paper, Rey and Tirole (2013) study tacit collusion in sales (or licensing), and

its implications for users and society. In particular, they examine how independent marketing

and joint marketing alliances may facilitate the sustainability of tacit collusion.

We consider a model of process (cost-reducing) R&D investments with spillovers in Cournot

oligopoly. Whilst it is natural to assume that investment in R&D precedes the production

stage �rms may or may not be able to commit to their second-period decisions when they

choose their R&D investment. We will examine static and two-stage competition, however

we are primarily interested in the static model. The reason is that R&D investment e¤ort of

each �rm is frequently not (perfectly) observable, moreover R&D programs are typically long-

term investment plans and it is di¢ cult to write a contract on future actions. Cabral (2000),

Dasgupta and Stiglitz (1980), Hartwick (1984), Spence (1984), Levin and Reiss (1988), Leahy

and Neary (1997), Vives (2008), and Ziss (1994), among others, analyze simultaneous models

(in the presence or absence of R&D spillovers), but assuming that R&D cooperation does not

necessarily lead to output cooperation.

When shareholdings are symmetric across �rms, maximizing the pro�t (with �nancial inter-

ests) of a given �rm is equivalent to maximizing its own pro�t (i.e., with no �nancial interests)

and a fraction � of the pro�t of each of the remaining �rms, where the size of the parameter �

will depend on the size of the shareholdings. We explore the model in terms of � rather than

in terms of shareholdings. This modelling approach allows us to capture in a reduced form way

the result of antitrust enforcement under asymmetric information: one could think of � as a

function of an antitrust policy that limits the degree of collusion. Indeed, Besanko and Spulber

(1989) show that when collusive behavior is unobservable and production costs are private in-

formation, the optimal antitrust authority may induce �rms to collude up to some intermediate

degree. The reason is that in the presence of asymmetric information, the antitrust authority

does not know a priori if price is high because of price �xing or because of marginal costs are

contact. Also, Snyder and Vonortas (2005) show that multiproject contact can facilitate explicit collusion. The
reason is that multiproject contact allows �rms to reduce the heterogeneity in private information, which in turn
makes collusive agreements more e¢ cient (see also Matsushima [2001]).
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high. As monitoring is expensive and resources are limited, antitrust policy is committed to

sue with a probability that depends on the price observed in the industry. If �rms must pay a

�ne when collusion is detected and there is an upper limit on the level of that �ne, then they

may �nd it optimal to set a lower markup in order to reduce the risk of prosecution, which

results in imperfect collusion.12,13 In our framework, � can take any value between 0 (no col-

lusion in quantity and R&D) and 1 (full collusion in quantity and R&D); intermediate values

of � represent imperfect collusion. The analysis of imperfect collusion is also relevant once we

recognize that �rms face a number of problems that may make it impossible for them to achieve

full collusion, thereby forcing them to settle for a lesser degree of cooperation.14

Another positive aspect of introducing the parameter � is that it can be considered as a

reduced form of repeated games with limited collusive behavior because of the (necessary) low

discount factor. Since the extent of collusion is monotone in the discount factor, we can associate

a high discount factor with a high �. On the other hand, in a Cournot model with conjectural

derivative, the parameter � will be the constant elasticity of conjectural variation, which can

be used to estimate the degree of cooperation in the industry (see e.g. Martin, 2001). Finally,

parametrizing the continuum of outcomes with varying competitive toughness is also interesting

for dealing with the equilibrium indeterminacy that comes from the choice of the equilibrium

concept itself (e.g., from Cournot to price competition in static games).15

The plan of the paper is as follows. We begin by presenting the general model in Section

2. We examine how output and R&D in equilibrium behave in response to a change in the

degree of cooperation, �. We show that R&D increases with the degree of cooperation when

the level of spillover is higher than the cost pass-through coe¢ cient multiplied by the perceived

or internalized e¤ect on each �rm�s marginal cost of a unit increase in R&D by all �rms. In the

same vein, we show that output increases with the degree of cooperation when spillovers are

su¢ ciently high that the e¤ect on each �rm�s marginal cost of a unit increase in R&D by all

12 In a di¤erent context, Besanko and Spulber (1990), consumers do not observe cartel costs and therefore have
imperfect information about the existence of a price-�xing agreement. In this case it is also found that the cartel�s
pricing decision is constrained as the cartel�s equilibrium price decreases with the level of the penalties. See also
Souam (2000), Harrington (2004, 2005), and Schinkel and Tuinstra (2006).
13Also, Friedman, Jehiel and Thisse (1995) show that an intermediate antitrust policy maximizes social welfare

when �rms can collude in prices and must choose their product speci�cation.
14 Imperfect information (or moral hazard) and incomplete information (or adverse selection) may limit the

ability of �rms to enforce the joint-pro�t-maximizing outcome. Also, leniency programs a¤ect the degree of
collusion that is attainable in the industry.
15d�Aspremont and Dos Santos (2009) provide the canonical representation of oligopolistic competition that is

game-theoretically founded and nets a continuum of theories of oligopolies with varying competitive toughness.
See also d�Aspremont and Dos Santos (2010).
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�rms is larger than a given measure of the slope of the optimal locus of output and R&D (so the

positive e¤ect of cooperation on R&D investment dominates its negative e¤ect on output level).

Next, we observe that whenever an increase in � decreases R&D expenditures, it also decreases

output. However, when raising � stimulates investment in R&D, then output may or may not

increase depending on the size of the spillovers. These �ndings allow us to identify three regions

that determine the response of R&D and output to di¤erent degrees of cooperation. We also

show that at equilibrium the curvature of the innovation function is key to the response of R&D

and output to the size of spillover e¤ects.

In Section 3 we apply our framework to three models (the d�Aspremont-Jacquemin and

the Kamien-Muller-Zang model speci�cations, and a constant elasticity model) and conduct a

comparative statics analysis for each of them. Section 4 examines the socially optimal degree

of cooperation. We characterize the threshold values of spillover below which no cooperation

is optimal for consumers and total surplus, and show that the latter is higher than the former.

We also characterize the threshold value above which a positive � will be socially optimal.

We then turn to apply these results to our three model speci�cations. We �rst obtain the

threshold values for each of them. We then show that under the d�Aspremont-Jacquemin and

the Kamien-Muller-Zang model speci�cations we cannot exclude the possibility that inducing

full cooperation (i.e. setting � = 1) maximizes social welfare, but this will never be the case

in the constant elasticity model that we consider. Numerical simulations illustrate and con�rm

these results, and allow us to examine the optimal degree of toughness of the antitrust policy. We

�nd that if the objective is to maximize total surplus then there is scope for cooperation in both

dimensions when spillovers are su¢ ciently large (and the scope is larger the more �rms there are

in the market). Regarding consumer surplus, cooperation should be generally forbidden unless,

and depending on the functional forms of demand, cost and investment, the number of �rms or

spillover e¤ects are large enough. Section 5 extends our model to consider two stages: in the

�rst stage �rms choose and commit to their R&D investments, and in the second stage they

compete in output. We show that results are generally robust to this extension with the plus

that the degree of toughness of the antitrust policy will be moderated in the two-stage model

when spillovers are high. Section 6 concludes.
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2 Framework and equilibrium

We consider an industry composed of n � 2 identical �rms, in which each �rm i = 1::n chooses

simultaneously the R&D intensity (xi) and quantity (qi). Firms produce an homogeneous good

with smooth inverse demand function f(Q), with Q =
P
i qi. We assume the following

A.1. f(Q) is twice continuously di¤erentiable with f 0(Q) < 0 for all Q � 0 such that

f(Q) > 0, and

�(Q) � Qf 00(Q)

f 0(Q)

is constant.

The elasticity of the slope of the inverse demand function is ��, and so it is equivalent to the

relative degree of convexity or curvature of the inverse demand function. � is also related with

the marginal consumer surplus when output increases, that is, with ms = �f 0(Q)Q. Letting

�ms be the elasticity of the inverse marginal consumer surplus function (so �ms = ms=(ms0Q)),

Weyl and Fabinger (2013) argues that �ms measures the curvature of the logarithm of demand.

Under A.1. we can write 1=�ms = 1 + �; when demand is log-concave 1 + � > 0 and when

demand is log-convex 1 + � < 0. Furthermore, if demand is concave (convex) then � > (<)0.

Assumption A.1. is always satis�ed by inverse demand functions which are linear or constantly

elastic. In particular, the family of inverse demand functions where �(Q) is constant can be

represented as

f(Q) =

8><>: a� bQ�+1 if � 6= �1

a� b logQ if � = �1
,

where a is a non-negative constant and b > 0 (b < 0) if � � �1 (� < �1). We make the following

two additional assumptions.

A.2. The marginal production cost c(�) is independent of output and decreasing in own

R&D and that of its rival in the following manner: c(xi + �
P
j 6=i xj) with c

0 < 0, c00 � 0, and

0 � � � 1 (i 6= j).

A.3. The cost of investment is given by the function �(xi) with �(0) = 0, �0 > 0 and

�" � 0.

� represents the spillover level of the R&D activity. The presence of � is motivated by the

fact that the outcome of R&D investment by one �rm typically spills over and bene�ts other

�rms. Certainly, the intensity of spillover levels is quite heterogeneous across industries, which
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could be due to a negative relationship between spillover and patent protection levels: industries

with low patent protection tend to have higher spillover levels (e.g., those that are low-tech)

than industries with high patent protection (Griliches, 1990). In our model, as in most of the

literature on R&D, we allow R&D outcomes to be imperfectly approriable to a degree that can

take values between 0 and 1. The particular case in which � = 1 represents the case in which

�rms form a Research Joint Venture (RJV) by which they fully share R&D outcomes among

them and avoid duplication of R&D e¤orts. We may distinguish between �ve di¤erent cases: i)

� = 0 and � 2 [0; 1), �rms compete and R&D outcomes may be imperfectly appropriable; ii)

� = 0 and � = 1, �rms compete but they form an RJV and share R&D outcomes; ii) � = 1 and

� 2 [0; 1), �rms form a cartel but not an RJV; iii) � = � = 1, �rms form a cartelized RJV; iv)

� 2 (0; 1) and � 2 [0; 1), there is some degree of cooperation among �rms (because of minority

shareholdings or limited antitrust policy) and R&D outcomes may be imperfectly appropriable;

v) � 2 (0; 1) and � = 1, as in the previous case there is some degree of cooperation among �rms

but now they form an RJV and share R&D outcomes.

Each �rm�s pro�t is given by

�i = f(Q)qi � c(xi + �
X
j 6=i

xj)qi � �(xi).

Let !ji be the jth �rm�s ownership interest in the ith �rm. Total pro�t of �rm i (including

�nancial interests) is:

�i =

0@1� nX
j 6=i

!ji

1A�i +
nX
j 6=i

!ij�j .

Consider the symmetric case: !ij = !ji = !, then �i = (1� (n� 1)!)�i+!
nP
j 6=i

�j . Maximizing

�i is equivalent to maximizing,

�i = �i + �
X
j 6=i

�j , (1)

where � � [!=(1 � (n � 1)!)] 2 [0; 1]. Two remarks are in order. First, in a symmetric

equilibrium with identical �rms, �i = �j = �� for i 6= j = 1; ::; n, we have that ��i = (1� (n�

1)!)�� + !(n � 1)�� = ��. Second, the upper bound of cross-ownership is ! = 1=n, in which

case � = 1, and n identical �rms will maximize total joint pro�t. E.g., with 10 �rms in the

market, it su¢ ces that each of them has 10% of each rival�s stock to yield the monopoly level of

output in equilibrium. In particular, the more �rms there are in the market, the lower degree
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of partial cross-ownership is needed to achieve the monopoly level of output.

We explore the model in terms of �, so the objective function is (1). Write � = 1+�(n�1),

B = 1+ �(n� 1) and � = 1+ �(n� 1)�. A symmetric interior equilibrium (Q�; x�) must solve

the �rst-order necessary conditions:

f(Q�)

�
1� "(Q�)�

n

�
= c(Bx�) (2)

�c0(Bx�)Q
��

n
= �0(x�), (3)

where "(Q�) > 0 is the inverse of the elasticity of demand. Let �iz(�); �iz(�) and 'xq(�) be

de�ned by �iz(�) = (@2=@z2i )�i, �
i
z(�) = (@2=@zi@zj)�i, '

i
�z(�) = (@2=@�@zi)�i (with z = q; x)

and 'ixq(�) = (@2=@xi@qi)�i (i 6= j; i; j = 1; 2; :::; n). We assume that the following stability

conditions hold: �q � �q + (n� 1)�q < 0 and �x � �x + (n� 1)�x < 0, and that

�(Q�; x�) = �q�x �
�
'xq

�2
�B > 0. (4)

Together imply that (2) and (3) have unique solution. If �(Q�; x�) > 0, then we say that the

equilibrium is regular, the meaning of which will become clear in the comparative statics analysis

below. In particular, we assume that there is a unique regular symmetric interior equilibrium

(Q�; x�) � the characterization of such an equilibrium will be the focus of the paper.

Comparative statics with respect to the degree of cooperation. We are particularly

interested in how output and R&D in equilibrium behave in response to a change in �. If we

totally di¤erentiate the two �rst-order necessary conditions, then after some manipulations we

get
@q�

@�
=
1

�
['�x'xqB � '�q�x] (5)

@x�

@�
=
1

�
['�q'xq� � '�x�q]. (6)

The sign of these derivatives is not immediately clear. To see this, notice that for a given

x, � has a negative e¤ect on output: 'i�q = f 0(Q)
P
j 6=i qj < 0. This is the well-known e¤ect

of reducing output so as to increase price. Conversely, for a given q, � has a positive e¤ect on

investment: 'i�x = ��
P
j 6=i c

0(xj + �
P
k 6=j xk)qj > 0. This is the internalizing externalities

e¤ect, which, as it is clear from the previous equation, depends directly on the size of the

spillovers. The �nal sign of the impact of � on the equilibrium values of output and R&D
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per �rm will depend on which of the two previous e¤ects dominates. (Notice that 'ixq > 0.)

When � is small, the positive e¤ect on investment is small, so the negative e¤ect on output

dominates. Then, q� decreases with �, and as a result �rms also invest less when � increases

since the bene�t that �rms obtain from investing in R&D decreases proportionally with output.

Let us call the region in which this case occurs (i.e. when @q�=@� < 0 and @x�=@� < 0) as RI.

Suppose now that � is su¢ ciently high, so that the positive e¤ect on R&D reduces signi�cantly

the unit cost of production and this in turn stimulates output. Two e¤ects are present in this

case. On the one hand, the �rst mentioned e¤ect still exists: �rms want to reduce output so

as to increase price in equilibrium. On the other hand, now �rms have incentives to produce

more as they are more e¢ cient. If the �rst e¤ect dominates, then @q�=@� < 0 and @x�=@� > 0

(we name this region RII). Conversely, if the second e¤ect dominates, then @q�=@� > 0 and

@x�=@� > 0 (region RIII). Which of these two cases arises in equilibrium will depend on the

strength of the spillovers. In particular, from equations (5) and (6) we may derive threshold

values (in terms of �) above which regions RII and RIII exist.

Using equation (6) one obtains

sign

�
@x�

@�

�
= sign f� (�(1 + �) + n)� �g . (7)

Interestingly, the above condition can be rewritten in terms of the cost pass-through coe¢ cient:

P 0(c) = f 0(nq�)n(dq�=dc), which is the rate at which the price changes with marginal cost (see

e.g. Cowan [2012], and Weyl and Fabinger [2013]). By di¤erentiating the �rst-order necessary

condition @�i=@qi = 0, we obtain

P 0(c) =
n

�(1 + �) + n

=
n

�=�ms + n
.

(The cost pass-through coe¢ cient can be written in terms of the curvature of the inverse demand

function or in terms of the elasticity of the inverse marginal consumer surplus.) Note that the

stability condition �q < 0 holds if �(1+�)+n > 0, so P 0(c) > 0. Furthermore, the pass-through

decreases with the term �=�ms = �(1 + �). We thus have
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LEMMA 1 At equilibrium,

sign

�
@x�

@�

�
= sign

�
�P 0(c)�1n� �

	
,

where �P 0(c)�1n� � = (n+ 1 + ��)� � 1.

We �nd that investment in R&D increases with the degree of cooperation when the size

of spillovers is higher than the cost pass-through coe¢ cient multiplied by the perceived or

internalized e¤ect on each �rm�s marginal cost of a unit increase in R&D by all �rms (�) over

n, i.e., when � > �P 0(c)=n. Thus, we have that @x�=@� > 0 if and only if � > 1=(n + 1 +

��): allowing a higher degree of cooperation has a harmful e¤ect on the equilibrium R&D

expenditures, @x�=@�, when spillover e¤ects are low.

Equation (5) can be rewritten as follows:

@q�

@�
= � 1

f 0(Q�) (�(1 + �) + n)
['�q + 'xqB

@x�

@�
]. (8)

The impact of a higher degree of cooperation on output at equilibrium depends directly on

the marginal pro�t with respect to output, '�q, and indirectly through its e¤ect on the R&D

received by each �rm at equilibrium. Since �q < 0 requires that �(1 + �) + n > 0, '�q is

negative and 'xq is positive, from equation (8) we have that if @x�=@� � 0, then @q�=@� < 0

(region RI). This con�rms that an increase in R&D investment is necessary (but not su¢ cient)

for output to rise. In particular, if spillovers are su¢ ciently high, then @x�=@� > 0, and the

sign of @q�=@� can be negative (region RII) or positive (region RIII).

Let

H(�) =
�
'�q='�x

� �x
'xq

.

We can establish the following Lemma:

LEMMA 2 At equilibrium,

sign

�
@q�

@�

�
= sign fB �H(�)g . (9)

By totally di¤erentiating the �rst-order condition with respect to R&D we get that its slope

when there is no cooperation (� = 0) is dq=dx = ��x='xq. Since �x < 0 and 'xq > 0, we

have that dq=dx > 0: the locus of (q; x) combinations satisfying the �rst-order condition with

12



respect to R&D is upward sloping. For � = 0, we thus have dq=dx = �('�x='�q)H(�). The

expression '�x and '�q is respectively the variation of the marginal pro�t with respect to R&D

and output resulting from a higher degree of cooperation. As we discuss below, a higher degree

of cooperation pushes �rms to reduce output ('�q < 0), thereby increasing revenues, but also

to raise R&D ('�x > 0), thereby decreasing marginal costs and increasing investment costs.

Therefore, the ratio '�q='�x measures the �rm�s relative gain from some additional degree

of cooperation, and H(�) = �
�
'�q='�x

�
dq=dx is then the slope of the optimal locus (q; x)

weighted by this gain. Suppose that �00(x�) is strictly positive, then H(�) can be written as

H(�) =
1

�(Q�; x�)

�
1 +

�(Bx�)

y(x�)

�
,

where �(Bx�) = �c00(Bx�)Bx�=c0(Bx�) � 0 captures the elasticity of the slope of the innovation

function, y(x�) = �00(x�)x�=�0(x�) � 0 captures the elasticity of the slope of the investment cost

function, and �(Q�; x�) = ��c0(Bx�)2=(f 0(Q�)�00(x�)) > 0 measures the relative e¤ectiveness

of R&D.16 Therefore, the ratio of the curvature of the innovation function to the curvature of

the investment cost function, �=y, plays an important role in capturing the slope of locus of

(q; x) combinations satisfying the �rst-order condition with respect to R&D. In particular, H

can be expressed as the sum of the inverse of relative e¤ectiveness of R&D and the curvature

ratio weighted by the inverse of relative e¤ectiveness. B captures the e¤ect on each �rm�s

marginal cost of a unit increase in R&D by all �rms. When B > H(�) the positive e¤ect of

cooperation on R&D investments dominates its negative e¤ect on output, so that a "little"

more of cooperation raises output at equilibrium. Ideally, we would like to consider the class

of games for which there exists a unique positive �, denoted by �0, above which @q�=@� > 0.

Suppose that � 2 R+, since H(�) 2 R+ we have that H(�) : R+ �! R+, therefore �0 2 R+ is

positive and unique when

A.4. H(�) has slope less than n� 1.

Under A.4. B = H(�) has a unique positive solution (H(0) = 1). Whilst assumption A.4

does not guarantee that �0 is lower than one, so RIII may potentially fail to exist, it seems

not to be restrictive given the model speci�cations that are typically used in the literature. For

example, as we will see in next Section, in d�Aspremont and Jacquemin (1988), and Kamien,

Muller and Zang (1992) with the innovation function considered below, H is strictly decreasing

16As de�ned by Leahy and Neary (1997, Section V., p. 654).
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in �. Hence in both cases we can derive a unique positive threshold value �0 above which

@q�=@� > 0.

Fig. 1a. n = 2. Fig. 1b. n = 3.

LEMMA 3 (i) If �(n+�)=� � � � �n=�, then only Region RI exists; (ii) If � > �n=�, then

Region RI and RII exist, Region RIII moreover exists (�0 < 1) if n�H(1) > 0 holds.

Proof. See Appendix A.

If � < �n(1 + �)=�, so that �q > 0 holds, then condition � < �n=� also holds: when

quantities are strategic complements (S.C.) only Region RI exists. When � is such that �n(1+

�)=� < � < �n=�, quantities are strategic substitutes but again only Region RI exists; however,

when � > �n=� quantities are strategic substitutes (S.S.) and at least Region RI and RII exist

(see Figure 1a,b). Therefore, as a corollary, we have that Region RII can only exist when

quantities are strategic substitutes. Furthermore, Regions RI and RII exist when demand is

concave (� > 0). Using the above Lemmas we can establish:

PROPOSITION 1 Under assumptions A.1.-A.4., when � � �n=� only Region RI exists, and

quantities are strategic complements (respectively strategic substitutes) if � < (>)�n(1+�)=�;

when � > �n=�, quantities are strategic substitutes, and: (i) if � � 1=(1+n+��), then @x
�

@�
� 0

and
@q�

@�
< 0 (region RI); (ii) if 1=(1 + n + ��) < � � �0, then

@q�

@�
� 0 and @x

�

@�
> 0 (region

RII); (iii) if � > �0, then
@q�

@�
> 0 and

@x�

@�
> 0 (region RIII), where �0 is the unique positive

solution to the equation B �H(�) = 0.

Before proceeding with the welfare analysis, we �rst look at the impact of � on equilibrium

values.

14



Comparative statics with respect to the spillover e¤ects. By totally di¤erentiating

the two �rst-order conditions with respect to �, we get

@q�

@�
=
1

�
['�x'xqB � '�q (�x + �x(n� 1))]

@x�

@�
=
1

�
['�q'xq� � '�x

�
�q + �q(n� 1)

�
].

Since 'xq > 0 and '�q > 0, the sign of the impact of � on output and R&D in equilibrium

depends on the sign of '�x. It can be shown that

'�x = �c0(Bx�)
(n� 1)q�

B
[B�� �(Bx�)].

Noting that the elasticity of the slope of the innovation function is non-negative, we have

that '�x is positive (respectively negative) when the curvature of the innovation function is

su¢ ciently low (high). Therefore, we have

PROPOSITION 2 When the curvature of the innovation function, �, is su¢ ciently low, then

@q�=@� > 0 and @x�=@� > 0. If the curvature of the innovation function is su¢ ciently high,

then the sign of the impact of � on q� and x� is ambiguous.

As a corollary, when marginal cost is linear (� = 0), as e.g. in d�Aspremont and Jacquemin

(1988), increasing the size of spillover e¤ects raises the equilibrium values of output and R&D.

However, in the next section we will see that under the model speci�cation used in Kamien,

Muller and Zang (1992), � > 0 and, as a result, for low values of � we may have that @x�=@� < 0.

3 Model speci�cation examples

This section gives a brief description of di¤erent model speci�cations, presents market outcomes

and performs comparative statics. We will consider the well-known R&D model speci�cations

with linear demand of d�Aspremont-Jacquemin (AJ) and Kamien-Muller-Zang (KMZ), and a

constant elasticity model (CE) similar to the Dasgupta and Stiglitz�s (1980) model but with

spillover e¤ects.

As shown in Amir (2000) the AJ and the KMZ model speci�cations are not equivalent

for large spillover values (the critical value depends on the innovation function or unit cost of

production function and on the number of �rms). The di¤erence between the two models lies on
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AJ KMZ CE

Demand f = a� bQ f = a� bQ f = �Q�"

� = 0; a; b > 0 � = 0; a; b > 0 � = �(1 + "); a = 0; b = �� < 0
c(�) �c� xi � �

P
j 6=i xj �c� [(2=)(xi + �

P
j 6=i xj)]

1=2 �(xi + �
P
j 6=i xj)

��

�(x) (=2)x2 x x

Table 1: Model Speci�cations.

AJ KMZ CE

S:O:C b > 1=2 b > �=(2~�) n > �(1+")
2 and "(1+�)

� > n(n�"�)
~�(2n+��)

Regularity Condition b > �B=(� + n) b > �=(� + n) (1 + �)=� > 1="

, with ~� � 1 + �(n� 1)�2.

Table 2: Second-order conditions and regularity condition. (See Appendix B.)

the unit cost of production function and the autonomous R&D expenditures. Under the KMZ

speci�cation, the e¤ective R&D investment for each �rm is the sum of its own expenditure xi and

a �xed fraction (�) of the sum of the expenditures of the rest of �rms, i.e., Xi = xi+�
P
j 6=i xj .

Instead, under the AJ speci�cation, the e¤ective cost reduction for each �rm is Xi, so c(�) is

a linear function. Thus, in AJ decision variables are unit-cost reductions, whereas in KMZ

decision variables are the autonomous R&D expenditures.17 In particular, in KMZ the unit

cost of �rm i is �c � h(xi + �
P
j 6=i xj), where for given xi � 0 (i = 1; :::; n) the e¤ective cost

reductions to �rm i, h(�), is a twice di¤erentiable and concave function with h(0) = 0, h(�) � �c,

and (@=@xi)h(�) > 0. As in Amir (2000), to allow for a direct comparison between AJ and KMZ,

we consider a particular case of the KMZ model speci�cation: h = [(2=)(xi + �
P
j 6=i xj)]

1=2

with  > 0. The CE model considers constant elasticity demand and costs with �; � > 0 (see

Table 1), and where � is the elasticity of unit cost of production with respect to the investment

in R&D. Finally, �(x) is quadratic in AJ but linear in KMZ and CE. Table 1 summarizes these

model speci�cations, and Table 2 contains su¢ cient second-order conditions and the regularity

condition for each model speci�cation.

Comparative statics. Table 3 collects equilibrium values of output and R&D that one

obtains by solving equations (2) and (3). In Appendix B we shall show that in the constant

elasticity model, � > 0 if and only if " � �(1 � ") > 0. We next examine comparative statics

with respect to demand and cost parameters, spillover e¤ects and the degree of cooperation.

17Furthermore, while in AJ the joint returns to scale (in R&D expenditure and number of �rms) are decreasing,
constant or increasing when spillover e¤ects are less than, equal to, or greater than 1=(n+ 1), in KMZ the joint
returns to scale are always nonincreasing (Proposition 4.1 in Amir [2000]).
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AJ KMZ CE

q� (a��c)
b(�+n)�B�

(a��c)
b(�+n)��

1
���

�
� (��=n)" �"�1 (1� "�=n)

�(1+�)=["��(1�")]
x� �(a��c)

b(�+n)�B�
�2(a��c)2

2B(b(�+n)��)2
1
B

�
� (��=n)" �"�1 (1� "�=n)

�1=["��(1�")]
H b

�
bB
�

B
�

�
�+1
�

�
"

n�"��

Table 3: Equilibrium Values.

Demand and cost parameters. Clearly, in AJ and KMZ the R&D expenditure and output

per �rm increase with the size of the market (a). Conversely, both x� and q� decrease with

the level of ine¢ ciency of the technology employed, �c, the slope of inverse demand, b, and the

slope of the marginal R&D costs, . As in the previous cases, in the constant elasticity model

R&D expenditure and output per �rm increase with the size of the market, �. In addition, the

costlier is the technology employed, �, the lower is total output, Q�. However, x� decreases

(respectively, increases) with � if demand is elastic (inelastic). The last two results hold for any

value of � and �.18

Spillover e¤ects. With the AJ model speci�cation, as mentioned in the previous section,

for all � we have that @q�=@� > 0 and @x�=@� > 0 because � = 0, and hence '�x > 0. Thus,

spillovers do not reduce the incentives for cost reductions. In KMZ, as in AJ, for any given

� 2 [0; 1] we have that @q�=@� > 0. More interestingly, x� decreases (respectively, increases)

with � for low (high) values of � because here � > 0. In the constant elasticity model, we

have that for any positive �, @q�=@� > 0 (if � = 0, then @q�=@� = 0). Furthermore, as in the

KMZ model, x� decreases (respectively, increases) with � for low (high) values of � (since here

� > 0). Therefore, while in both KMZ and CE the presence of spillover e¤ects tends to reduce

the incentives for cost reductions, cooperation among �rms alleviates the problem by restoring

such incentives.

Degree of cooperation. As we discussed earlier, the impact of � on q� and x� depends on

the size of the spillover e¤ects. In particular, using the results of Section 2 we can determine

signf@q�=@�g and signf@x�=@�g. (See Lemma 6 in Appendix B.) From Lemma 6 we can obtain

the threshold values that determine regions RI, RII and RIII (see Table 4)19, and therefore

apply Proposition 1 to each model speci�cation.

In the analysis that follows, we will examine the optimal degree of cooperation (or optimal

18The same result is obtained in Dasgupta and Stiglitz (1980) for � = � = 0 and free entry.
19 It is simple to verify that under the three model speci�cations the condition � > 0 guarantees that �0 >

1=[1 + n+ ��].
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Spillover Thresholds
1=(1 + n+ ��) �0

AJ 1=(1 + n) [�1 +
p
1 + 4b(n� 1)]=[2(n� 1)]

KMZ 1=(1 + n) b
CE 1=[(n� ")� �(n� 1)(1 + ")] "(�+ 1)=[�(n� ")� (2�+ 1)(n� 1)�"]

Table 4: Spillover Thresholds.

degree of toughness of the antitrust policy) and how it depends on the size of spillovers, the

number of �rms and the relevant parameters of demand and cost.

4 Welfare analysis

Welfare in equilibrium is given by the sum of consumer surplus (CS) and industry pro�ts:

W (�) =

Z Q�

0
f(Q)dQ� c(Bx�)Q� � n�(x�).

We are interested in studying the e¤ect of � on welfare. Using the equilibrium conditions (2)-(3),

we have

W 0(�) =

�
��f 0(Q�)@q

�

@�
� (1� �)�(n� 1)c0(Bx�)@x

�

@�

�
Q�. (10)

Allowing for some additional cooperation alters equilibrium values of quantities and R&D in-

vestments, and each additional unit of output and R&D has respectively social value equal to

�(�f 0(Q�))Q� and (1 � �)�(n � 1)(�c0(Bx�))Q�. Therefore, the socially optimal value of �

depends on the magnitude of the change in decision variables at equilibrium as a response to

a change in �. In this sense, Proposition 1 turns out to be fruitful here. In RI we have that

W 0(�) < 0 since @x�=@� � 0 and @q�=@� < 0; in RII, however, the impact of � on welfare

can be positive or negative depending on whether the positive e¤ect of cooperation on R&D

dominates or not the negative e¤ect of cooperation on output; clearly, in RIII: W 0(�) > 0.

Furthermore, since

sign
�
CS0(�)

	
= sign

�
@q�

@�

�
,

the impact of � on consumer surplus is positive (i.e., CS0(�) > 0) only in RIII. Thus, while

in RI and RII consumers su¤er from a higher degree of cooperation (because a lower output

implies a higher price in equilibrium), in RIII consumers bene�t from cooperation. Therefore,

antitrust policy will tend to be tougher under CS standard. The next proposition provides
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conditions under which the antitrust authority prefers allowing or not some cooperation among

the �rms.

PROPOSITION 3 Suppose that � > �n=�, under assumptions A.1-A.4.,

(i) Total surplus is maximized with � = 0 when � < �, where � = 1=(1 + n(1 + �)) if � � 0

and � = 1=(1+ n+ �) if � � 0. However, total surplus increases with � if the spillover is larger

than the threshold value �̂ > �, where �̂ is the unique positive solution to the equation

H(�)�B = n� �
�

�
nP 0(c)�1� � �

�
with �P 0(c)�1n� � = (n+ 1 + ��)� � 1. Furthermore, �̂ < 1 if

H(1)� n < n� �
�

(n+ ��).

(ii) Considering �0 as a function of �, �0(�), we have: (a) If �0(�) is decreasing in �, then

� � �0(1)) ��CS = 0 and � > �0(0)) ��CS = ��TS = 1;

(b) If �0(�) is increasing in �, then

� � �0(0)) ��CS = 0 and � > �0(1)) ��CS = ��TS = 1;

(c) If �0 is independent of �, then

� � �0 ) ��CS = 0 and � > �0 ) ��CS = ��TS = 1.

We have that �0 < 1 when n�H(1) > 0;

(iii) � < �̂ < �0. Furthermore, @�=@n < 0, @�0=@n < 0 if �0 > @H(�0)=@n, and @�̂=@n < 0

if �̂ > @(H(�̂)� @g(�̂))=@n, where g(�) = ((n� �)=�)(nP 0(c)�1� � �) and @g(�̂)=@n > 0.

Proof. See Appendix A.

Therefore, when � < � competition authorities that seek to maximize total surplus should

not allow �rms to cooperate. We observe that the threshold value � decreases with n. The

reason is that the incentives for �rms to "free ride" are larger when the number of �rms increases

because each �rm can then appropriate R&D e¤orts of a higher number of participants. If
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demand is linear, then � = 1=(1 + n), whereas if demand has constant elasticity, "�1, so

� = �(1 + "), then � = 1=(1 � n") when � > 0 (" < �1) and � = 1=(n � ") when � < 0

(" > �1). Nevertheless, Proposition 3 also says that there may exist a threshold value, �̂, lower

than one and above which increasing the degree of cooperation is welfare improving. A corollary

of Proposition 3 is:

COROLLARY 1 There exists a threshold value �� 2 (�; 1) above which allowing for some co-

operation is socially optimal if

(n+ (n� 1)(� + n))�H(1) > 0. (11)

Under condition (11), W 0(0) > 0 holds for � = 1, so �� = �̂
���
�=0

< 1 and therefore ��TS > 0

whenever spillover is larger than the threshold value ��. For the functional forms assumed in

the paper, below we will obtain the threshold value ��, and the condition that guarantees that

such a threshold is below 1. In particular, under such model speci�cations W 0(0) is a quadratic

function, and therefore �� is given by the largest root of W 0(0) = 0.20

�0 is the threshold value above which consumers bene�t from cooperation. Part ii of Propo-

sition 3 distinguishes among three cases, and for each of them identi�es threshold value below

which no cooperation is optimal in terms of consumer surplus, and threshold value above which

full cooperation is optimal in terms of consumer and total surplus. Note that if H(�) is in-

creasing (respectively decreasing) in �, then �0(�) is also increasing (resp. decreasing) in �.21

In the CE model, H(�) is increasing in �, so case �b�of Proposition 3 holds. In AJ and KMZ,

however, H(�) is independent of �, so case �c�of Proposition 3 holds and as a result under both

model speci�cations the consumer surplus solution is bang-bang.

Finally, while more �rms in the market decreases the threshold value below which no coop-

eration is optimal (�), the impact of the number of �rms on the threshold values above which

some cooperation increases total surplus (�̂) and consumer surplus (�0) is less clear. The reason

is that the impact of the number of �rms on H depends on the functional forms. (Below we

discuss the impact of entry on �� and �0 under each model speci�cation.)

20See proof of Lemma 4 in Appendix C.
21 If �0 is the unique positive solution to the equation H(�) � B = 0 and H(�) is increasing in �, then when

� increases, �0 must also increase so as to reduce the di¤erence H(�) � B since B is independent of � and, by
Assumption A.4., @(H(�)�B)=@� < 0.
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Examples. We are interested in determining for each model speci�cation the threshold ��,

which is the spillover level above which some (output and R&D) cooperation among �rms is

desirable for welfare:

LEMMA 4 (Threshold Values) (i) In AJ we have

��
AJ � (n� 2) +

p
(n� 2)2 + 4b(n+ 2)(n� 1)
2(n+ 2)(n� 1) ,

with ��AJ � 1 if b � n2. (ii) In KMZ we have

��
KMZ � (n� 2) + b(n� 1) +

p
(n� 2)2 + b(n� 1)(b(n� 1) + 6n+ 4)
2(n+ 2)(n� 1) ,

with ��KMZ � 1 if b � n. (iii) In CE, ��CE is the threshold value above which

(n� ")��(B + (n� 1)(�(n� ")� 1))� "(�+ 1)B > 0.

Proof. See Appendix C.

In the AJ model the second-order condition requires that b > 1=2 (so ��AJ < 1 in the

region: 1=2 < b < n2), whereas in the KMZ model the second-order condition requires that

b > 1=2 when � = 0 (so ��KMZ
< 1 in the region: 1=2 < b < n). As in these two cases, in the

constant elasticity model we can derive the threshold ��CE above which it is socially optimal to

allow some cooperation. However, as in this case ��CE takes a long expression, we are giving

the threshold value in implicit form.

As mentioned above, the impact of entry on �0 depends on the functionH. For example, from

Table 4 we have that with the model speci�cation used in d�Aspremont and Jacquemin (1988),

@H=@n = 0, so increasing the number of �rms decreases the threshold (@�0AJ=@n < 0), but with

the model speci�cation used in Kamien, Muller and Zang (1992) introduced above, the threshold

is constant (i.e., @H(�0)=@n = �0), so increasing n has no impact on �0 (@�0KMZ=@n = 0).

Finally, in the constant elasticity model, the direction of the impact of n on the threshold

depends on the value of �: �0CE decreases (respectively increases) with n when � is low (high)

(@�0CE=@n > 0 for � > �=["(2�+ 1)]). Note that �0CE is increasing in � (case b in Proposition

3). Thus, if � < �0CE(0), then �
�
CS = 0. However, since �0CE(0) decreases with n, entry may

facilitate that ��CS > 0. On the other hand, if � > �0CE(1), then �
�
CS = ��TS = 1, but since

�0CE(1) increases with n, entry may reduce the socially optimal level of cooperation.
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Fig. 2a (respectively Fig. 2b) shows the value for �� under the AJ (KMZ) model speci�cations

as a function of the number of �rms and for di¤erent values of b. As the �gure makes clear,

��
AJ and ��KMZ decrease with n: when there are more �rms in the market, there is more need to

increase cooperation in order to internalize the additional externalities. We also have that ��AJ

and ��KMZ decrease with b, and that ��AJ may take values above 1 when n < 3, although this

is not the case if b is low enough. In particular, from Lemma 4 it is easy to conclude that under

the AJ (respectively, KMZ) model speci�cations, in a duopoly �� � 1 when b � 4 (b � 2).

That is, having �� lower than 1, requires lower values of b in the KMZ model than in the AJ

model. Fig. 2a and 2b depict the threshold �0 evaluated at the lowest value b considered in

each �gure.

Threshold values ��, above which some cooperation is socially optimal

Fig. 2a. AJ model speci�cation. Fig. 2b. KMZ model speci�cation.
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Threshold values ��, above which some cooperation is socially optimal

Figure 3a. Constant elasticity model. Figure 3b. Constant elasticity model.

Fig. 3a and Fig. 3b depict ��CE as a function of n and for di¤erent values for � and ".

In Appendix B, we shall examine the region for the values of �, " and n such that feasible

conditions for the existence of the equilibrium (provided in Proposition 7, Appendix B) are

satis�ed. A glance at these �gures shows that ��CE decreases again with n (for given " and �).

In addition, Fig. 3a tells us that for given n and ", ��CE decreases with the elasticity of the

innovation function, �, whereas Fig. 3b shows that for given n and �, ��CE increases with ", so

it decreases with the elasticity of demand. We also have that for the (feasible) combination of

parameters (�; ") considered here, ��CE � 1 when there are two or three �rms in the market.

�0CE takes value above one in Fig. 3a and 3b. For example, with " = 0:8, � = 0:1 and � = 0,

�0CE < 1 only if n � 10.

As mentioned above, in AJ and KMZ, case �c�of Proposition 3 holds, thus if spillover is

su¢ ciently large, so that � > �0 (�AJ 0 and �KMZ0 can be found in Table 4), then ��CS = ��TS = 1.

A key result is the following Proposition:

PROPOSITION 4 In AJ, a social planner that seeks to maximize total surplus or consumer

surplus will allow for full cooperation if � > �0AJ (or, equivalently, if n > b��(1��)
�2

) with

�0AJ < 1 if b < n, which together with second-order and regularity condition evaluated at

� = � = 1 require that n=2 < b < n. In KMZ, consumer surplus and total surplus are

maximized with full cooperation if � > �0KMZ with �
0
KMZ < 1 if b < 1, which together with

second-order and regularity condition evaluated at � = 1 require that 1=2 < b < 1. In the CE
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model full cooperation is never socially optimal.

Proof. See Appendix C.

Therefore, in terms of consumer surplus in AJ and CE it is optimal to no allow for some

cooperation when entry is insu¢ cient: in AJ when n < b (since �0AJ > 1) and in CE when

n < "(2�+1)=� (since �0CE > 1 when n < "(2�+1)�=�). On the other hand, we cannot exclude

the possibility that inducing full cooperation maximizes social welfare under the AJ and KMZ

model speci�cations (Figure 6a and 7a show this case), however conditions are restrictive and

only in AJ entry widens the region where this case arises. To get additional insights into the

socially optimal degree of cooperation, we will conduct some numerical simulations.22 As will

be clear below, simulations show that the socially optimal degree of cooperation in terms of

total surplus is usually much lower in the constant elasticity demand model than under the

AJ model speci�cation. Moreover, as the above proposition asserts, it is never optimal to

have full cooperation in the constant elasticity demand model. We �rst examine the constant

elasticity model, and then turn to discuss numerical simulations under the AJ and KMZ model

speci�cations. Table 5 summarizes the results of the static model.

Figure 4a and 4b depict the socially optimal value of �, denoted as ��, in terms of total

surplus (solid line) and consumer surplus (dashed line) for the constant elasticity model. When

the number of �rms is small (less than 4 in our example), it is never optimal to allow �rms to

cooperate (region RI). As the spillover e¤ects and the number of �rms increase, ��TS increases,

but ��CS is much �atter. This is region RII, in which �rms bene�t and consumers su¤er from

a higher degree of cooperation because @q�=@� < 0 (and therefore the price in equilibrium

increases with �). Nevertheless, the overall impact of � on welfare is positive because the

positive impact on x� dominates the negative impact on q�. Finally, we �nd that slightly

raising � may be optimal from the consumer�s point of view when the number of �rms in the

market is su¢ ciently large (region RIII).

22Values for parameters are chosen so that the second-order conditions and the regularity condition are satis�ed,
and such that in equilibrium q, x, �, f , and c are non-negative.
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Optimal degree of cooperation in terms of total surplus and consumer surplus

Figure 4a. Constant elasticity model.

(Numerical values: � = 0:1, " = 0:8,

� = � = 1, n = 8.)

Figure 4b. Constant elasticity model.

(Numerical values: � = 0:1, " = 0:8,

� = � = 1, � = 0:8.)

Optimal degree of cooperation in terms of total surplus and consumer surplus

Figure 5a. Constant elasticity model.

(Numerical values: � = 0:1, � = � = 1,

n = 8, � = 0:8.)

Figure 5b. Constant elasticity model.

(Numerical values: " = 0:8, � = � = 1,

n = 8, � = 0:8.)

Fig. 5a and 5b show that the greater is the elasticity of demand, "�1, or the innovation

function, �, the greater should be the degree of cooperation if the social planner seeks to

maximize total surplus; however, if the objective is to maximize consumer surplus, then for the
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same parameter range, ��CS = 0.

We now explore the model under the AJ model speci�cation. Fig. 6a shows that consumer

surplus and total surplus are maximized with full cooperation when spillovers are su¢ ciently

large. This result illustrates our previous points. We have shown that under the AJ model

speci�cation both @x�=@� and @q�=@� can be positive in the feasible region of parameters if

� is large enough (region RIII). In this case, increasing � boosts R&D investment, which in

turn stimulates further output (and therefore lowers price in equilibrium). As a result, both

consumers and �rms may bene�t from a higher degree of cooperation. Fig. 6b shows that ��TS

also increases with the number of �rms, although ��CS is much �atter: only if the number of �rms

is large enough (in our example � where � = 0:8� we need more than 6 �rms), it is socially

optimal (in terms of total surplus and consumer surplus) to allow �rms to fully cooperate.

Therefore, increasing � and n raises ��TS , but �
�
CS = 0 unless � > 0:8 or n � 7. Finally, we can

also explore the socially optimal degree of cooperation as a function of . Numerical results

show that ��TS decreases with, and �
�
CS is neutral to, the value of .

Optimal degree of cooperation in terms of total surplus and consumer surplus

Fig 6a. AJ model speci�cation.

(Numerical values: a = 700, c = 500,

 = 7, n = 6 and b = 0:6.)

Fig. 6b. AJ model speci�cation.

(Numerical values: a = 700, c = 500,

 = 7, � = 0:8, b = 0:6.)
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�� ��TS ��CS
AJ KMZ CE AJ KMZ CE AJ KMZ CE

n � � � + + + (+) 0 (+)
b + +
� � + [+]
"�1 � + [+]
� + + + (+) (+)� [+]
 + + � � � �

Table 5: Impact of parameters in the one-stage model. (+): the impact is positive only if �
and n are su¢ ciently large, otherwise the impact is zero; (+)�: the impact is positive only if
the parameter is su¢ ciently large and b is su¢ ciently small, otherwise the impact is zero; [+]:
the impact is positive when n is su¢ ciently large, otherwise the impact is zero.

Optimal degree of cooperation in terms of total surplus and consumer surplus

Fig 7a. KMZ model speci�cation.

(Numerical values: a = 700, c = 500,

 = 3, n = 6 and b = 0:3.)

Fig. 7b. KMZ model speci�cation.

(Numerical values: a = 700, c = 500,

 = 3, � = 0:8, b = 0:3.)

Fig. 7a depicts the socially optimal degree of cooperation for di¤erent values of � under

the KMZ model speci�cation with b = 0:9, so full cooperation is socially optimal when � >

�0KMZ = 0:9 (see Proposition 4). Considering values of b above 1, we �nd that ��TS still

increases with �, however, as expected, ��CS = 0 even if � = 1. Fig. 7b considers di¤erent

number of �rms with � = 0:8. In terms of total surplus, �� is above 0:8 when there are four or

more �rms in the market. As we discussed above, in KMZ increasing the number of �rms does

not alter the signf@q�=@�g, and therefore has no impact on the signfCS0(�)g. Therefore, in

this case consumer surplus is constantly decreasing with the degree of cooperation.
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5 The two-stage model

In this section we consider two stages. In the �rst stage, every �rm i commits to invest an

amount xi in R&D. In the second stage, and for given R&D expenditures, �rms compete in the

product market. We will solve for the subgame-perfect equilibrium of the model with ��degree

of cooperation in the two stages.

Let x = [x1; x2; :::; xn] and q = [q1; q2; :::; qn] be the �rst-stage R&D and second-stage output

pro�les. The concavity of �i with respect to qi (�q < 0) at a symmetric equilibrium is guaranteed

by the condition: � > �2n=�. Note that for � = 1 the condition reduces to � > �2 (or �� < 2 �

i.e., the convexity of inverse demand must not be too high), which in turn implies that marginal

revenue is strictly decreasing in output. Let q�i (x) denote the �rm-i output equilibrium value

of the second-stage game associated to the R&D pro�le x, then for all i:

@

@qi
�i(q

�(x);x; �) = 0. (12)

In the �rst-stage, the �rst-order necessary conditions are (for i 6= j and i; j = 1; 2; :::; n)

@

@xi
�i(q

�(x);x; �) +
X
j 6=i

@

@qj
�i(q

�(x);x; �)
@

@xi
q�j (x) = 0. (13)

The equilibrium R&D pro�le x� is characterized by the system of equations (12)-(13) (pro-

vided second-order conditions hold). Let q� = q�(x�), then fx�;q�g is the subgame-perfect

equilibrium of the two-stage game. The second term of equation (13) is the strategic e¤ect of

investment on pro�ts. Building on Suzumura (1992) and Leahy and Neary (1997), it can be

shown that the term @q�j =@xi evaluated at a symmetric equilibrium, where q
�
i = q� and x�i = x�

for all i, is given by

@q�j
@xi

= �c0(Bx�) �q
(�q � �q)(�q + (n� 1)�q)

�
~�(�)� �

�
, (14)

with ~�(�) = �q=�q < 1 for � < 1.23 Therefore, only if production decisions are strategic

substitutes (�q < 0), we have that ~�(�) > 0. Using Assumption A.1., it is easy to reduce the

23Since �q � �q = f 0(Q�)(1� �) < 0 for � < 1.
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above expression to the following (for � < 1):

@q�j
@xi

=
�c0(Bx�)
f 0(Q�)

�
1

n(1� �)

��
2n+ ��

n+ �(� + 1)

��
~�(�)� �

�
,

where

~�(�) =
n(1 + �) + ��

2n+ ��
.

Evaluating @�i=@qj at the symmetric equilibrium we can rewrite the strategic e¤ect of invest-

ment as follows:

 � @�i
@qj

�
@q�j
@xi

�
= (�c0(Bx�))q�!(�)

�
~�(�)� �

�
(15)

with24

!(�) =
�

n

�
2n+ ��

n+ �(1 + �)

�
> 0.

By equation (15), we may write the �rst-order necessary condition (13) in the following manner

(for � 2 [0; 1))

�c0(Bx�)
h
� + (n� 1)!(�)(~�(�)� �)

i
(Q�=n)� �0(x�) = 0. (16)

When second-stage production decisions are strategic substitutes, we have that @q�i =@xi > 0.

Thus, if a �rm increases its investment in R&D in the �rst stage, then it will increase its output

in the second stage. On the other hand, from equation (14) we have that signf@q�j =@xig =

signf� � ~�(�)g, then it is clear that @q�j =@xi > 0 when quantities are strategic complements;

in the case of strategic substitutes, however, @q�j =@xi > 0 only if � > ~�(�). Intuitively, when a

�rm increases the amount invested in R&D, it exerts two opposite e¤ects on the output decision

of rival �rms. There is a positive e¤ect on the output of rival �rms because they become more

e¢ cient thanks to the presence of spillovers. And at the same time there exists a negative e¤ect

because the natural reaction of �rms to the higher quantity of �rm i is to reduce their output.

When spillover e¤ects are strong such that � > ~�(�), the positive e¤ect outweighs the negative

e¤ect implying that @q�j =@xi > 0. These two e¤ects are standard in the R&D literature, but we

can also conduct comparative statics on the threshold value ~�(�), which is crucial in determining

the sign of the strategic e¤ect ( ). Assumption A.1. facilitates this task because under this

assumption ~� takes a simple form. In particular, from the expression of ~� it is straightforward

24The second-order condition, �q < 0, requires that 2n+�� > 0, and the stability condition, �q+(n�1)�q < 0,
requires that n+ �(1 + �) > 0. Therefore, !(�) > 0.
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to show that

PROPOSITION 5 The threshold ~� decreases (respectively increases) with the number of �rms

(i.e., @~�=@n < (>)0) if demand is concave (convex), increases with the degree of cooperation if

� > �2 (i.e., @~�=@� > 0 if � > �2)25, and decreases with the curvature of the inverse demand

function �� (i.e., @~�=@� > 0).

Proposition 5 reveals that the impact of the number of �rms on the threshold, ~�, depends

on the shape of the demand, and that ~� increases with the degree of cooperation and decreases

with the curvature of the inverse demand function.

Since @�i=@qj < 0, the sign of the strategic e¤ect is the opposite to the sign of @q
�
j =@xi, i.e.,

signf g = �signf@q�j =@xig = signf~�(�)� �g.

Therefore, the strategic e¤ect is positive if production decisions are substitutes and � is below

the threshold ~�(< 1). Then, as shown in Leahy and Neary (1997, Proposition 1) in the case

of � = 0, equations (12)-(16) imply that output and R&D are higher in the two-stage model

than in the static model.26 Intuitively, if � < ~�, then each �rm anticipates that a higher

investment in R&D in the �rst stage will reduce the output of rival �rms in the second stage.

This implies that  � (@�i=@qj)
�
@q�j =@xi

�
> 0, each �rm is then lead to invest more in R&D

in the �rst stage, which in turn boosts output in the second stage (@q�i =@xi > 0). The result

that output and R&D are higher in the two-stage model than in the static model is no longer

true if quantities are strategic complements or strategic substitutes with � > ~�.

Next we analyze how the degree of cooperation a¤ects equilibrium decisions of output and

R&D. Let  z � @ =@z with z = q; x; �. Then, if the regularity condition

~�(Q�; x�) = �q (�x +  x(n� 1))� 'xq
�
'xq� +  q(n� 1)

�
B > 0 (17)

holds, we may state:

LEMMA 5 In the two-stage model:

(i) If @x�=@� � 0, then @q�=@� < 0.
25Note that the second-order condition with respect to q, requires that � > �2 when � = 1.
26The result requires uniqueness and that the pro�t function in the two models satisfy the Seade stability

condition with respect to R&D: the marginal pro�t of each �rm with respect to R&D must be decreasing in a
uniform increase in R&D by all �rms.
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(ii) The signf@x�=@�g is given by

sign

�
@x�

@�

�
= signf�

�
(1� !0(�))P 0(c)�1n+ (n� 1)(!(�)� �)

�
(18)

+(!0(�)~�(�) + !(�)(d~�=d�))P 0(c)�1n� 1� (n� 1)!(�)~�(�)g.

(iii) The signf@q�=@�g is given by

sign

�
@q�

@�

�
= sign

n
[1� !0(�) +

�
!0(�)~�(�) + !(�)(d~�=d�)

�
=�]B �H(�)

o
. (19)

Proof. See Appendix D.

Therefore, again we have that allowing for some cooperation will increase output only if it

also boosts R&D. In particular, from (18), @x�=@� > 0 if and only if

� > �2S � 1� (!0(�)~�(�) + !(�)~�0(�))P 0(c)�1n+ !(�)(n� 1)~�(�)
(1 + n+ ��) + (n� 1)!(�)� P 0(c)�1n!0(�) .

We may now derive the threshold values of spillover that determine the sign of the impact

of � on the R&D and output in equilibrium. RI (where @x�=@� � 0 and @q�=@� < 0) takes

place when � � �2S . Assuming that � = �2S0 is the unique positive solution to the equation

[(1 � !0) +
�
!0~� + !~�

0�
=�]B � H(�) = 0 with @q�=@� < 0 for � 2 [0; �2S0] and @q�=@� > 0

for � 2 (�2S0; 1],27 we have that RII (where @q�=@� � 0 and @x�=@� > 0) occurs when

�2S < � � �2S0, and RIII (where @q�=@� > 0 and @x�=@� > 0) occurs when � > �2S0. (These

results extend Proposition 1 to a model with two stages.) A direct applications of (18) and

(19) allows us to derive the threshold values for each of the model speci�cations considered

in the present paper. Appendix D contains for each particular speci�cation the expressions

for sign f@x�=@�g, sign f@q�=@�g, and equilibrium values q�; x�, from which one can get the

aforementioned threshold values and therefore obtain results analogous to Table 4. We may

establish,28

PROPOSITION 6 Under assumptions A.1.-A.4., in the two-stage model: (i) Total surplus is

maximized with �� = 0 when � � inff�2S : � 2 [0; 1]g. However, there exists a su¢ ciently large
27Below simulations show that this is the case in AJ and KMZ.
28The explicit expressions of s(0) and s0(0) can be found in Appendix D.
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spillover value for which some cooperation is socially optimal (�� > 0) if for � = 1

(1 + s0(0))n+ (1� s(0))(n� 1)((1 + s0(0))(1 + � + n)� (1 + (n� 1)s(0))�H(1) > 0, (20)

where

s(�) = !(�)
�
~�(�)� �

�
.

Proof. See Appendix A.

For su¢ ciently low spillovers, namely when � � �2S for all �, we have that @x�=@� � 0 and

therefore @q�=@� < 0, so from the welfare point of view no cooperation is optimal. Conversely,

proof of Proposition 6 in Appendix D also shows that W 0(0)j�=1 > 0 when condition (20) holds,

in which case there exists a su¢ ciently large spillover value for which some degree of cooperation

is socially optimal.29 In particular, for the model speci�cations considered in this paper and

from condition W 0(0) > 0 we can obtain the threshold value ��2S above which ��TS > 0.
30 Fig.

8a and 8b depict, respectively, the threshold ��2S under AJ and KMZ model speci�cations. Fig.

8b reveals that in KMZ, ��2S tends to be above 1 if we consider the same values as in AJ. In

particular, only if b is low enough, we have that ��2S < 1 (this result is in line with the static

case). Also, we observe that under the AJ and KMZ model speci�cations, ��2S decreases with

the number of �rms and increases with b. Figures 9a (respectively 9b) depict the threshold

��
2S for the CE model speci�cation and for a given " (�) and di¤erent values of n and � ("). As

in the static case: the threshold value decreases with n, the elasticity of the innovation function,

�, and the elasticity of demand "�1.

29Condition (20) involves condition (11): both are identical when s = 0. The reason is that the �rst-order
condition with respect to R&D of the two-stage model (given by equation (16)) involves the corresponding �rst-
order condition of the simultaneous model (given by equation(3)). That is, from the former we can obtain the
latter by setting s = 0. (The �rst-order necessary condition with respect to output is the same in the simultaneous
and two-stage model.)
30The expression of W 0(�) in the two-stage model is provided in the proof of Proposition 6 (Appendix D).
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Threshold values ��, above which some cooperation is socially optimal

Fig. 8a. AJ model speci�cation. Fig. 8b. KMZ model speci�cation.

Threshold values ��, above which some cooperation is socially optimal

Fig. 9a. Constant elasticity model. Fig. 9b. Constant elasticity model.

Figure 10a and 10b depict the socially optimal degree of cooperation (��) in terms of total

surplus and consumer surplus for the constant elasticity model. As in the static case we observe

that when the number of �rms is less than 4 we are in region RI, implying that no cooperation is

socially optimal. However, as the number of �rms and the intensity of spillover e¤ects increase,

the socially optimal degree of cooperation (in terms of total surplus) increases (and faster than

it does in the static model). Results with respect to � and "�1 are similar to those of the static

model, but in contrast to the static model, ��CS may be positive if spillovers are su¢ ciently
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large, and it is neutral with respect to the number of �rms.

Optimal degree of cooperation in terms of total surplus and consumer surplus

Fig. 10a. Constant elasticity model.

(Numerical values: � = 0:1, " = 0:8,

� = � = 1, n = 8.)

Fig. 10b. Constant elasticity model.

(Numerical values: � = 0:1, " = 0:8,

� = � = 1, � = 0:8.)

Figure 11a and 11b depict the socially optimal degrees of cooperation under the AJ model

speci�cation. As in the static model, the impact of � on total surplus and consumer surplus

can be positive if spillovers are su¢ ciently high as to enter in region RIII. In particular, when

� > 0:8 the planner will allow full cooperation. Additionally, we �nd that in the two-stage

model the size of spillovers or the number of �rms above which we are in region RIII is lower

than in the static model. In this sense, Fig. 11a reveals that in contrast to the static model,

the threshold value above which full cooperation is optimal for consumers is lower than the

threshold value above which it is optimal in terms of total surplus perspective. In particular,

��CS > ��TS for intermediate values of spillover: when � takes values larger than 0:6, consumer

surplus, which is strictly convex with respect to �, is maximized with full cooperation but

total surplus is not. Intuitively, total surplus is not maximized with full cooperation because

it implies too much production, which goes at the expense of �rms�pro�t since they are not

su¢ ciently e¢ cient. Only when spillover is large enough (� > 0:75), �rms are e¢ cient enough

to bene�t from higher production quantities. Finally, under the KMZ model speci�cation the

optimal degree of cooperation in terms of total surplus is also increasing in �. As for consumer

surplus, spillover e¤ects tend to have no impact on the optimal degree of cooperation unless b

is su¢ ciently small (close to 1), as we assume in Fig. 12a, in which case full cooperation may
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be optimal with respect to CS and TS as it occurs in the static case. Since for � = 0:8 and

b = 0:9, ��TS = ��CS = 1, in Fig. 12b we assume that b = 1:4 and observe that entry raises

��TS . The pattern of results in the comparative statics analysis is the same as the one found in

the one-stage game (see Table 5) with the only exception that  seems to have no impact on

��CS under the AJ model speci�cation, and that for b 2 (1; 1:3), entry could slightly reduce

��TS in KMZ.

Optimal degree of cooperation in terms of total surplus and consumer surplus

Fig 11a. AJ model speci�cation.

(Numerical values: a = 700, c = 500,

 = 7, n = 6 and b = 0:6.)

Fig. 11b. AJ model speci�cation.

(Numerical values: a = 700, c = 500,

 = 0:7, � = 0:8 and b = 0:6.)
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Optimal degree of cooperation in terms of total surplus and consumer surplus

Fig. 12a. KMZ model speci�cation.

(Numerical values: a = 700, c = 500,

 = 3, n = 6 and b = 0:3.)

Fig. 12b. KMZ model speci�cation.

(Numerical values: a = 700, c = 500,

 = 4, � = 0:8 and b = 0:4.)

Remark. While in the two-stage model under the AJ speci�cation it is possible that the

optimal degree of cooperation with respect to CS is higher than with respect to TS (as shown in

Fig. 11a for intermediate values of spillover), it will never happen in the static model. The reason

is that in the two-stage model and for intermediate values of spillover, @q�=@� becomes strictly

convex with respect to � and has a critical point for some � 2 (0; 1).31 Then, consumer surplus

is also strictly convex with respect to �, and allowing full cooperation may well be optimal for

consumers. However, for the same intermediate values of spillover, total surplus is concave with

critical value for some intermediate degree of cooperation (where @q�=@� < 0).32 In the static

model and under the AJ model speci�cation, it can be shown that if � is lower (respectively,

higher) than �0, then @q�=@� is always decreasing (increasing) with �, i.e., @2q�=(@�)2 is negative

(positive) for any feasible �. Then, when � < �0, no cooperation is optimal for consumers, while

in terms of total surplus some degree of cooperation may be optimal. Instead, when � > �0, full

cooperation is optimal for consumers and also for total surplus. The analysis is harder under the

KMZ model speci�cation since @q�=@� takes a more complex form than in AJ. Nevertheless, in

the static model we have not found parameter values for which full cooperation may be optimal

for consumer but not for total surplus, which suggests that, as in AJ, whenever full cooperation

31 In particular, simulation results show that @q�=@� < 0 for all � when � < 0:5. But, when � � 0:5, q� is
convex with respect to �: it is decreasing (respectively increasing) when � is low (high).
32From equation (10), we have that W 0(�) = 0 for any � 2 (0; 1) with @x�=@� > 0 only if @q�=@� < 0.
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is optimal for consumers, it is also optimal for total surplus.

6 Concluding remarks

There is growing evidence that R&D cooperation facilitates collusion in the product market, in

which case optimal public policy should balance a trade-o¤between market power and e¢ ciency.

Furthermore, even if full collusion is welfare-enhancing in comparison to the non-cooperative

outcome, it is unclear whether imperfect collusion would yield an even better outcome in terms

of total welfare. To explore these issues, we consider a general oligopoly Cournot model of

process (cost-reducing) R&D investments with spillovers in which cooperation in R&D and

output cannot be disentangled (and collusion may be imperfect) because of �nancial interests

or because cooperation in R&D extends to cooperation in product market.

The analysis shows that the optimal degree of cooperation depends on the size of the spillover

e¤ects and the number of �rms in the market. In particular, we derive and characterize the

threshold value below which a social welfare maximizer planner will choose no cooperation at all,

and the threshold value above which some degree of collusion is socially optimal. We also obtain

the threshold value above which consumers bene�t from cooperation. Regarding total surplus

we �nd that there is scope for simultaneous cooperation in R&D and output when spillover is

large enough (and the scope is larger the more �rms there are in the market). However, if the

objective is to maximize consumer surplus, then the scope for cooperation is greatly reduced,

and entry moreover need not optimally induce more cooperation.

We interpret toughness of antitrust policy as limiting cooperation: cross-shareholdings or

with increased degree of activism of competition policy when cooperation in R&D and output

go together. The competition-reducing e¤ect of silent �nancial interests gives support to policy

intervention. However, passive investments may be welfare enhancing, and even increase con-

sumer surplus, when the industry exhibits su¢ ciently large R&D spillovers. In the extreme, to

form an RJV and cooperate fully may be socially optimal under some parametric assumptions.

Competition authorities put increasing weight on consumer surplus and at the same time allow

more cooperative R&D: this would be contradictory according to our results if R&D cooperation

leads to the same degree of cooperation in output levels.

Finally, we extend the static model to the two-stage model and �nd that our results are

robust to this extension. It turns out that �rms produce and invest in R&D less than in the
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static case when spillovers are above a given threshold so that the strategic e¤ect becomes

negative. In this case, the social gains from a higher degree of cooperation that induces �rms to

invest and produce towards the socially optimal levels are even higher. We also show how the

number of �rms, the degree of cooperation and the curvature of the inverse demand function

a¤ect such a threshold value. Finally, numerical simulations show that the degree of toughness

of antitrust policy when spillovers are high will be moderated in the two-stage model.

7 Appendix

7.1 Appendix A

Proof of Lemma 3. From Lemma 1 we have that if � � �(1 + n)=�, so n+ 1+ �� < 0, then

dx�=d� � 0, which, using equation (8), in turn implies that dq�=d� < 0: for all � only Region

RI exists; (ii) if � > �(n + 1)=�, then in addition to Region RI, Region RII exists only if

� > �n=� also holds. The reason is that when 1 + n + �� > 0 holds, from Lemma 1 we have

that @x�=@� > 0 only if � > 1=(1 + n + ��). However, 1=(1 + n + ��) < 1 only if � > �n=�,

in which case there exists some region of feasible spillover values for which @x�=@� > 0. Note

that for a given n, the condition � > �n=� is stricter than the condition � > �(n + 1)=�.

Furthermore, the stability condition �q < 0, which requires that � > �(n + �)=�, is stricter

than (respectively equal to) the second-order condition �q < 0, which requires that � > �2n=�,

for � 2 [0; 1) (respectively � = 1). Thus, for �(n + �)=� � � � �n=� only Region RI

exists, while for � > �n=� Region RI and RII exist. Finally, Region RIII will only exist if

�0 < 1. The condition n�H(1) > 0 guarantees that �0 < 1: H(�) � 0 with H(0) = 1 (when

c00 > 0 and/or �00 > 0), moreover A.4. implies that @(H(�) � B)=@� < 0, thus 9�0 2 (0; 1) if

(B �H(�))j�=1 > 0, i.e., if n�H(1) > 0.

Proof of Propositions 3. (i) In the simultaneous model, from (7) we have that @x�=@� � 0

if � < 1=(1+n+��). If � > 0, then inff1=(1+n+��) : � 2 [0; 1]g = 1=(1+n(1+ �)), however

if � < 0, then inff1=(1+n+��) : � 2 [0; 1]g = 1=(1+n+ �). Thus, if � � � = 1=(1+n(1+ �))

when � > 0, or � < � = 1=(1 + n + �) when � < 0, it follows that
@x�

@�
< 0 for all �, which

implies that
@q�

@�
< 0 for all � by equation (8) and therefore W 0(�) < 0 for all � by equation

(10): total surplus is maximized with �� = 0.

We now derive the condition that determines the threshold �̂. The following ratio will be
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helpful:


 � @q�=@�

@x�=@�
.

Using equations (5) and (6) we have


 =
'�x'xqB � '�q�x
'�q'xq� � '�x�q

=
'�x'xq

�
B �

�
'�q='�x

� �
�x='xq

��
'�q'xq

�
� �

�
'�x='�q

� �
�q='xq

�� .
Recall that H(�) =

�
'�q='�x

� �
�x='xq

�
. Let Hq(�) =

�
'�x='�q

� �
�q='xq

�
, then


 =
'�x
'�q

�
B �H(�)
� �Hq(�)

�
.

Noting that �q = f 0(Q)(n+ �(� + 1)), 'xq = �c0(�), '�q = f 0(Q)(n� 1)q, and '�x = ��(n�

1)c0(�)q, we can write

Hq(�) = ��(n� 1)c
0(�)q

f 0(Q)(n� 1)q

�
f 0(Q)(n+ �(� + 1))

�c0(�)

�
= �(n+ �(� + 1))

= �nP 0(c)�1.

Therefore, we can rewrite 
 as follows:


 = ��(n� 1)c
0(�)q

f 0(Q)(n� 1)q

�
B �H(�)

� � �nP 0(c)�1

�
(21)

=
�c0(�)
f 0(Q�)

�
H(�)�B

� � �nP 0(c)�1

�
.

Since � � �P 0(c)�1n = 1 � (n + 1 + ��)�, we have that the term � � �nP 0(c)�1 is positive in

Region RI (where � < 1=(n+ 1+��)), and negative in Region RII and RIII. From equation

(10), Region RII and RIII may exist only if

�� + 1 + n > 0. (22)

If condition (22) holds, in Region RII and RIII, where @x�=@� > 0, we have that W 0(�) > 0 if

��f 0(Q�)
� (1� �)�(n� 1)c0(Bx�) > 0.
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Inserting (21) into the above condition we obtain

��f 0(Q�) �c
0(�)

f 0(Q�)

�
H(�)�B

� � �nP 0(c)�1

�
� (1� �)�(n� 1)c0(Bx�) > 0,

or,

��
�

H(�)�B
� � �nP 0(c)�1

�
� (1� �)(n� 1) < 0,

which is equivalent to �
H(�)�B

�nP 0(c)�1 � �

�
<
(1� �)(n� 1)

�
.

Since in Region RII and RIII, �nP 0(c)�1 � � > 0 and (1 � �)(n � 1) = n � �, we have that

W 0(�) > 0 if

H(�)�B <
n� �
�

�
�nP 0(c)�1 � �

�
,

or, equivalently, if

H(�)�B <
n� �
�

[(n+ 1 + ��)� � 1] . (23)

Let h(�) = H(�) � B and g(�) = ((n � �)=�)[(n + 1 + ��)� � 1). Since H(0) = 1 and (by

Assumption A.4.) @(H(�) � B)=@� < 0, we have that h(0) = 1 and h0(�) < 0. On the other

hand, g0(�) > 0 since (22) holds when Region RII and RIII exist, moreover g(0) < 0 and

g
�
�
�
= 0. Thus, there exists a unique positive threshold �̂ that solves the equation

H(�)�B = ((n� �)=�)[(n+ 1 + ��)� � 1], (24)

and for any � > �̂ condition (23) holds, that is, W 0(�) > 0. Then, �̂ > �, otherwise for any

� 2 (�̂; �]; we have that @x�=@� � 0, which from equation (8) implies that @q�=@� < 0, as

a result and using equation (10): W 0(�) < 0, a contradiction. Furthermore, if condition (23)

holds at � = 1, then �̂ < 1. Thus, �̂ < 1 if H(1)� n < ((n� �)=�)(n+ ��).

(ii) Since CS(�) =
R Q�
0 f(Q)dQ� f(Q�)Q�, we have that CS0(�) = �f 0(Q�)(@q�=@�)n2q�,

thus signfCS(�)g = signf@q�=@�g. Let �0(�) be the solution to B �H(�) = 0 for a given �.

Suppose that �0(�) is decreasing in � for all �, then: if � � �0(1), we have that @q�=@� < 0

for all �, so ��CS = 0; if � > �0(0), then @q�=@� > 0 for all �. Since @q�=@� > 0 implies that

@x�=@� > 0 by equation (8), we have that W 0(�) > 0 for all � by equation (10). Therefore,

��CS = ��TS = 1. Suppose now that �
0(�) is increasing in � for all �, then: if � � �0(0), we have

that @q�=@� < 0 for all �, so ��CS = 0; if � > �0(1), @q�=@� > 0 for all �. Since @q�=@� > 0
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implies that @x�=@� > 0 by equation (8), we have that W 0(�) > 0 for all � by equation (10).

Therefore, ��CS = ��TS = 1. Finally, suppose that �0 is independent of �, then: if � � �0,

we have that @q�=@� < 0 for all �, so ��CS = 0; if � > �0, then @q�=@� > 0 for all �. Since

@q�=@� > 0 implies that @x�=@� > 0 by equation (8), we have that W 0(�) > 0 for all � by

equation (10). Therefore, ��CS = ��TS = 1.

(iii) � < �0: Note that if � > �0, then @q�=@� > 0. Suppose that �0 < �, then for any

� > �0, @q�=@� > 0, but for any � 2 (�0; �) we have that @x�=@� � 0, which, from equation

(8), implies that @q�=@� < 0, a contradiction. From part (i) we also know that �̂ > �. Let

us now show that �0 > �̂. Suppose that �̂ > �0, then from (9) we have that for � 2 (�0; �̂) it

holds that @q�=@� > 0. Thus, from equation (8) it also holds that @x�=@� > 0, which implies

from equation (10) that W 0(�) > 0. However, from equation (24) we have that W 0(�) < 0 for

� < �̂, a contradiction. Suppose now that �̂ = �0, then H(�)�Bj�=�0 = 0, thus from equation

(24) we have that �̂ = �0 = 1=(n+ 1 + ��), which implies that @x�=@� = 0 (see Table 6), and

from equation (8) this in turn implies that @q�=@� < 0. However, at � = �0, B �H(�) = 0, so

@q�=@� = 0 (see Table 6), a contradiction.

It is immediate that � decreases with n. Note that @B=@n = � � 0, thus if �0�@H(�0)=@n >

0, then the increase in the left-hand side of equation B = H(�) is higher than the increase in

its right-hand side, which in turn implies that 1 + �0(n� 1) > H(�0). If �00 is the new solution

to the equation B = H(�), then it must be that �00 < �0 since @B=@� = n � 1 > 0 and by

Assumption A.4., @H(�)=@� < n� 1, thus @(B �H(�))=@� > 0, i.e., decreasing � will reduce

the di¤erence B �H(�). Finally, we examine the impact of entry on �̂. Let h(�) = H(�)�B

and g(�) = ((n� �)=�)[(n+ 1 + ��)� � 1). We have that

@g(�)

@n
=
1� �
�2

[(n+ 1 + ��)� � 1] + n� �
�

�(1 + ��).

The second term is positive if � > �1=�, which is guaranteed by the condition � > �n=�,

whereas the �rst term is positive in Region RII and RIII. We also have that g0(�) > 0,

g(0) = �(n� �)=� and g(�) = 0 at � = 1=(n+ 1 + ��), which is decreasing in n. Thus, when

n increases, g(�) rotates counterclockwise, i.e., @g(�̂)=@n > 0. Suppose that n increases, if �̂
�

is the new solution to the equation h(�) = g(�) and @h(�̂)=@n = @H(�̂)=@n � �̂ < @g(�̂)=@n,

then it must be that �̂
�
< �̂ so as to satisfy the equation h(�) = g(�) since h(�) decreases with

� and g(�) increases with �.
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7.2 Appendix B

�q = f 0(Q)(2 + ��=n)
�q = f 0(Q�)(1 + �+ ��=n)

�x = �(c00(Bx�)~�q� + �00(x�))
�x = �c00(Bx�)�q�(1 + �(1 + (n� 2)�))
'xq = �c0(Bx�)
'�q = f 0(Q�)(n� 1)q�
'�x = ��(n� 1)c0(Bx�)q�

�q�x �
�
'qx

�2
= f 0(Q�)(2 + ��=n)(c00(Bx�)(Q�=n)~�+ �00(x�))� c0(Bx�)2

�q = �q + �q(n� 1) = f 0(Q�)(n+ �(� + 1))
�x = �x + �x(n� 1) = �(c00(Bx�)B�q� + �00(x�))
�(Q�; x�) = � [c00(Bx�)B�(Q�=n) + �00(x�)] [f 0(Q�)(�(1 + �) + n)]� c0(Bx�)2�B
H(�) = �[f 0(Q�)=(�c0(Bx�)2)][(�c00(Bx�)B�0(x�)=c0(Bx�)) + �00(x�)]
@x�=@� = ((n� 1)(Q�=n)f 0(Q�)c0(Bx�)=�) [�(�(1 + �) + n)� � ]
@q�=@� = ((n� 1)(Q�=n)=�)

�
c0(Bx�)2�B + f 0(Q�) (c00(Bx�)(Q�=n)B� + �00(x�))

�
= ((n� 1)(Q�=n)=�) c0(Bx�)2� (B �H(�))

, with B = 1 + �(n� 1), � = 1 + �(n� 1), � = 1 + �(n� 1)�, and ~� = 1 + �(n� 1)�2.

Table 6: Summary of basic expressions.

In this appendix we �rst provide the second-order conditions and the regularity condition,

� > 0, for each of the model speci�cations considered in the text (AJ, KMZ, CE). We then

discuss the feasible region for the constant elasticity model. Finally, Lemma 6 determines

signf@q�=@�g and signf@x�=@�g under AJ, KMZ and CE model speci�cations. To start with,

let us rewrite the regularity condition as follows

�(Q�; x�) = �
�
c00(Bx�)B�(Q�=n) + �00(x�)

� �
f 0(Q�)(�(1 + �) + n)

�
� (c0(Bx�))2�B > 0. (25)

In particular, the above condition can be rewritten as�(Q�; x�) = (�(1+�)+n)�H(�)��B > 0.

Second-order conditions are: (i) �q = 2f 0(Q)+�(Q=n)f 00(Q) = f 0(Q)(2+��=n) < 0, so �q < 0

if � > �2n=�; (ii) �x < 0, which is trivially satis�ed by Assumptions A.2 and A.3; and (iii)

�q�x �
�
'qx

�2
> 0, which is equivalent to

c0(Bx�)2 + f 0(Q�)(2 + ��=n)(c00(Bx�)(Q�=n)~�+ �00(x�)) < 0, (26)

where ~� = 1+�(n�1)�2. Noting that �q = f 0(Q�)(1+�)+f 00(Q�)�q� = f 0(Q�)(1+�+��=n),

we have that

�q + �q(n� 1) = f 0(Q�)(n+ �(� + 1)) < 0,
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which is satis�ed if � > �(n + �)=�. Similarly, noting that �x = �c00(Bx�)~�q� � �00(x�) and

�x = �c00(Bx�)�q�(1 + �(1 + (n� 2)�)), it is straightforward to show that

�x + �x(n� 1) = �(c00(Bx�)B�q� + �00(x�)) < 0,

which is satis�ed by Assumptions A.2 and A.3.

In AJ and KMZ it is immediate that �q = �2b < 0. Furthermore, in AJ: �q�x � ('qx)2 =

2b � 1, since c00(�) = 0 and �00(x) = , so �x = � and 'qx = �c0(�) = 1. In KMZ, condition

(26) can be written as

"
1

2

�
2


(Bx�)

��1#
� 2b

"
1

2

�
2


(Bx�)

��3=2#
q�~� < 0. (27)

From �rst-order condition (3) we have that in equilibrium

q� =
�0(x�)

�c0(Bx�)� =
1�

(1=)((2(Bx�)=)�1=2�
� . (28)

Inserting the above equation into condition (27), after some manipulations, it reduces to 1 �

2b~�=� < 0. (Note that if b > �=2 holds, then the condition b > �=(2~�) is satis�ed.) In AJ

and from (25), it is immediate that � = b(� + n) � �B since c00(�) = � = 0; f 0(Q) = �b and

�0(x) = x. In KMZ we have:

� = �
"
1

2

�
2


Bx�

��3=2
B�

�0(x�)

(1=)(2Bx�=)�1=2�

#
[�b (� + n)]� 1

2

�
2


Bx�

��1
�B.

Inserting (28) into the above equation, after some manipulations, we obtain

� =
1



�
2


Bx�

��1�
Bb(� + n)� �B



�
.

Therefore, in KMZ � > 0 if b > �=(� + n). Regarding the constant elasticity model we have:

PROPOSITION 7 (Constant elasticity model) For a given positive integer n and a non-negative

�, then at the equilibrium second-order conditions together with the condition of non-negative

pro�ts require that

(i) maxf"�;�(1 + ")=2g < n � "�(B + ��)=(��),

(ii) "(1 + �)=� > n(n� "�)=(~�(2n+ ��)), with ~� � 1 + �(n� 1)�2.
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Furthermore, the equilibrium is regular if and only if (1 + �)=� > 1=".

Proof. From the �rst-order condition (2) we need that

n > "�, (29)

otherwise the system (2) and (3) will not have a solution. This condition also guarantees that

Q� and x� are both positive. Notice that �q < 0, (f 0(Q�)=n)(2n+��) < 0. Since � = �(1+"),

�q < 0 if and only if

n > �(1 + ")=2. (30)

Since � 2 [1; n], we have that the latter condition is always satis�ed for " < 1. By construction

�x < 0. Furthermore, second-order condition �q�x�
�
qx
�2
> 0, which is given by (26), reduces

to

�"�
n
Q��("+1)(2n+ ��)(�(�+ 1)�(Bx�)�(�+2)(Q�=n)~�) + (��)2(Bx�)�2(�+1) < 0. (31)

From the �rst-order condition (2) we have that at the symmetric equilibrium

Q� = (�(n� "�)=(n�))1="(Bx�)�=". (32)

By substituting (32) into (31), after some manipulations, we obtain

(Bx�)�2(�+1)��2
h
�("=(n� "�))(2n+ ��)(�+ 1)~�=n+ �

i
< 0.

The above condition is satis�ed if and only if "(� + 1)=� > (n(n � "�))=((2n + ��)~�), which

proves statement (ii) of the Proposition.

From (25) we have that � > 0 if and only if

0 <
h
��(�+ 1)�(Bx�)�(�+2)(Q�=n)�B

i h
"(1 + ")�Q��("+2)�Q� � "�Q��("+1)(� + n)

i
�(��)2(Bx�)�2(�+1)�B,
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or,

0 < Q��("+1)
h
��(�+ 1)�(Bx�)�(�+2)(Q�=n)�B

i
["(1 + ")��� "�(� + n)]

�(��)2(Bx�)�2(�+1)�B.

Substituting (32) in the above expression, we obtain

0 <

�
�(n� "�)

n�

��("+1)="
(Bx�)�("+1)�="

"
��(�+ 1)�(Bx�)�(�+2)

�
�(n� "�)

n�

�1="
(Bx�)�="

�B

n

#
["(1 + ")��� "�(� + n)]� (��)2(Bx�)�2(�+1)�B,

rearranging terms yields

0 < (Bx�)�2(�+1)
�

n�

�(n� "�)

�
��(�+ 1)��B

n

��
�"�n+ "2��

�
� (��)2�B

�
,

or, equivalently,

0 < (Bx�)�2(�+1)��2�B ["(�+ 1)� �] .

Therefore, � > 0 holds if and only if (1 + �)=� > 1=", or, equivalently, "� �(1� ") > 0.

We turn now to deriving the condition under which pro�ts in equilibrium are nonnega-

tive. At the symmetric equilibrium, each �rm�s pro�t is given by �(Q�=n; x�) = (f(Q�) �

c(Bx�))(Q�=n)�x�. Then, �(Q�=n; x�) � 0 if and only if �� � (f(Q�)�c(Bx�))(Q�=(x�n)) � 1.

Write

 � �
���
n

�"
�"�1

�
n� "�
n

�
.

Then Q� = (n=(���)) (1+�)=("��(1�")), x� = (1=B) 1=("��(1�")), and condition �� � 1 can be

expressed as

h
�(

n

���
)�" �"(1+�)=("��(1�")) � � ��=("��(1�"))

i 1

���
 (1+�)=("��(1�"))B �1=("��(1�")) � 1.

Rearranging terms appropriately, and replacing  into the above expression, one obtains ("�=(n�

"�))(B=(��)) � 1. It follows that �� � 1 if and only if

�
"�

��

�
(B + ��) � n. (33)
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Combining conditions (29), (30) and (33) yields statement (i).

Feasible region for the constant elasticity model with � = 0. From Proposition 7 we

have that � > 0, (1 +�)=� > 1=". We are considering the case for which � = 0. The LHS of

condition (i) is then trivially satis�ed for any n � 2, moreover the RHS of condition (i) can be

rewritten as follows n � �(�) = "(1 + � � �)=(� � "�). Since �0 > 0 (as we are also imposing

that � > 0), the latter condition will hold for all � if n � "(1 + �)=�. Last, condition (ii) for

� = 0 writes as "(1 + �)=� > n(n � ")=(2n � (1 + ")). Therefore, for � = 0 we only have to

consider the RHS of condition (i) and condition (ii). These two conditions are depicted in Fig.

13; the grey area are combinations (�; ") with n = 7 for which both conditions are satis�ed

(these combinations of parameters also satisfy both conditions for n � 7).

Fig. 13. Feasible region for the constant

elasticity demand model.

Determination of signf@q�=@�g and signf@x�=@�g in AJ, KMZ and CE. Using the

results of Section 2, and noting that equation (8) can also be written in the following manner

@q�

@�
=
(n� 1)(Q�=n)

�

�
c0(Bx�)2�B + f 0(Q�)

�
c00(Bx�)(Q�=n)B� + �00(x�)

��
,

after some calculations, it is simple to verify that in the static model:

LEMMA 6 (i) With the AJ model speci�cation: signf@q
�

@�
g = signf�(1 + �(n� 1))� bg and

signf@x
�

@�
g = signf�(n+ 1)� 1g;
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(ii) With the KMZ model speci�cation: signf@q
�

@�
g = signf� � bg and signf@x

�

@�
g =

signf�(n+ 1)� 1g;

(iii) In the CE model: signf@q
�

@�
g = signf� [�(n� "�)� �(n� 1)"(�+ 1)]� "(�+1)g and

signf@x
�

@�
g = signf� [(n� ")� �(n� 1)(1 + ")]� 1g.

7.3 Appendix C

Proof of Lemma 4 Equations (5) and (6) can be written as

@q�

@�
=
(n� 1)(Q�=n)

�
[c0(Bx�)2�B + f 0(Q�)

�
c00(Bx�)(Q�=n)B� + �00(x�)

�
] (34)

@x�

@�
=
(n� 1)(Q�=n)f 0(Q�)c0(Bx�)

�
[�(�(1 + �) + n)� � ] (35)

If we insert equations (34) and (35) into equation (10), after some manipulations we obtain

W 0(�) =
(n� 1)(Q�)2=n

�
(�f 0(Q�))

�
�
�
c0(Bx�)2�B + f 0(Q�)(c00(Bx�)(Q�=n)B� (36)

+�00(x�))
�
+ c0(Bx�)2(1� �)�(n� 1)(�(�(1 + �) + n)� �)

�
.

Let zAJ denote the expression in the square brackets of equation (36) for the AJ model

speci�cation. By noting that in AJ: f 0 = �b, � = 0, c0 = �1, c00 = 0 and �00 = , it then follows

that

zAJ
��
�=0

= �B � b + �(n� 1)(�(1 + n)� 1)

= (n� 1)(n+ 2)�2 � (n� 2)� � b.

By solving zAJ
��
�=0

= 0 for � we obtain the expression for ��AJ . Notice that ��AJ < 1 if

(n� 2) +
p
(n� 2)2 + 4b(n+ 2)(n� 1) < 2(n+ 2)(n� 1),

or

(n� 2)2 + 4b(n+ 2)(n� 1) < (2(n+ 2)(n� 1)� (n� 2))2,

which can be rewritten as 4b(n+2)(n� 1) < 4n2(n+2)(n� 1). Thus, ��AJ < 1 if b < n2. In

KMZ we have c = �c�
q
(2=)(xi + �

P
j 6=i xj), f

0 = �b, � = 0 and �00 = 0. Let zKMZ denote
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the expression in the square brackets of equation (36) for the KMZ model speci�cation, then

zKMZ
��
�=0

=
�

2x�
+

�bq�B
2 (2Bx�=)3=2

+
�(n� 1)(�(1 + n)� 1)

2Bx�

=
1

B

"
�bq�B1=2

2 (2x�=)3=2
+

�

2x�
(B + (n� 1)(�(1 + n)� 1))

#
.

By replacing q� and x� into the above expression, after some calculations we get

zKMZ
��
�=0

=
(b(1 + n)� 1)2

(a� �c)2 [�bB + �


(B + (n� 1)(�(1 + n)� 1))].

It is then immediate that in the static case: zKMZ
��
�=0

> 0 , � > ��
KMZ . Notice that

��
KMZ

< 1 if

[(n� 2)2 + b(n� 1)(b(n� 1) + 2(3n+ 2))]1=2 < 2(n+ 2)(n� 1)� n+ 2� b(n� 1),

which can be rewritten as

4n(n+ 2)(n� 1)(�n+ b) < 0.

In the constant elasticity model f = �Q�", c = �(xi + �
P
j 6=i xj)

�� and �(x) = x. Let zCE

denote the expression in the square brackets of equation (36) in the constant elasticity model,

then

zCE
��
�=0

= (��)2(Bx�)�2(�+1)�B � "�(Q�)�"�1(�(�+ 1)�)(Bx�)�(�+2)q�B

+(��)2(Bx�)�2(�+1)�(n� 1)(�(�"+ n)� 1).

By replacing q� and x� into the above expression, we obtain

zCE
��
�=0

= �2�2z�2(1+�)�B � "� (n=(��))�(1+") z�(1+�)(1+")(�+ 1)z�(�+2)z�+1B (37)

+�2�2z�2(1+�)�(n� 1)(�(�"+ n)� 1),

where

z �
h
�
���
n

�"
�"�1 (1� "=n)

i1=("��(1�"))
.

By noting that z�(�+1)(1+")�(�+2)+(�+1) = z�"+�(1�")z�2(1+�) we can re-write equation (37) as
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follows

zCE
��
�=0

= z�2(1+�)��2 [��B + ��(n� 1)(�(�"+ n)� 1)� "(�+ 1)B=(n� ")] .

Hence zCE
��
�=0

> 0 if and only if

(n� ")��(B + (n� 1)(�(n� ")� 1))� "(�+ 1)B > 0.

Proof Proposition 4 With the AJ model speci�cation sign fCS0(�)g = sign f@q�=@�g =

sign f�(1 + �(n� 1))� bg, so �0AJ is the unique positive solution to the equation �(1+�(n�

1)) � b = 0 (see Table 4). �0AJ is independent of � (since H(�) is independent of �), thus

case �c�of Proposition 3 holds: if � > �0AJ , then �
�
CS = ��TS = 1. From Table 4 we have that

�0AJ < 1 if
p
1 + 4b(n� 1) < 2(n � 1) + 1, or, equivalently, if b < n. Furthermore, when

� = � = 1, the second-order condition writes as b > 1=2, and � > 0 holds if b > n=2;

it can also be shown that �� > 0 if b > n=2. Consider now the KMZ model speci�cation:

sign fCS0(�)g = sign f@q�=@�g = sign f� � bg, thus CS0(�) > 0 for � > �0KMZ = b (case

�c�of Proposition 3). We have that �0KMZ < 1 if b < 1. Furthermore, when � = � = 1, the

second-order condition requires that b > 1=2, and � > 0 holds if b > 1=2, moreover it can

be shown that �� > 0 if b > 1=2. As for the constant elasticity model, from Table 4 we have

that �0CE is increasing in � (case �b�of Proposition 3). For � = 1, �
0
CE < 1 if " < �=(1 + 2�),

however � > 0 if " > �=(1+�), a contradiction (since "; � > 0). Thus, @q�=@�j�=1 < 0 for any

� 2 [0; 1], implying that CS0(1) < 0 and W 0(1) < 0 (see equation (10)) for any � 2 [0; 1].

7.4 Appendix D

Proof of Lemma 5. First, note that the �rst-order condition with respect to output is

identical to the one associated to the static case. Therefore, by totally di¤erentiating the �rst-

order condition with respect to output and solving for @q�=@�, again one obtains equation (8),

which implies that if @x�=@� � 0, then @q�=@� < 0.

Using (15), by totally di¤erentiating the system formed by (12)-(13) in a symmetric equi-

librium, and solving for @q�=@� and @x�=@�, we obtain

@q�

@�
=
1
~�
[('�x + (n� 1) �)'xqB � '�q (�x +  x(n� 1))] (38)
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@x�

@�
=
1
~�
['�q('xq� + (n� 1) q)� ('�x + (n� 1) �)�q], (39)

where  z � @ =@z with z = q; x; �, and

~�(Q�; x�) = �q (�x +  x(n� 1))� 'xq
�
'xq� +  q(n� 1)

�
B,

which in a regular equilibrium is assumed to be positive. By rewriting equation (39) as follows

@x�

@�
= �f 0(Q�)c0(Bx�)[(� + s0(�))(�(1 + �) + n)� (� + (n� 1)s(�))], (40)

where � � (n� 1)(Q�=n)= ~� and s(�) = !(�)(~�(�)� �), we get that sign f@x�=@�g is given by

(18). Let us now turn to the impact of � on output in equilibrium. Similarly, equation (38) can

be rewritten as follows

@q�

@�
= �[(� + s0(�))c0(Bx�)2B + f 0(Q�)

�
c00(Bx�)(Q�=n)B(� + (n� 1)s(�)) + �00(x�)

�
]. (41)

Inserting the �rst-order necessary condition (13) evaluated at the symmetric equilibrium into

the above expression, after some manipulations, we get that sign f@q�=@�g is given by (19).

Proof of Proposition 6. From equation (18) we have that @x�=@� � 0 if � � �2S . Thus,

if � � inff�2S : � 2 [0; 1]g, then @x�=@� � 0 for all �, which by Lemma 5 (i) implies that
@q�

@�
< 0 for all �. Then, by equation (10) we have that W 0(�) < 0 for all �: social welfare is

maximized with �� = 0.

If we use equations (40) and (41) in equation (10), after some manipulations we obtain

W 0(�) = �Q�(�f 0(Q�))[�(c0(Bx�)2(� + s0(�))B + f 0(Q�)(c00(Bx�)(Q�=n)B(� + (n� 1)s(�))(42)

+�00(x�))) + c0(Bx�)2((1� �)� � s(�))(n� 1)((� + s0(�))(�(1 + �) + n)

�(� + (n� 1)s(�)))].

Then W 0(0)j�=1 > 0 if and only if

0 < (c0(nx�))2[(1 + s0(0)
��
�=1

)n+ (1� s(0)j�=1)(n� 1)((1 + s0(0)
��
�=1

)(1 + � + n) (43)

�(1 + (n� 1) s(0)j�=1))] + f
0(Q�)(c00(nx�)Q�(1 + (n� 1) s(0)j�=1) + �

00(x�)).
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From equation (16) we have that in equilibrium and for � = 0 and � = 1:

Q�j�=0;�=1 = �
n�0(x�)

c0(nx�)(1 + (n� 1) s(0)j�=1)
.

Substituting Q�j�=0;�=1 into (43) and using the de�nitions for �(Bx�) and �(Q�; x�), we obtain

the condition for the two-period model:

[(1+s0(0)
��
�=1

)n+(1�s(0)j�=1)(n�1)((1+s
0(0)

��
�=1

)(1+�+n)�(1+(n�1) s(0)j�=1))]�H(1) > 0,

where

s(0) =
(2n+ �)[(n+ �)=(2n+ �)� �]

n(n+ 1 + �)

and

s0(0) = �(2n
2 + �(2n+ 1) + �2)(n� 1)� � �2(n� 1)� �(2n2 � 1)� n(n2 + 1)

(n+ 1 + �)2n
.

Thus, s0(0)j�=1 = (1 + � � n(n � 2))=(n + 1 + �)2. Note that by setting s = s0 = 0, we obtain

the condition for the simultaneous case, that is, condition (11).

Next we derive equilibrium values of output and R&D of the two-stage model under each

model speci�cation.

The d�Aspremont and Jacquemin�s model speci�cation. From �rst-order necessary

conditions (12)-(13) and using the expression for the strategic term (15) we obtain

q� =
(a� �c)

~�
and x� =

((n� 1)( �
n+�)(1 + �� 2�) + �)(a� �c)

~�

where

~� =
b(� + n)2 �B((n� 1)�(1 + �� 2�) + (n+ �)�)

� + n
.

In this case, H = b=�, thus using (12) we have

signf@q
�

@�
g = sign

�
B�(n+ �) +B

�
1 + �� 2�
n+ �

(n� 1)n+ �
�
� b(n+ �)

�
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and using (13) we get

signf@x
�

@�
g = signf� (� + n+ (n� 1)(!(�)� �)) (44)

+(
1 + �� 2�
n+ �

(n� 1)n+ �)� 1� (n� 1)!(�)~�(�)g,

where we have used that

�
!0(�)(~�(�)� �) + !(�)~�0(�)

�
(� + n) =

1 + �� 2�
n+ �

(n� 1)n+ �.

The Kamien, Muller and Zang�s model speci�cation. The output and R&D values

in equilibrium are given by

q� =
(a� �c)

b(� + n)� v and x
� =

1

2

(a� �c)2v2
B(b(� + n)� v)2

with v = (n� 1)s(�) + � . Since s(�) = !(�)(~�(�)� �), we can write

v = (n� 1)�
�
1 + �� 2�
n+ �

�
+ � .

In this case, H = bB=�, then using (12) we have

signf@q
�

@�
g = signf�(n+ �) + (1 + �� 2�

n+ �
(n� 1)n+ �)� b(n+ �)g

and signf@x�@� g is again given by (44).

Constant elasticity model. The output and R&D values in equilibrium are given by

Q� =
n

��((n� 1)s(�) + �)

�
�

�
((n� 1)s(�) + �)�

n

�"
�"�1

�
1� "�

n

��(1+�)=["��(1�")]

and

x� =
1

B

�
�

�
((n� 1)s(�) + �)�

n

�"
�"�1

�
1� "�

n

��1=["��(1�")]
,

where s(�) = !(�)(~�(�)� �). It can be shown that in the constant elasticity model:

H =
B

�

�
�+ 1

�

�
"

n� "�((n� 1)s(�) + �).
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Hence, we have

signf@q
�

@�
g = signf(� + s0(�))� �+ 1

�

"

n� "�((n� 1)s(�) + �g.

And, signf@x�=@�g is given by (18) with � = �(1 + ").
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