
International Journal of Psychological Research, 2010. Vol. 3. No. 1. 
ISSN impresa (printed) 2011-2084 
ISSN electrónica (electronic) 2011-2079 

Hsieh, C., Von Eye, A., (2010). The Best of Both Worlds: A Joint Modeling 
Approach for the Assessment of Change across Repeated Measurements. 
International Journal of Psychological Research, 3 (1), 177-210. 

 

International Journal of Psychological Research         177 

 

The Best of Both Worlds: A Joint Modeling Approach for the 

Assessment of Change across Repeated Measurements. 
 

Lo mejor de ambos mundos: una propuesta de modelamiento combinado para la evaluación del 

cambio a lo largo de mediciones repetidas. 

 

Chueh-An Hsieh and Alexander von Eye 
Michigan State University, East Lansing, USA 

 

 

ABSTRACT 

 

The usefulness of Bayesian methods in estimating complex statistical models is undeniable. From a Bayesian 
standpoint, this paper aims to demonstrate the capacity of Bayesian methods and propose a comprehensive model 
combining both a measurement model (e.g., an item response model, IRM) and a structural model (e.g., a latent variable 
model, LVM). That is, through the incorporation of the probit link and Bayesian estimation, the item response model can be 
introduced naturally into a latent variable model. The utility of this IRM-LVM comprehensive framework is investigated 
with a real data example and promising results are obtained, in which the data drawn from part of the British Social 
Attitudes Panel Survey 1983-1986 reveal the attitude toward abortion of a representative sample of adults aged 18 or older 
living in Great Britain. The application of IRMs to responses gathered from repeated assessments allows us to take the 
characteristics of both item responses and measurement error into consideration in the analysis of individual developmental 
trajectories, and helps resolve some difficult modeling issues commonly encountered in developmental research, such as 
small sample sizes, multiple discretely scaled items, many repeated assessments, and attrition over time 
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RESUME� 

 

La utilidad de los métodos Bayesianos en la estimación de modelos estadísticos complejos es innegable. Desde un 
punto de vista Bayesiano, el presente artículo busca demostrar la capacidad de los métodos Bayesianos y proponer un 
modelo exhaustivo que combina un modelo de medición y un modelo estructural. La utilidad de este método combinado se 
investiga usando datos reales tomados de una encuesta sobre actitudes sociales. El método combinado permite extraer las 
características de las respuestas a los ítems como de los errores en la medición para el análisis individual de trayectorias del 
desarrollo. Tales resultados permiten resolver asuntos que se presentan en investigación en psicología del desarrollo, e.g., 
tamaños de muestra pequeños, evaluaciones repetidas, etc. 
 

Palabras clave: Inferencia Bayesiana, modelo de respuesta al ítem, análisis de curva de crecimiento latente, 
simulación, modelo linear generalizado latente y mixto. 
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1. LO�GITUDI�AL DATA A�ALYSIS 
 
1.1 Covariance structure analysis (CSA) 

 
The use of growth models in social, behavioral, 

and educational research has increased rapidly, for it 
answers important research questions such as the study of 
psychological, social development and the process of 
learning. Already it is well known that growth models can 
be approached from several perspectives via the 
formulation of equivalent models and can provide identical 
estimates for a given data set (e.g., Bauer, 2003; Chou, 
Bentler, and Pentz, 1998; Curran, 2003; Engel, Gattig, and 
Simonson, 2007; Hox and Stoel, 2005; Willett and Sayer, 
1994). For instance, a model can be constructed as a 
standard two-level hierarchical linear model (HLM), where 
the repeated measures are positioned at the lowest level, 
and treated as nested within the individuals (e.g., Singer, 
1998; Steele and Goldstein, 2007). Equally, a model can be 
constructed as a structural equation model (SEM), in which 
latent variables are used to account for the relations 
between the observed variables; hence, it has the name 
latent growth curve (LGC) analysis (e.g., Muthén, 2002).  

 
It is this mean and covariance structure that makes 

it possible to specify exactly the same model as an HLM or 
LGC, because the fixed and random effects in the HLM 
correspond to the mean and covariance structure of the 
latent variables in the LGC analysis. However, although 
several key differences remain between these two models, 
the discrepancies are rapidly disappearing (Preacher et al., 
2008; Raykov, 2007). One of the major differences is that, 
in the HLM, time is treated as a fixed explanatory variable, 
whereas it is introduced in the LGC model via the factor 
loadings. The consequence is that the HLM is essentially a 
univariate approach with time points treated as 
observations of the same variable, whereas the LGC model 
essentially takes a multivariate approach with each time 
point treated as a separate variable (e.g., Bauer, 2003; 
Curran, 2003; Hox and Stoel, 2005; Muthén, 2002; 
Preacher, Wichman, MacCallum, and Briggs, 2008; 
Raudenbush and Bryk, 2002; Willett and Sayer, 1994).  

 
When the outcome measurements are on a discrete 

scale, however, the application of conventional growth 
curve models will introduce a potentially significant bias in 
the analysis and subsequent inferences (Curran, Edwards, 
Wirth, Hussong, and Chassin, 2007). Currently, there are 
two major modeling strategies which allow for the explicit 
incorporation of categorical repeated data in growth curve 
models. One strategy is to use the nonlinear multilevel 
model (e.g., Diggle, Heagerty, Liang, and Zeger, 2002; 
Gibbons and Hedeker, 1997; Raudenbush, Johnson, and 
Sampson, 2003), and the other is to use the nonlinear 

structural equation model (e.g., Jöreskog, 2002; Muthén, 
1983, 1984, 1996, 2002). As Curran et al. (2007) and 
Vermunt (2007) state, when fitting measurement models to 
empirical data of the type commonly encountered in 
developmental research, such as small sample sizes, 
multiple discretely scaled items, many repeated 
assessments, and attrition over time, both models become 
quite complex and have difficulty achieving convergence1.  

 
1.2 A unified modeling approach 

 
In order to accommodate this, we bridge the gap 

by resorting to an integrative modeling framework: using 
the derivative of the generalized linear latent and mixed 
model (GLLAMM; Skrondal and Rabe-Hesketh, 2004) in a 
single analytic session. That is, strengthened by attributes 
of the item response model (e.g., Lord and Novick, 1968) 
and latent variable model (e.g., Muthén, 2002), we can 
incorporate multiple categorical measurement models in 
the growth curve analysis. For instance, in item response 
models, the generalized linear model (GLIM) formulation 
is typically used. Through a commonly used link function, 
either a logit or probit, the conditional probability of a 
particular response given the latent trait can easily be 
specified. The classical application of these models is in 
the literature on educational testing and psychometrics, 
where the subscript i represents an item or question in a test 
and the responses are scored as correct (1) or incorrect (0) 
for dichotomous items. In this setting, ηj represents the 
latent ability of person j, and the model is parameterized as 
logit[Pr(Yij=1|ηj)]=αi(ηj -βi) or probit[Pr(Yij=1|ηj)]=αi(ηj -
βi), corresponding to a unidimensional two-parameter 
logistic item response model or a unidimensional two-
parameter normal ogive model. Here, the abilities can be 
interpreted either as logits or probits of the probability of a 
correct response to a particular item2. Item difficulty 
parameters (βi) are defined as the location of inflection 
points in an item characteristic curve (ICC) along the same 
scale as the latent ability (η); thus, when the participant’s 
ability equals the item difficulty, he or she will have a 50% 
chance of correctly answering an item or endorsing an 
item, whereas the αi are the slopes of ICCs at their 
inflection points, which can be considered the degree to 
which item response varies with the underlying latent 

                                                 
1 Specifically, with categorical response variables, when there are more 

than two or three latent variables with random effects, relying on the 

untestable assumption that these random coefficients come from a 

multivariate normal distribution, the integrals appearing in the likelihood 

function are hard to analytically determine and need to be solved using 

approximation methods (Vermunt, 2007).  
2 For instance, if subjects have the abilities of ±1, the implication is that in 

the logit scale there are 73% and 27% probabilities of correctly answering 

an item, say, the item 1 (since β1=0 and α1=1). Similarly, in the probit 

scale the probabilities of correctly answering the item 1 for the same 

person are 84% and 16%, respectively.  
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construct: this helps determine how well the item 
discriminates between subjects with different abilities (e.g., 
Birnbaum, 1968; Lord and Novick, 1968).  

 
As a useful version of the random coefficient 

model, a single-domain latent growth curve analysis was 
adopted in the present study, in which individuals were 
assumed to differ not only in their intercepts, but also in 
other aspects of their trajectory over time in terms of a 
unidimensional latent variable, the general attitude toward 
abortion (e.g., Byrne and Crombie, 2003; Skrondal and 
Rabe-Hesketh, 2008). As the chronological ordering of 
responses and the clustering of responses within 
individuals are two important features of longitudinal data, 
in order to accommodate this mean and covariance 
structure, a longitudinal model must allow for dependence 
among responses on the same subject (e.g., Everitt, 2005; 
Skrondal and Rabe-Hesketh, 2004). As a two-factor model, 
the latent growth curve model can be formulated as, 

ηkj=λ0kζ0j+λ1kζ1j+εkj where ηkj the propensity to hold 
a positive attitude toward abortion at the kth occasion for an 
individual j (measured by four dichotomous items at each 
point of time), is the focus of the study; ζ0j and ζ1j are the 
true initial level and shape factors; and εkj represents the 
level-1 residuals in the structural model. The data that we 
analyzed are time-structured and balanced in occasions: all 
subjects are measured at the same set of time points, k=1, 
…, 4. In addition, the loadings for the intercept factor ζ0j 
are fixed at λ0k=1 (∀ k), and the loadings for the shape 
factor ζ1j are set equal to λ1k. As Meredith and Tisak (1990) 
suggest, it is feasible to model a nonlinear growth or 
decline trajectory using a two-factor model with free factor 
loadings for ζ1j. To make the model identifiable, we set 
λ11=0 and λ14=1 and estimate the coefficients for the 
intermediate time points3.  
   

As for the link function, given the similarities 
between logit and probit of these two models (i.e., both 
models can be treated as sample cases of the wider class of 
generalized linear models, GLIMs), either model will in 
most applications give identical substantive conclusions 
(Liao, 1994; Stefanescu, Berger, and Hershberger, 2005). 
Normally, by multiplying a factor of π/√3, we can go from 
one set of estimates to the other4. However, when we have 
heavy tails in the distribution of observations, estimates 
from the logit and probit models can differ substantially 
(Amemiya, 1981). Moreover, one of the Markov chain 
Monte Carlo (MCMC) sampling algorithms, the direct 
Gibbs sampling (Albert, 1992; Chib and Greenberg, 1995; 
Gelfand et al., 1990; Patz and Junker, 1999a) has been 

                                                 
3 This level and shape model (LS) is equally useful regardless of whether 

the developmental trajectory is linear or nonlinear (Raykov and 

Marcoulides, 2006)  
4 Or, multiplying a factor lying somewhere between 1.6 and 1.8 

(Amemiya, 1981). 

implemented only for normal ogive item response models, 
requiring the use of a process called data augmentation 
(Albert and Chib, 1997; Fox, 2007; Jackman, 2000; Kim 
and Bolt, 2007; Stefanescu et al., 2005). Therefore, in the 
model estimated via Bayesian Markov chain Monte Carlo, 
using Gibbs sampling as implemented in WinBUGS 1.4 
(Spiegelhalter, Thomas, Best, and Lunn, 2003), the probit 
link5 is considered the more appropriate function.  

  
With the longitudinal design, mathematically, the 

response model can now be written as:  
 

probit[Pr(Ykij=1|ηkj)]=αki(ηkj-βki), where subscript k 

represents the different occasions. In the present study, 
assuming that the assumption of strong measurement 
invariance holds (Meredith and Teresi, 2006; Sayer and 
Cumsille, 2001), we then impose equality for each of the 
item parameters over time6 (i.e., assuming that neither item 
difficulty nor item discrimination varies across different 
points in time), which further reduces αki to αi and βki to βi 
from the above mathematical formula. If the invariance of 
the factor structure fails to hold over time, the consequence 
is that the difference in means may be partially attributable 
to differences in the scale of a factor’s (Blozis, 2007). 
Thus, through the estimated item characteristic curves 
(ICCs) for a unidimensional two-parameter item response 
model, this unified modeling approach can be specified as:  
 
Pr(Ykij=1|ηkj)=exp(νkij)/(1+exp(νkij))=Φ(νkij), where νkij is 
the linear predictor (i.e., αi(ηkj-βi)), Φ(⋅) is the standard 
normal cumulative distribution function (i.e., the inverse 
probit link), and again, ηkj can be replaced by 

τk+λ0kζ0j+λ1kζ1j+εkj. As the model becomes more 
complex, for identification purposes we exclude the 
intercept (τk) from the structural models, fix one of the 
constants in the response model, and set the first item 
difficulty parameter (β1) equal to zero. By doing so, we 
enforce other individual-level covariates (e.g., gender, age, 
and religious status) to affect the response via the latent 
variable only (Skrondal and Rabe-Hesketh, 2004).  

 
1.3 Objectives of the study 

 
The usefulness of Bayesian methods in estimating 

complex statistical models is undeniable. Bayesian data 
analysis is seen as having a range of advantages, such as an 
intuitive probabilistic interpretation of the parameters of 

                                                 
5 In addition, a useful feature of the probit model is that it can be used to 

yield tetrachoric correlations for the clustered binary outcomes, and 

polychoric correlations for ordinal responses (Hedeker, 2005).  
6 However, for most applications in which the aim is to ensure fairness 

and equity, a stronger assumption of strict factorial invariance is 

necessary, that is, equal factor loadings, intercepts, and equivalent 

residual variances (specific factor plus error variable) across different 

occasions (Meredith and Teresi, 2006). 
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interest, the efficient incorporation of prior information 
into empirical data analysis, model averaging, and model 
selection (Best, Spiegelhalter, Thomas, and Brayne, 1996; 
Maier, 2001; Rupp, Dey, and Zumbo, 2004; Western, 
1999). Additionally, unlike the maximum likelihood 
estimation requiring large samples to approximate the 
sampling distribution of the MLE when making statistical 
inference, Bayesian inference can be considered a plausible 
way to deal with small sample size studies (Congdon, 
2005; Lee and Wagenmakers, 2005; Zhang et al. 2007). 
Thus, the present study aim is to demonstrate the capacity 
of Bayesian methods, and propose a comprehensive model 
combining both a measurement model (e.g., an item 
response model, IRM) and a structural model (e.g., a latent 
variable model, LVM). That is, through the incorporation 
of the probit link and Bayesian estimation, the item 
response model can be naturally introduced into a latent 
variable modeling framework.  

 
Despite a large number of components requiring 

attention when selecting an appropriate statistical model, 
this study restricts its focus to the following issues: (1) 
model formulation: how Bayesians explicitly incorporate 
multiple repeated measures of discrete scale into a growth 
curve model. In order to differentially weight individual 
items, and examine developmental stability and change 
over time, one specific model, an IRM-LGC is presented. 
This model combines the two-parameter normal ogive item 
response model (e.g., Lord and Novick, 1968) and latent 
growth curve analysis (e.g., Meredith and Tisak, 1990); (2) 
missing data compensation: as the results from the full 
dataset7 (the one containing missing outcomes) do not 
differ systematically from the complete cases in 
unconditional models, the unprovable missing data 
generation mechanism, missing at random (MAR; Rubin, 
1987), seems sustainable8. Being an alternative estimation 
method, the Bayesian inference explicitly models missing 
outcomes and handles them as extra parameters to estimate 
(Gelman and Hill, 2007; May, 2006; Patz and Junker, 
1999b; Spiegelhalter et al., 2003). Thus, the incorporation 
of individual-level auxiliary predictors makes it trivial to 
use the Bayesian approach to effectively estimate missing 
values in a conditional model (Carrigan, Barnett, Dobson 
and Mishra, 2007; Gelman and Hill, 2007).  

2. THE DERIVATIVE OF THE GE�ERALIZED 

LI�EAR LATE�T A�D MIXED MODEL 

(GLLAMM) 

 
As a class of multilevel latent variable models, the 

GLLAMM encompasses the response model and the 
structural model (Skrondal and Rabe-Hesketh, 2003; 

                                                 
7 The overall nonresponse rate is 12.1%, (323-284)/323. 
8 The corresponding significance value associated with Little’s MCAR 

test (Little, 1988) is .222, indicating that the data are missing completely 

at random (MCAR). 

2004). In the present study, a unified modeling approach, 
IRM-LGC, is proposed, where the former pertains to the 
response model (i.e., the generalized linear model, GLIM) 
and the latter relates to the structural model. When we 
incorporate random effects in the underlying continuous 
latent construct(s) (i.e., augment GLIMs via the inclusion 
of random effects in the latent variables; hence the name 
‘generalized linear mixed models’-GLMMs), and regress 
latent variables upon other latent variables or covariates, 
this unified model is expanded as the generalized linear 
latent and mixed model (GLLAMM). Thus, with 
longitudinal designs, the data are of a multilevel nature 
with a set of categorically scored items nested within each 
person on each measurement occasion, which causes the 
response model, the structural model, and three-level 
indices (k=1, …T; i=1, …I; j=1,…,n) to be the required 
elements. 
 

2.1 The response model 

 
Standard use of a latent growth curve analysis typically 
considers a single manifest indicator at each measurement 
occasion, in which each response is a function of time and 
constitutes the first level of the measurement model. 
However, taking such an approach fails to capitalize on one 
of the capacities inherent in the structural equation models 
(SEM): not only ignoring the relations between multiple 
indicators and the underlying latent construct, but also 
dismissing information about the psychometric properties 
of manifest variables (Sayer and Cumsille, 2001). On the 
contrary, when we incorporate multiple indicators of 
discretely scaled measurement into the model, a second-
order factor structure is utilized to investigate the 
developmental trajectory over time, which allows the 
researcher to evaluate the factorial invariance of the latent 
constructs across waves, and permits the separation of 
time-specific error and measurement error (Blozis, 2007; 
Sayer and Cumsille, 2001).  

 
 
As mentioned earlier, through the estimated ICCs 

the multivariate random-coefficient probit regression 
model for dichotomous responses can be expressed as 
 
Pr(Ykij=1|ηkj)=exp(νkij)/(1+exp(νkij))=Φ(νkij), where νkij is 
the linear predictor; Φ(⋅) is the standard normal cumulative 
distribution function, and ηkj are the latent ability for 
person j at occasion k

th. Using matrix formulation, the 
vector of linear predictors can now be written as follows 
(Zheng and Rabe-Hesketh, 2007):   
 

νkij =ηkjZαi-X(αβ)i             (2.1) 
 

(k=1,…, T; i=1,…, I; j=1,…, n), where Z and X are the 
design matrices, αi and (αβ)i are the corresponding vectors 
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associated with item parameters, and again, ηkj represents 
the latent ability across the entire study span. Since a 
multivariate random coefficient probit regression for 
dichotomous responses is utilized in the present study, 
where νkij represents the vector associated with the probit 
function of a correct response for item i and person j at the 
k

th occasion, and ηkjZαi and X(αβ)i are the respective 
random and fixed components, analogously, using 
Equation (2.1), the unidimensional two-parameter normal 
ogive response model for four dichotomous items can be 
written as follows:  
 

 

( )
1

2 2 2 2

4 4

3 3 3 3

4 4 4 4

1 01 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

k j

k j

kj

k j

k j

v

v

v

v

×

      
      
      = −
      
      
       

α α β
η Ι

α α β
α α β

      (2.2) 

 
 
(k=1,…, T; i=1,…, 4; j=1,…, n). For identification 
purposes, we fix the first item discrimination parameter 
(α1) to 1 and the first item difficulty parameter (β1) to zero, 
which results in α1β1=0. By doing so, we enforce level-2 
covariates at the structural model to affect the response 
through the latent variable (ηkj) only (Skrondal and Rabe-
Hesketh, 2004). 

 
2.2 The structural model: the two-stage formulation 

 
Perhaps the most intuitively appealing way of 

specifying a growth curve model is to link it to two distinct 
questions about change: one entails the starting position 
(level) and the other involves the overall true change across 
the entire study span (shape), each arising from a specific 
level in a natural hierarchy; this is called two-stage model 
formulation (Rabe-Hesketh and Skrondal, 2008; Singer and 
Willett, 2005).  

 
2.2.1 The level-1 structural model 

 
When taking the perspective of latent response 

formulation, change is now modelled in the repeated latent 
constructs and no longer in the observed scores, making it 
possible for the error in the measurement model to be 
partitioned into time-specific error and measurement error. 
As Blozis (2007) puts it, serving as the subject of analysis, 
the latent variable encompasses time-specific error without 
the confounding influence of measurement error. This is 
because at each point of time, a common factor is assumed 
to account for the dependencies among a set of 
categorically scored items and allow for the decomposition 
of the error variances not attributable to growth (i.e., time-
specific error variances). Using LISREL notation, the 
level-1 structural model can be expressed as follows: 

 

1 1 11 11
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 or 

 
ηkj=λ0kζ0j+λ1kζ1j+εkj=ζ0j+λ1kζ1j+εkj         (2.3) 

 
(k=1, …, T; j=1,…, n; λ11=0, λ14=1). Since the repeated 
measures (ηkj) have been extracted from the item response 
model through the probit link, converting the expected 
response to the linear predictor, Equation (2.3) is the 
structural model. As before, the term ηkj refers to the 
measures of an individual j at time k, and is a function of 
intercepts (τk), latent variables (representing the underlying 
initial status (ζ0j) and the relative growth or decline 
trajectory (ζ1j)), and time-specific disturbance residuals 
(εkj). The τk term is typically constrained to zero, yielding a 
simplified model structure. Also, if there is a significant 
amount of variation to be explained, analysis can proceed 
in a stepwise manner by adding time varying covariates 
(TVCs) to Equation (2.3), as time-specific predictors of the 
repeated measures. In order to model a nonlinear growth or 
decline trajectory, we adopt the suggestion of Meredith and 
Tisak (1990): fixing all λ0k equal to 1 and setting λ11 and 
λ14 to be 0 and 1, for model identification purposes. Unlike 
the assumption typically made in SEM (εkj are identically 
and independently normally distributed with mean (0) and 
variance (ψ)), we allow disturbance residuals at the level-1 
structural model to be time-heteroskedastic and to vary 
across different occasions. That is, these time-specific error 
variances are distributed heteroscedastically over time 
within-person. Because the random-effect (ηkj) can be 
further represented by the variances of ζ0j and ζ1j at the 
second level of structural model, the LGC represents one 
kind of the random-effect models, and 
 

2
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2

2
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2

4
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0 0 0
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ε

ε
ε

ε

ε

σ
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σ
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 =
 
 
  

(2.4) 

 

 

2.2.2 The level-2 structural model 

 

The level-2 structural model allows us to 
distinguish the growth or decline trajectories among 
individuals using their specific growth parameters, such as 
the true initial status and the change rate, implying that we 
can examine unobserved heterogeneity in growth curves by 
studying inter-individual variation in growth parameters. 
As declared by Singer and Willett (2005), an appropriate 
level-2 model entails the four following characteristics: (1) 
the level-2 outcomes are the level-1 individual growth 
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parameters; (2) the level-2 model can be written in separate 
formulae, one for each level-1 growth parameter; (3) each 
formula specifies a relationship between the individual 
growth parameter and time-invariant covariates (TICs), and 
(4) each level-2 formula must contain the stochastic 
component: for those individuals who share a common 
predictor could vary in their specific change trajectories; 
hence the name random coefficient models. Similarly, the 
level-2 LGC model can be expressed as 
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 or 

ζ0j=ν00+γ01ω1+γ02ω2+γ03ω3+γ04ω1*ω2+γ05ω1*ω3+γ06ω2*ω3

+γ07ω1*ω2*ω3+υ0j                            (2.5) 
ζ1j=ν10+γ11ω1+γ12ω2+γ13ω3+γ14ω1*ω2+γ15ω1*ω3+γ1

6ω2*ω3+γ17ω1*ω2*ω3+υ1j                             (2.6) 
 
(j=1,…, n), where Equations (2.5) and (2.6) represent 
regression equations among latent variables, one for each 
level-1 growth parameter. Proposed in the present study (as 
model 1 in both data sets), in a fully conditional model, the 
ζ0j and ζ1j factors with ν00 and ν10 as corresponding 
intercepts, are predicted by gender (ω1), age (ω2), religious 
status (ω3), and all two-way and three-way interactions 
with residuals υ0j and υ1j, respectively. In addition, υ0j and 
υ1j are usually assumed to have a bivariate normal 
distribution with zero mean and unstructured covariance 
matrix. That is, controlling for the predictors of change, the 
residual variances and covariance of true initial level and 
shape are distributed as follows.  
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2.2.3 The composite model 

 
As an analogous model formulation, a reduced 

form (Equation (2.8)) can be specified by substituting 
Equations (2.5) and (2.6) into the level-1 model (2.3), 
postulating that the general attitude simultaneously 
depends on: (1) the corresponding factor loadings for each 
level-1 predictor, the latent growth parameters; (2) the 
level-2 predictors, such as gender, age, and religious status; 
(3) the cross-level interaction (i.e., the corresponding factor 
loadings of each level-1 predictor multiplied by the level-2 
predictors), and (4) the composite residual variances.  

ηkj=ζ0j+λ1kζ1j+εkj 

=(ν00+γ01ω1+γ02ω2+γ03ω3+γ04ω1*ω2+γ05ω1*ω3+γ06

ω2*ω3+γ07ω1*ω2*ω3+υ0j) 
+λ1k(ν10+γ11ω1+γ12ω2+γ13ω3+γ14ω1*ω2+γ15ω1*ω3+γ16ω2*ω

3+γ17ω1*ω2*ω3+υ1j) +εkj 

=(ν00+γ01ω1+γ02ω2+γ03ω3+γ04ω1*ω2+γ05ω1*ω3+γ06

ω2*ω3+γ07ω1*ω2*ω3+υ0j) 
+(λ1kν10+λ1kγ11ω1+λ1kγ12ω2+λ1kγ13ω3+λ1kγ14ω1*ω2+λ1kγ15

ω1*ω3+λ1kγ16ω2*ω3 

+λ1kγ17ω1*ω2*ω3+λ1kυ1j)+εkj 
=(ν00+λ1kν10)+(γ01ω1+γ02ω2+γ03ω3+γ04ω1*ω2+γ05ω1

*ω3+γ06ω2*ω3+γ07ω1*ω2*ω3) 
+(λ1kγ11ω1+λ1kγ12ω2+λ1kγ13ω3+λ1kγ14ω1*ω2+λ1kγ15ω1*ω3+

λ1kγ16ω2*ω3 

+λ1kγ17ω1*ω2*ω3)+(υ0j+λ1kυ1j+εkj)                 (2.8) 
 
 
(k=1, …, T; j=1,…, n; λ11=0, λ14=1). Thus, using the same 
notation as before, a unified modeling approach combining 
both the item response model and the latent growth curve 
analysis can be written as below, which is the derivative of 
the generalized linear latent and mixed model (GLLAMM), 
since the model contains both fixed (ωj) and random effects 
(υ0j and υ1j), and has latent abilities (ηkj) being regressed 
upon other factors and observed covariates.  
 
probit[Pr(Ykij=1|ωj, υ0j, υ1j)]= νkij =αi(ηkj -βi)=αi(ζ0j+λ1kζ1j-
βi) 
 

=αi((ν00+λ1kν10)+(γ01ω1+γ02ω2+γ03ω3+γ04ω1*ω2+γ05

ω1*ω3+γ06ω2*ω3+γ07ω1*ω2*ω3) 
+(λ1kγ11ω1+λ1kγ12ω2+λ1kγ13ω3+λ1kγ14ω1*ω2+λ1kγ15ω1*ω3+

λ1kγ16ω2*ω3+λ1kγ17ω1*ω2*ω3) 
+(υ0j+λ1kυ1j+εkj)-βi)                                         (2.9) 

(i=1, …I; k=1, …, T; j=1,…, n; λ11=0, λ14=1).  
 
 
Furthermore, with a sampling distribution 

assumption being imposed, Ykij=1|πkij ~binomial(1, πkij) 
(2.10), where πkij=Pr(Ykij=1|ωj, υ0j, υ1j), Raudenbush and 
Bryk (2002) concluded that this GLLAMM can be 
categorized into three subcomponents: (1) the level-1 
sampling model (Equation (2.10)); (2) the link function 
(Equation (2.9) left-hand side), and (3) the structural model 
(Equation (2.9) right-hand side).  

 
In short, although many other techniques have 

been developed to capitalize on the special features of 
longitudinal research, the latent growth curve analysis 
provides a broad class of statistical methods which are 
highly flexible in model articulation, provide enhanced 
statistical power for testing hypotheses, and demonstrate 
greater correspondence between the statistical model and 
the traditional theory underpinning developmental 
trajectories (Preacher et al., 2008). That is, the LGC model 
is capable of allowing straightforward examination of 
intraindividual change as well as interindividual variability. 
More importantly, apart from its capabilities that lead to 
greater understanding and discernment of the 
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developmental trajectory, LGC modeling is appealing for 
making possible inquiry into the antecedents, processes, 
and consequences of change (Willett and Sayer, 1994).  

 
3. BAYESIA� I�FERE�CE 

 
3.1 Estimating statistical complex models using the 

Markov chain Monte Carlo (MCMC) 

 
Bayes' theorem is the centerpiece of Bayesian 

inference, f(Ω|Y)=f(Y|Ω)*f(Ω)/∫f(Y|Ω)f(Ω)dΩ, where 
f(Ω|Y) denotes the posterior probability density function, Y 
denotes the observed response data, and Ω represents the 
unknown model parameters and latent measurement 
variables. The “f(.)” can be replaced by “p()” and “∑” can 
take the place of “∫” when we have data and parameters of 
a discrete nature. This posterior density can be used to 
determine model parameter estimates; the quantity f(Y|Ω) 
denotes the likelihood function of the model parameters 
given the response data (Y), and f(Ω) is the prior 
distribution for the model parameters, representing the 
relative likelihoods of particular parameter values before 
accessing the data (Kim and Bolt, 2007). In contrast to the 
frequentist perspective, from a Bayesian point of view the 
parameters of interest are treated as random quantities 
and probabilities are assigned to each model that possibly 
could have generated the data (Johnson, Sinharay, and 
Bradlow, 2007). Described as a normalizing constant, the 
quantity in the denominator, ∫f(Y|Ω)f(Ω)dΩ, is a scaling 
factor and makes the posterior density a proper one (i.e., 
non-negative densities which integrate to one). However, 
this normalizing constant is usually unknown and hard to 
analytically determine. Thus, Bayes' theorem can be 
expressed as f(Ω|Y) α f(Y|Ω)*f(Ω), indicating that the joint 
posterior density is proportional to the product of the 
likelihood function and the prior density for the model 
parameters, which makes for an appealing feature 
associated with the Bayesian approach: that the posterior 
distributions obtained include information regarding both 
the observational setting and the substantive domain.  

 
When the model becomes complex, this joint 

posterior distribution tends to become numerically or 
analytically intractable. This is because calculating this 
posterior density typically requires a large summation 
and/or multidimensional integrals. In order to solve this 
intractability problem, the use of Monte Carlo integration 
was revisited by Bayesian statisticians in the late 1980s. A 
random sequence or chain is generated, such that in the 
long run each parameter value occurs with a frequency 
proportional to f(Ω|Y). In addition, the chain is generated 
so that each value in the sequence depends only on its 
immediate predecessor, which under certain conditions 
makes it a finite order Markov process (Kim and Bolt, 
2007; Rupp et al., 2004; Thompson, Palmer, and Moreno, 

2006; Western, 1999). Possessing these two properties, this 
sampling procedure is named the Markov chain Monte 
Carlo (MCMC), the goal of which is to reproduce the joint 
posterior distribution through simulation (e.g., Jackman, 
2000; Kim and Bolt, 2007; Lynch and Western, 2004; Patz 
and Junker, 1999b). By sampling enough observations, 
researchers could obtain a general description of the 
posterior distribution, such as the expected a posteriori 
(EAP; the mean of the posterior density), maximum a 
posteriori (MAP; the mode of the posterior density), 
posterior standard deviation (PSD; standard deviation of 
the posterior density), the 95% credible interval, etc.  

 
3.2 Sampling procedures 

 

The mechanism by which sampling is conducted 
varies depending on the known features of the posterior 
distribution, f(Ω|Y). In general, various types of sampling 
algorithms are considered within MCMC, two of which are 
the Metropolis-Hastings algorithm (e.g., Chib and 
Greenberg, 1995) and the Gibbs sampling (e.g., Casella 
and George, 1992). Also known as rejection sampling, the 
key to the former is trying to find a suitable candidate-
generating density (i.e., a proposal density, q(θ*|θt)) to use 
for suggesting a new value, θ*, given the current value in 
the chain θt . The choice of a proposal distribution affects 
the efficiency of the algorithm: a good choice of proposal 
distribution will make the chain converge quickly to the 
long-run probabilities; however, a poor choice of proposal 
distribution will leave the chain stuck while generating 
parameter values and slow down the convergence of the 
sequence (Thompson et al., 2006). Usually, the Metropolis-
Hastings algorithm is needed when estimating logistic item 
response models, for the complete conditional distributions 
are not of a known distribution form (Kim and Bolt, 2007). 
To make the Markov chain reach convergence reasonably 
fast, Patz and Junker (1999b) suggested the use of 
Metropolis-Hastings within Gibbs (MHwG) for the two- 
and three-parameter logistic model as well as the 
generalized partial credit model. Interested readers may 
refer to Chib and Greenberg, 1995) for further discussion. 

  
As a special case of the Metropolis-Hastings, the 

Gibbs sampling involves cycling through smaller subsets of 
parameters of the model9 and using the current estimate of 
the full conditional posterior distribution as the proposal 
density (Casella and George, 1992; Chib and Greenberg, 
1995; Fox, 2007; Gelfand et al., 1990; Patz and Junker, 
1999a, 1999b; Thompson et al., 2006). In a situation of 

                                                 
9 The parameters may themselves be univariate or multivariate, such as 

sampling from the full conditional posterior distributions of each 

unknown or blocks of unknowns; however, such technique as parameter 

expansion, updating parameters in blocks instead of one by one, has a 

dramatic impact on computational efficiency and helps improve the 

mixing rate of Markov chains (Dunson et al., 2005; Fox, 2007).  
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updating one parameter at a time, the univariate conditional 
distribution, f(Ωk|Y, Ω-k), represents the posterior 
distribution of a single model parameter Ωk, conditional 
upon the data and all other model parameters Ω-k. Being a 
“divide and conquer” strategy, sometimes the Gibbs 
sampler may be inefficient, moving slowly over the 
parameter space (Western, 1999); however, due to its use 
of known conditional distributions for simulation, this 
setup helps reduce multidimensional problems to a series 
of univariate calculations and it is easier to simulate draws 
(Casella and George, 1992; Jackman 2000; Patz and 
Junker, 1999a, 1999b). Interested readers may refer to 
Gelman et al. (2003) for an introduction to the Gibbs 
sampler in multilevel models.  

 
3.3 Specification of priors  

 
As noted earlier, the posterior distributions from 

the Bayesian inferences depend not only on the data 
through the likelihood function but also on the prior density 
(e.g., Western, 1999): thus, the specification of prior 
distributions for each of the model parameters (such as the 
latent variables and the parameters from the measurement 
and structural models) plays an important role in the 
Bayesian approach. That is, unlike those of the frequentists, 
Bayesian methods provide a clear channel for us to 
incorporate prior information, which helps increase the 
statistical power of the analysis and contributes to the 
accumulation of scientific findings (Hsieh and Maier, 
2009). Moreover, based on Bayes’ law, whenever our prior 
is uniformly distributed in the region where the likelihood 
function is located, the posterior distribution for the 
Bayesian function is nearly proportional to the likelihood 
function (Gill, 2002; Maier, 2001; Rice, 1995).  

 
Furthermore, as sample sizes increase, priors are 

generally asymptotically irrelevant, and the estimates 
obtained from the Bayesian and frequentist should 
approach an identical value (Dunson, Palomo, and Bollen, 
2005; Lynch and Western, 2004; Western, 1999).  

 
In this sense, the Bayesian method can be treated 

as a direct alternative to the maximum likelihood estimates 
(MLEs) for parameter estimation when using non-
informative priors.  

 
A long-running debate in Bayesian inference 

revolves around the choice between subjective priors and 
objective priors, in which the subjective priors indicate the 
inclusion of existing subject-matter knowledge, and 
objective priors remove any subjectivity from the analysis. 
Although the role of the prior diminishes as sample size 
increases, inferences may be sensitive to the choice of the 
prior (Gill, 2002; Kim and Bolt, 2007).  

 

In practice, there is a preference for objective 
reference priors, for they resolve the dispute between 
Bayesian and likelihood approaches, which results in 
proper but diffuse priors as a popular choice (Lynch and 
Western, 2004).  

 
However, informative subjective priors allow 

researchers to build on previous research, and can be 
justified on the basis of opinion elicited from scientific 
specialists, archival materials, and the weight of established 
evidence (e.g., Lee and Wagenmakers, 2005). As Congdon 
(2005) suggests, one may carry out an evidence synthesis 
using forms of meta-analysis to set an informative prior, 
but this is beyond the scope of the present study.  

 
Seeing that the prior densities are needed to define 

the posterior distribution, it is desirable to select conjugate 
priors whenever possible. Adopting conjugate priors 
implies that the distribution of the posterior is already 
known and of the same form as the prior density, which 
makes sampling in MCMC to be computationally efficient 
(Johnson et al., 2007; Kim and Bolt, 2007; Rupp et al., 
2004).  

 
In other words, in assigning noninformative priors 

to the model parameters of interest, the researcher allows 
the data to provide as much information as possible by 
themselves. Thus, in subsequent analyses, non-informative 
and conjugate priors are used for most important 
parameters10.  

 
For instance, the means of initial level and shape 

are estimated using normal distribution priors, and two 
kinds of noninformative priors are used for the variance of 
measurement error: the inverse gamma prior and the 
uniform distribution prior (Gelman and Hill, 2007).  

 
In regard to the covariance matrix of the random 

effect parameters, the conjugate prior, the inverse Wishart 
distribution is adopted. The complete specification of 
different priors can be found in Table 1.  

 
3.4 Monitoring the Markov chain(s) and evaluating the 

model goodness of fit 

 
For the model estimated via the Bayesian Markov 

chain Monte Carlo (MCMC), using Gibbs sampling (Chib 
and Greenberg, 1995; Gelfand et al., 1990; Patz and 
Junker, 1999a) as implemented in WinBUGS 1.4 
(Spiegelhalter et al., 2003), the ‘burn-in’ period for the 
MCMC chain(s) was determined using the methods 

                                                 
10 In order to facilitate the model identification, a normal prior with tight 

precision, β~�(0,1), was utilized for item difficulty parameters, and a 

truncated normal prior, �(0, 1.0E-02)I(0, ) was adopted for item 

discrimination parameters.  
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proposed by Geyer (1992) and Gelman and Rubin (1992) . 
As Geyer (1992) claims, generating one single long chain 
is more efficient in using the simulation output, although it 
leads to more complex Monte Carlo standard error 
expressions11. As opposed to running one long sequence, 
Gelman and Rubin (1992) argue that, to monitor 
convergence of the Gibbs sampler, it is important to run 
multiple chains using a range of different starting values 
(Seltzer, Wong, and Bryk, 1996). Thus, in the present study 
we perform a sensitivity analysis by contrasting these two 
methods.  

 
Table 1. Different types of prior used in the present study. 

 
Regardless of the method, we need to specify a 

series of observations as each state in a Markov chain. In 
order to begin the sampling process, we need an initial set 
of values, treated as the starting values for the model 
parameters. They can be generated either by random 
variables or obtained from existing maximum likelihood-

                                                 
11 Because the posterior distributions are constructed from 
simulated samples, errors in the estimates can be attributed to 

the standard deviation of the posterior as well as the sampling 

error. Here, the sampling error is referred to as the Monte Carlo 

standard error (MCSE) (Patz and Junker, 1999b; Spiegelhalter 
et al., 2003).  

based estimation programs whenever possible. However, as 
noted by Kim and Bolt (2007) and Thompson et al. (2006), 
the choice of starting values may influence the sequence of 
values produced, and successive values may be highly 
correlated in the early stage of the chain. In this case, 
simulated values cannot be treated as a random sample 
from the posterior distribution. Thus, it is common to 
disregard a number of the initial iterates, treat them as the 
burn-in period, and estimate the posterior distribution using 
the remaining iterates. That is, in order to ensure that each 
chain has converged to its stationary distribution and stable 
parameter estimates have been obtained, one normally 
allows for a burn-in period of some length, and makes use 
of the subsequent simulated states to construct the posterior 
distribution (e.g., Kim and Bolt, 2007; Patz and Junker, 
1999b).    

 
Several methods have been proposed for model 

comparison, based on Bayesian principles; for instance, 
Spiegelhalter and his colleagues (2002) proposed the 
deviance information criterion (DIC), which includes many 
features of classical model assessment, such as requiring 
accurate predictions and penalizing complexity. Being 
composed of two major elements, the posterior distribution 
of the deviance (i.e., -2*log-likelihood, denoted as D) and 
an effective number of parameters (pD), mathematically, 

the DIC is defined as DIC=D( )Ω +pD, where Ω denote all 

the parameters under the assumed model, and D( )Ω is a 
measure of lack of fit, representing an estimated average 
discrepancy between model and data; pD accounts for the 
expected decrease in deviance attributable to the added 
parameters of the more complex model (Fox, 2007; Li, 
Bolt, and Fu, 2006).  

 
As the model diagnosis and evaluation criterion, 

estimation of the DIC index can be requested from the 
WinBUGS program: a smaller DIC represents a better fit of 
the model. In addition, a difference of less than five or ten 
units between models does not provide sufficient evidence 
for favoring one model over another (Spiegelhalter et al., 
2003). 

 
In addition to the DIC, the posterior predictive 

check (PPC) is a criterion used for assessing the model 
goodness of fit (Gelman, Carlin, Stern, and Rubin, 2003).  

 
Mathematically, the posterior predictive 

distribution can be written as:  
p(Yrep|Y)=∫p(Yrep|Ω)p(Ω|Y)dΩ, where Yrep denotes 
replicated values of Y, and Ω represents all model 
parameters (e.g., Sinharay and Stern, 2003). The integral 
defining the posterior predictive distribution consists of 
two parts: the sampling distribution (p(Yrep|Ω)) and the 
posterior distribution for model parameters (p(Ω|Y)). That 
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is, the posterior predictive distribution takes the following 
two uncertainties into account: sampling uncertainty and 
model uncertainty (Lynch and Western, 2004; Rupp et al., 
2004; Western, 1999). The rationale behind posterior 
predictive checks involves simulating data under the model 
stated in the null hypothesis and comparing the features of 
these replicated data with the observed ones. This approach 
grants the researcher a wide range of fit statistics; the 
overall discrepancy statistics utilized in the present study is 
the Bayesian chi-square, T(Ykij, Ωkij)=∑ (Ykij-E(Ykij 
|Ωkij))

2/var(Ykij |Ωkij), the sum of squares of the outfit 
measures12.  
 

Specifically, being a quantitative measure of lack 
of fit, with simulated iterates generated from the posterior 
distribution, the Bayesian p value (also known as the PPP-
value) can be assessed by comparing the observed T(Y) to 
the replicated T(Yrep), and defined as  
p=Pr(T(Yrep)≥T(Y)|Y), where this tail-area probability (or 
p-value) is estimated from the simulation as the proportion 
of the - replications for which T(Yrep)≥T(Y), and can be 
interpreted as the probability of observing extreme data 
conditional on the model (Lynch and Western, 2004; 
Sinharay and Stern, 2003; Sinharay, Johnson, and Stern, 
2006). Thus, any systematic discrepancy between the 
replications and observed data reflects the implausibility of 
the data under the model, and suggests that the presumed 
model doesn’t fit the data well (Li et al., 2006; Lynch and 
Western, 2004; Sinharay and Stern, 2003; Sinharay et al., 
2006). Usually, the PPP-value under the correct model 
tends to be closer to .5; however, if the posterior predictive 

p values are extreme, being close to zero, one, or both 
(depending on the nature of the discrepancy measure), it is 
clear that the observed response would be unlikely to occur 
provided that the null hypothesis is true (Sinharay and 
Stern, 2003; Sinharay et al., 2006).  

 
 

4. PRACTICAL ILLUSTRATIO�: FIT OF IRM-LGC 

TO THE ABORTIO� DATA USI�G WinBUGS1.4 

 
a. Measures and data sources 
 
As part of the investigation of British social 

attitudes, the data represent the responses to seven items 
concerning attitudes toward abortion by a selected panel 
sample of 410 from the years 1983 to 1986. For each item, 
respondents were asked if they agreed that the law should 
allow abortion: where 1 stands for “agree” and 0 otherwise.  

                                                 
12 Even though it has advantages over standard applications of fit 

statistics, however, this chi-square-type measure should be interpreted 

with great caution. This is because in IRTmodel checking, it is not a 

suitable discrepancy measure and fails to detect the problems with 

inadequate psychometrics models (Sinharay et al., 2006).  

These seven items are listed in Table 213.  
 
However, when we perform a confirmatory factor 

analysis (CFA) to examine the underlying construct using 
the software of Mplus (Muthén and Muthén, 2006), we find 
these seven items do not measure the same thing: that is, 
these items do not form a unidimensional construct. As a 
simplified demonstration, we decide to focus on 
participants’ general attitudes toward abortion (measured 
by the bottom four items in Table 2) and remove the 
extreme circumstance factor from subsequent analyses 
(Skrondal and Rabe-Hesketh, 2004).  

 
By doing so, the assumption of local 

independence can be entertained, and gamma change can 
be ruled out through conducting a CFA on the scale at four 
time periods14.  

 
That is, a single underlying latent variable helps 

explain the whole association between the responses to 
different items by an individual, and all items load onto this 
single latent factor across the entire study span.  

 
Table 2. The seven items concerning attitudes to 

abortion on the British Social Attitudes Panel Survey, 
1983-1986 

 
 

Here are a number of circumstances in which a woman might 
consider an abortion. Please say whether or not you think the 

law should allow an abortion in each case. Should abortion be 

allowed by law? 
 

 

Extreme circumstance factor:  

1. [Risk] the woman’s health is seriously endangered by 

the pregnancy.  
2. [Rape] the woman became pregnant as a result of rape.  

3. [Defect] there is a strong chance of a defect in the baby.  

 

General attitude factor:  

4. [Financial] the couple cannot afford any more children.  

5. [Marriage] the woman is not married and does not wish 

to marry the man.  
6. [Couple] the couple agree that they do not wish to have 

the child.  

7. [Woman] the woman decides on her own she does not 
wish to have the child.  
 

                                                 
13 Data were supplied by the UK Data Archive. Neither the original data 

collectors nor the archive bear any responsibility for the analyses.  

 
14 In Golembiewski et al.’s triumvirate conceptualization of longitudinal 

change (1976), they claim that the true change (a.k.a. the alpha change) 

can only be inferred from observed scores in a situation when there are 

no beta and gamma changes, where beta change is defined as the 

change resulting from the respondent’s recalibration of the 

measurement scale over time, and gamma change refers to as a 

fundamental change concerning the respondent’s understanding and 

perception of the latent constructs of primary interest. 
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Moreover, the breakdown analyses and response 
pattern for complete cases and available cases can be found 
from Table 3 to Table 6. In our analyses, only approval or 
disapproval responses were counted as valid and other 
responses were treated as item non-response, which results 
in 284 respondents giving complete responses for all four 
years. However, if the responses of “don’t know” and “no 
answer” are included, we finally have a usable sample of 
323 cases.  

 
As observed in the response pattern for each data 

set, it is found that in the contingency table we have a few 

response patterns with large frequencies and many 
response patterns with small frequencies, which implies 
that the data form a rather sparse contingency table and the 
asymptotic normality of the maximum likelihood estimator 
cannot be obtained, since in both data sets some of the 24 
possible response patterns are not observed. Thus, when 
frequentist methods are adopted, all kinds of problems 
associated with this sparseness such as statistical inference 
and hypothesis testing should be constantly borne in mind 
(Knott, Albanese, and Galbraith, 1990; Fienberg and 
Rinaldo, 2007). 

 
 

Table 3. Breakdown table for the restricted data 

 

 

Latent variable outcomes Attitude 1983 Attitude 1984 Attitude 1985 Attitude 1986 

Gender 

Female(0) 

n 160 160 160 160 

Mean .261 -.208 .262 .439 

SD 1.709 1.649 1.710 1.592 

Male (1) 

n 124 124 124 124 

Mean .349 -.069 .494 .860 

SD 1.856 1.630 1.806 1.573 

Age 

Senior (0) 

n 141 141 141 141 

Mean .126 -.319 .161 .527 

SD 1.702 1.593 1.792 1.661 

Junior (1) 

n 143 143 143 143 

Mean .470 .022 .563 .717 

SD 1.827 1.67 1.697 1.526 

Religion 

Yes (0) 

n 182 182 182 182 

Mean .095 -.417 .124 .375 

SD 1.840 1.538 1.742 1.567 

No (1) 

n 102 102 102 102 

Mean .664 .333 .791 1.064 

SD 1.586 1.711 1.698 1.556 

Total 

� 284 284 284 284 

Mean .299 -.147 .364 .623 

SD 1.771 1.640 1.753 1.595 

 

-ote.1. Each of these three explanatory variables were dichotomized as follows: gender (0: female vs. 1: male), age 
(0: elder (>40) vs. 1: young respondents (<=40)), and religious status (0: have religion vs. 1: no religion). 
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Table 4. Breakdown table for the full data. 

 

Latent variable outcomes 
Attitude 
1983 

Attitude 1984 Attitude 1985 Attitude 1986 

Gender 

Female(0) 

n 180 180 180 180 

Mean .256 -.312 .169 .386 

SD 1.577 1.808 1.588 1.629 

Male (1) 

n 143 143 143 143 

Mean .419 -.283 .343 .798 

SD 1.721 1.758 1.708 1.607 

Age 

Senior (0) 

n 157 157 157 157 

Mean .153 -.410 .026 .411 

SD 1.664 1.878 1.667 1.680 

Junior (1) 

n 166 166 166 166 

Mean .493 -.195 .454 .718 

SD 1.608 1.689 1.595 1.572 

Religio
n 

Yes (0) 

n 204 204 204 204 

Mean .032 -.475 .012 .349 

SD 1.554 1.741 1.618 1.602 

No (1) 

n 119 119 119 119 

Mean .836 .001 .648 .946 

SD 1.670 1.824 1.610 1.615 

Total 

- 323 323 323 323 

Mean .328 -.299 .246 .569 

SD 1.642 1.783 1.642 1.630 
 

-ote.1. Each of these three explanatory variables were dichotomized as follows: gender (0: female vs. 1: male), age (0: elder 
(>40) vs. 1: young respondents (<=40)), and religious status (0: have religion vs. 1: no religion). 

 

 

 
Table 5. Frequencies of the response patterns observed for the 1983-1986 panels (complete cases) 

 
1983 

Response 
pattern 

Observed frequencies Response pattern Observed frequencies 

1111 95 1001 8 

0000 70 0010 8 

1000 20 1100 7 

1110 19 0111 4 

0011 12 0110 4 

1010 10 1101 3 

1011 10 0101 3 

0100 9 0001 2 

1984 
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Response 
pattern 

Observed frequencies Response pattern Observed frequencies 

0000 121 1010 6 

1111 70 1101 5 

1000 20 0011 4 

1110 14 0001 4 

0100 10 0111 3 

0010 8 1001 2 

1100 8 0110 1 

0101 7 1011 1 

1985 

Response 
pattern 

Observed frequencies Response pattern Observed frequencies 

1111 96 1011 6 

0000 86 0101 5 

1000 21 0010 5 

1110 19 1010 4 

0111 9 0110 4 

1100 9 1101 3 

0011 8 0001 2 

0100 7   

1986 

Response 
pattern 

Observed frequencies Response pattern Observed frequencies 

1111 107 1010 6 

0000 72 1101 5 

1110 32 0110 3 

1100 17 0011 3 

0111 12 1011 2 

1000 9 0001 1 

0100 8   

0010 7   
 

Table 6. Frequencies of the response patterns observed for the 1983-1986 panels (available cases) 

 

1983 

Response 
pattern 

Observed frequencies Response pattern Observed frequencies 

1111 102 1001 8 

0000 85 1100 8 

1110 21 9999 5 

1000 21 0111 4 

0011 14 0110 4 

1010 13 1101 3 

1011 10 0101 3 

0100 10 0001 2 
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0010 10   

1984 

Response 
pattern 

Observed frequencies Response pattern Observed frequencies 

0000 134 1010 7 

1111 73 1101 5 

1000 24 0001 5 

1110 17 0011 4 

9999 13 0111 3 

0100 11 1001 2 

1100 8 1011 1 

0010 8 0110 1 

0101 7   

1985 

Response 
pattern 

Observed frequencies Response pattern Observed frequencies 

1111 99 1011 6 

0000 93 0101 5 

9999 23 0010 5 

1110 21 1010 4 

1000 21 0110 4 

1100 10 1101 3 

0111 9 0001 2 

0011 9   

0100 9   

1986 

Response 
pattern 

Observed frequencies Response pattern Observed frequencies 

1111 117 1010 6 

0000 85 0110 4 

1110 36 1011 3 

1100 18 9999 3 

0111 12 0011 3 

1000 12 0001 1 

0100 9   

0010 8   

1101 6   
 
 

The sampling method was a multi-stage design 
with multiple separate stages of selection, where 
selecting respondents were nested within addresses, 
addresses within polling districts, polling districts within 
constituencies, and constituencies within the electorate 
(The British Social Attitudes Panel Survey, 1983-1986). 
Given that a key task of an annual series survey was to 
look at trends and changes in attitudes over time, a 

longitudinal rather than a repeated cross-sectional design 
was adopted (McGrath and Waterton, 1986; Wiggins, 
Ashworth, O’Muircheartaigh, and Galbraith, 1990). In 
the present study, we aim to extend our concentration on 
the methodological issues: that is, the proposal and 
evaluation of an IRM-LGC hybrid model. Because a 
growth curve analysis is utilized to model the process of 
change, the estimation of growth profiles is represented 
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by the parameters of initial level and shape, along with 
other explanatory variables. A conceptual modeling 

framework is depicted in Figure 1, which follows the 
graphic conventions in Muthén and Muthén (2006).  

 
Figure 1. Path diagram of a four-wave IRM-LGC model 

 
 

 
 

 
 

4.2 Unconditional models 

 
In order to examine the robustness of the 

obtained Bayesian results, the monitoring of three 
independent chains with overdispersed initial values and 
the convergence assessment of one single long chain 
were performed. It was found that the results from these 
two approaches were close to each other within at least 
one decimal place: in the situation of running three 
independent chains, the first 20,000 iterations were 
discarded as burn-in for each chain, which results in a 
total of an additional 30,003 iterations for the three 
chains and they were carried out to define the posterior 
distribution of each parameter. Similarly, for a single 
long chain, we used a burn-in period of 19,998, with 
parameter estimates based on the 50,000 subsequent 
iterations (see Figures 2-3). The output was summarized 
on the basis of the remaining 30,003 iterations.  

 
Generally, the simulation should be run until the 

Monte Carlo standard error associated with each 
parameter is within an acceptable range, say, less than 
5% of the sample standard deviation (Dunson et al., 
2005; Kim and Bolt, 2007; Spiegelhalter et al., 2003). 
However, compared to the results obtained from the 
multiple-chain approach, it is found that the Monte Carlo 
errors are not all less than 5% of the sample standard 
deviation when we adopt one single long chain to 
generate the simulated sample. While using multiple 

independent chains, however, most of the Gelman-Rubin 
statistics, with the potential scale reduction factor 
(PSRF), approximately approach one for each quantity of 
interest (Gelman and Rubin, 1992), which indicates the 
reaching of convergence (see Figures 4-6). Thus, in 
subsequent analyses we adopt Gelman and Rubin’s 
suggestion and monitor the model convergence using 
three independent chains with over-dispersed starting 
values.  

 
Based on the results from Table 7, in 

considering a few candidate models, it is found that all of 
them provide convergent substantive interpretation; thus, 
according to the model goodness of fit index (i.e., DIC), 
we take the model in the column on the extreme right, the 
one with the probit link and uniform prior for level-1 
residual variances, as an example of the adequate 
representation of the data. Again, the results of parameter 
estimates and associated standard deviations from the 
complete data set (n=284) are given in Table 8 (the right 
panel), where we see that the estimated discrimination 
parameters ˆ

i
a for item 2 and item 3 are both greater than 

1 and larger than for the other two items, indicating that 
item 2 and item 3 better discriminate person ability than 
do items 1 and item 4.  
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Figure 2. Time series plots for the restricted data (uniform prior for varying residuals): single long chain 
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Level2 variance-covariance structure: 
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Initial level and shape: 
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Coefficients of time variable 
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Figure 3. Kernel density for the restricted data: one single long chain (excerpted). 
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Figure 4. Time series plots for the restricted data (uniform prior for varying residuals): three independent chains. 
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Level 1 varying residuals: 
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 Level2 variance-covariance structure: 
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Initial level and shape: 
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The coefficients of time variable: 
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Posterior predictive check: Bayesian p-value 
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Figure 5. Kernel density for the restricted data: three independent chains (excerpted). 
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Figure 6. Gelman-Rubin statistic for the restricted dataset: three independent chains (excerpted).  
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This is because greater discrimination indicates 

a stronger relationship between an item and the 
underlying latent trait; hence, we would say that the 
“marriage” and “couple” items are more closely related 
to holding a positive attitude to abortion than are the 
“financial” and ‘’woman” items. As for the item 
difficulty parameter estimates, the estimated difficulty 

parameter ˆ
i
b associated with item 4 is the largest among 

the four, indicating that the “woman makes the abortion 
decision herself” is the hardest item to endorse. In other 
words, the endorsement of this item reflects a higher 
level of propensity to hold a generally positive attitude 
toward abortion than do other items, such as “financial”, 
“marriage”, and “couple” items.  

 
As for the substantive interpretation of the latent growth 
or decline trajectory, the empirical result shows that 
without controlling any explanatory variables, a mean 
growth curve emerges with a true initial level of .392 
(p<.01) and a change rate of .336 (p<.01). The significant 
variation between the respondents around these mean 

values ( 2

Lσ̂ =2.953 and 2

Sσ̂ =.144) implies that, overall, 

these subjects start their growth process at different 
phases and go on to change at different rates, which not 
only reveals systematic difference in the change 

trajectory among participants but also suggests true 
variation remaining in both the initial status and rate of 
change, indicative of the need for additional time-
invariant predictors (e.g., Singer and Willett, 2005). The 
correlation between the initial level and the growth rate is 

-.021 ( ( )LS L S
ˆ ˆ ˆ/σ σ σ⋅ , ns), implying that the initial 

level has no predictive power for the growth rate. The 
level-1 varying residual variances, describing the 
measurement fallibility in general attitudes toward 
abortion over time (their estimated values are 1.077, 
.581, 1.095, and .391, respectively, being statistically 
significant at the first, third, and fourth points of time), 
suggest that the existence of additional outcome variation 
at level-1 may be further explained by other time-varying 
predictors. Finally, it is found that a piecewise linear 
growth trajectory exists (i.e., the estimated slopes for four 
repeated assessments are s1=0 (fixed), s2=-2.072 (p<.01), 
s3=.061 (ns) and s4=1(fixed)) in terms of participants’ 
general attitudes toward abortion. 

 
 
 
 
 

Table 7. The parameter estimates of IRM-LGC model for the restricted data. 
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�ote. 1. Multiplying by a factor of 1.701. 2.*p<.1 (1.6449), **p<.05 (1.96), ***p<.01 (2.5758). 

 
 

Table 8. Sensitivity analysis: The parameter estimates of IRM-LGC model for the restricted data 

 

Non informative priors 
α ~ dnorm (0, 1.0E-02)I(0,) and β~ dnorm(0,1) 

Non informative priors 
α ~ dnorm (0, 1.0E-02)I(0,) and β~ dnorm(0,1) 

Probit link Logit link
1
  

 

Probit link 

 

gamma priors for varying residuals 

 (~dgamma(.001, .001)) 

gamma priors for  

varying residuals 

(~ dgamma(.001, .001)) 

uniform priors for  

varying residuals 

(~ dunif(0, 1.0E04)) 

Bayesian-one single long chain  

(30,000 iterations, 20,000 burn-in) 

Bayesian-three independent chains  

(30,000 iterations, 20,000 burn-in) 

Estimate 

(EAP) 
SD 

Estimate 

(EAP) 
SD 

Estimate 

(EAP) 
SD 

Estimate 

(EAP) 
SD 

β1 .000 --- .000 --- .000 --- .000 --- 

β2 .201*** .071 .167** .071 .186*** .066 .185*** .069 

β3 .223*** .070 .195*** .072 .210*** .068 .210*** .069 

β4 .636*** .071 .662*** .094 .677*** .088 .699*** .090 

α1 1.000 --- 1.000 --- 1.000 --- 1.000 --- 

α2 1.600*** .182 1.449*** .186 1.441*** .185 1.384*** .197 

α3 1.514*** .165 1.319*** .155 1.304*** .161 1.256*** .161 

α4 1.200*** .119 1.054*** .123 1.038*** .124 .995*** .121 

S1 .000 --- .000 --- .000 --- .000 --- 

S2 -2.174*** .586 -2.522*** .804 -2.517*** .686 -2.072*** .744 

S3 .084 .253 .079 .302 -.002 .292 .061 .289 

S4 1.000 --- 1.000 --- 1.000 --- 1.000 --- 

L
µ  .375*** .109 .383*** .140 .405*** .132 .392*** .135 

S
µ  .271*** .054 .286*** .072 .276*** .064 .336*** .089 

2

L
σ  2.159*** .284 2.908*** .483 2.742*** .487 2.953*** .623 

2

S
σ  .136*** .049 .144*** .040 .143** .058 .144** .061 

LS
ρ  -.076 .180 -.137 .165 -.017 .191 -.021 .214 

2

e1
σ  .856*** .210 1.005*** .243 1.007*** .258 1.077*** .307 

2

e2
σ  .157 .206 .086 .197 .183 .287 .581 .387 

2

e3
σ  .873*** .192 1.061*** .281 1.057*** .270 1.095*** .304 

2

e4
σ  .071 .099 .181 .190 .170 .189 .391* .224 

 

Indices 
 

DIC=3,329.41; Bayesian p-
value=.552 

DIC=3,370.06; Bayesian p-
value=.488 

DIC=3,347.52 ; Bayesian p-
value=.513 

DIC=3,338.53 ; Bayesian p-
value=.494 
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-ote. 1. *p<.1 (1.6449), **p<.05 (1.96), ***p<.01 (2.5758); 2. MCSE stands for Monte Carlo standard error, which 
can always be reduced by lengthening the chain (Kim and Bolt, 2007). 

 
4.3 Missing longitudinal data compensation 

 

Missing data are unavoidable in almost all serious 
statistical analyses. Although the way in which the 
Bayesian estimation compensates for missing data is similar 
to the multiple imputation (MI) described by Rubin (1987), 

it extends the MI method by jointly simulating the 
distributions of variables with missing data as well as with 
unknown parameters (Carrigan et al., 2007; Patz and 
Junker, 1999b). Thus, through a fully Bayesian (FB) 
approach, not only can the missing values be treated as 
additional parameters to estimate, but these parameter 

Priors distribution for item parameters: α ~ dnorm (0, 1.0E-02)I(0,) and β~ dnorm(0,1) 

Probit link 

uniform priors for varying residuals (~dunif (0, 1.0E04)) 

 

One single long chain  

(50,000 iterations, 19,998 burn-in) 

Three independent chains  

(30,000 iterations, 20,000 burn-in) 

Estimate (EAP) SD mcse
2 Estimate (EAP) SD mcse 

β1 0.000 --- --- .000 --- --- 

β2 .182*** .067 0.003 .185*** .069 0.002 

β3 .205*** .068 0.003 .210*** .069 0.002 

β4 .679*** .084 0.004 .699*** .090 0.004 

α1 1.000 --- --- 1.000 --- --- 

α2 1.427*** .183 0.008 1.384*** .197 0.008 

α3 1.307*** .167 0.008 1.256*** .161 0.006 

α4 1.035*** .120 0.006 .995*** .121 0.005 

S1 .000 --- --- .000 --- --- 

S2 -1.940*** .617 0.037 -2.072*** .744 0.038 

S3 .104 .274 0.008 .061 .289 0.008 

S4 1.000 --- --- 1.000 --- --- 

L
µ  .370*** .128 0.004 .392*** .135 0.004 

S
µ  .333*** .078 0.004 .336*** .089 0.004 

2

L
σ  2.73*** .506 0.029 2.953*** .623 0.030 

2

S
σ  .144** .057 0.003 .144** .061 0.003 

LS
ρ  -.019 .204 0.010 -.021 .214 0.010 

2

e1
σ  .996*** .265 0.012 1.077*** .307 0.013 

2

e2
σ  .546 .348 0.020 .581 .387 0.019 

2

e3
σ  1.016*** .275 0.013 1.095*** .304 0.012 

2

e4
σ  .364* .203 0.011 .391* .224 0.010 

 

Indice
s 

 

DIC=3,340.25; Bayesian p-value=.504 DIC=3,338.53 ; Bayesian p-value=.494 
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estimates can themselves be marginally integrated from an 
exact joint posterior distribution for all the parameters of 
interest (Dunson et al., 2005). For instance, in the context 
of incomplete longitudinal data, the imputation and analysis 
models are fully and simultaneously specified in an FB 
analysis. However, the maximum likelihood method relies 
on a fully specified model, and its parameter estimates are 
constructed using likelihood-based approximations 
(Carrigan et al. 2007; Schafer and Graham, 2002).   

 
In order to explore the influence of the item non-

response on estimated parameters, two separate analyses 
were conducted: one with a reduced data set (for those 
individuals who have an opinion on every item in all four 
years), and the other with a full dataset of 323 respondents 
(Wiggins et al., 1990). As mentioned earlier, because 
WinBUGS treats missing values as additional parameters 
which need to be estimated, for those respondents with 
incomplete survey responses, handling missing data in this 
way helps to improve the reliability of inference for 
individual latent growth or decline trajectories (May, 2006; 
Patz and Junker, 1999b). Thus, in the present study, the 
paper by Wiggins and his colleagues (1990) serves as 
guidance in selecting explanatory variables, where age, 
gender, and religious status (treated as fixed at the 
respondent’s 1983 response) were chosen to investigate 
their influences on the level and shape factors of a latent 
growth curve analysis.  

According to Rubin (1987), there are three 
potential patterns of missingness: (1) missing completely at 
random (MCAR), (2) missing at random (MAR), and (3) 
missing not at random. Although the assumption of MCAR 
seems statistically retainable in the current study, we 
instead rely on the MAR assumption (see Table 9), 
indicating that a systematic difference can be explained by 
other observed variables (Rubin, 1987). The reason for this 
is that in longitudinal studies missing values are 
accumulated over time; in this sense they are easily 
susceptible to biased results. Therefore, an imputation 
component was built into the model using the three 
following auxiliary predictors, gender, age, and religious 
status, to deal with multivariate missing categorical data at 
each occasion. Based on the result shown in Table 10, both 
data sets provide estimates with identical substantial 
interpretation: there is evidence for an age and religious 
status interaction in terms of the true initial status. Young 
people without religious belief tend to have a higher 
tendency to hold positive attitudes toward abortion; 
however, the same is not the case for senior people with 
religious belief. As none of the Bayesian p-values is of 
extreme value, we find no failure of the model: suggesting 
that the model generates replicate data similar to the 
observed one. 

 
5. CO�CLUDI�G REMARKS 

 
Obviously, a single-stage analytic strategy is an 

optimal alternative. In order to model the process of 
change, our intention is to propose an advanced analytic 
method which allows for the simultaneous estimation of a 
measurement model containing a set of categorical items 
and a latent growth curve analysis. As Bereiter (1963) puts 
it, one of the problems encountered in measuring change is 
scalability, in which the comparability of changes from 
different initial levels is questionable. However, it is 
expected that this comprehensive framework yields three 
benefits when the model fits the data well, and Bereiter's 
concern about scaling can be easily accommodated: (1) the 
interpretations of item parameters will be invariant to the 
latent trait distribution of the respondents in question; (2) 
the interpretations of latent trait parameters will be 
invariant to the distribution of the test items under 
consideration; and (3) precision can be approximately 
obtained in each model parameter estimate and latent 
variable (e.g., Curran et al., 2007; Dunson et al., 2005; 
Embretson, 1994; Rasch, 1960; Roberts and Ma, 2006). 
Finally, our expectation is that through the incorporation of 
multiple item psychometric models, an overall true score 
can be generated from this second-order latent growth 
curve model. That is, each item provides some sources of 
information, reduces our uncertainty about the examinees, 
and reflects respondents’ positions on the underlying 
dimension in an adequately reliable way, which further 
improves the validity and reliability of the growth curve 
models embedded in the GLLAMM framework (e.g., 
Bollen, 1989; Curran et al., 2007; Fox, 2007; Preacher et 
al., 2008; Sayer and Cumsille, 2001; Wiggins et al., 1990).  

 
In practice, however, many applications in 

educational and psychological testing involve long tests, 
large samples, response patterns, and high dimensional 
latent factor structures. As directions for future research, we 
could consider comparing and contrasting other estimation 
approaches to implementing the analysis, such as the 
Gauss-Hermite quadrature procedure with different options 
controlling the number of quadrature points used for each 
dimension of the integration (Skrondal and Rabe-Hesketh, 
2004)15, and releasing some strict assumptions, such as the 
stability of the item parameters over time and among 
different subpopulations. For instance, in addition to the 
indirect effects via the latent variable, we could investigate 
whether there are direct effects of the individual-level 
covariates on the responses. That is, we could examine 
whether the differential item functioning (DIF) exists, 
where the probability of endorsing an item differs among 

                                                 
15 Te Marvelde and his colleagues (2006) argued that for more 

scales and time points, the adaptive Gauss-Hermite quadrature 

method may become infeasible, but this requires further 
investigation.  
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people with the same ability but distinct characteristics, 
such as people having the same propensity but being of 
different gender, and/or ethnicity (e.g., Holland and 
Wainer, 1993). In the education testing field, such 
investigation is important, for DIF suggests that participants 
cannot be fairly assessed by the instrument. Moreover, as 
stated by Lord (1980), because the latent ability obtained 
from IRMs are invariant across measures of same construct 
but with different psychometric properties, the 

generalizability of this unified model to designs with 
different item samples (i.e., where these items may be 
identical, partly overlapping or disjoint) administered on 
different occasions opens a promising avenue of future 
research (Curran et al., 2007; Fischer and Seliger, 1997; 
Patz and Yao, 2007a, 2007b; Roberts and Ma, 2006; Te 
Marvelde, Glas, Van Landeghem, and Van Damme, 2006). 

 

 
Table 9. Unconditional models: The parameter estimates of IRM-LGC model for both data sets 

 
 

-ote. 1. *p<.1 (1.6449), **p<.05 (1.96), ***p<.01 (2.5758); 2. MCSE, a type of sampling error, stands for Monte 
Carlo standard error, which can always be reduced by lengthening the chain (Kim and Bolt, 2007). 

Three independent chains (30,000 iterations, 20,000 burn-in) 

 
Complete cases (n=284) Available cases (n=323) 

Estimate (EAP) SD mcse
2
 Estimate (EAP) SD mcse 

β1 .000 --- --- .000 --- --- 

β2 .185*** .069 0.002 .189*** .066 0.002 

β3 .210*** .069 0.002 .205*** .067 0.002 

β4 .699*** .090 0.004 .724*** .082 0.003 

α1 1.000 --- --- 1.000 --- --- 

α2 1.384*** .197 0.008 1.382*** .171 0.007 

α3 1.256*** .161 0.006 1.291*** .156 0.006 

α4 .995*** .121 0.005 1.005*** .111 0.005 

S1 .000 --- --- .000 --- --- 

S2 -2.072*** .744 0.038 -1.89*** .560 0.027 

S3 .061 .289 0.008 .110 .261 0.007 

S4 1.000 --- --- 1.000 --- --- 

L
µ  .392*** .135 0.004 .302** .122 0.003 

S
µ  .336*** .089 0.004 .353*** .076 0.003 

2

L
σ  2.953*** .623 0.030 2.957*** .505 0.023 

2

S
σ  .144** .061 0.003 .148** .059 0.003 

LS
ρ  -.021 .214 0.010 .029 .202 0.009 

2

e1
σ  1.077*** .307 0.013 1.019*** .269 0.011 

2

e2
σ  .581 .387 0.019 .536 .330 0.016 

2

e3
σ  1.095*** .304 0.012 1.023*** .271 0.010 

2

e4
σ  .391* .224 0.010 .324* .178 0.008 

Indices DIC=3,338.53 ; Bayesian p-value=.494 DIC=3,641.82; Bayesian p-value=.500 
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Table 10. Conditional models: The parameter estimates of IRM-LGC model for both data sets 
 

Parameter 
Restricted data (n=284) Full data (n=323) 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Measurement part 

β1 .000 (fixed) .000 (fixed) .000 (fixed) .000 (fixed) .000 (fixed) .000 (fixed) 

β2 .182** (.071) .180*** (.068) .173** (.068) .196*** (.069) .191*** (.067) .193*** (.066) 

β3 .209*** (.074) .205*** (.068) .197*** (.070) .214*** (.070) .207*** (.068) .209*** (.068) 

β4 .734*** (.092) .688*** (.086) .675*** (.089) .779*** (.092) .730*** (.089) .737*** (.089) 

α1 1.000 (fixed) 1.000 (fixed) 1.000 (fixed) 1.000 (fixed) 1.000 (fixed) 1.000 (fixed) 

α2 1.309*** (.174) 1.403*** (.181) 1.417*** (.188) 1.282*** (.154) 1.363*** (.168) 1.354*** (.159) 

α3 1.173*** (.146) 1.271*** (.149) 1.285*** (.157) 1.2*** (.144) 1.298*** (.158) 1.278*** (.158) 

α4 .918*** (.109) 1.005*** (.113) 1.017*** (.120) .916*** (.098) 1.0*** (.116) .985*** (.107) 

Structural part 

S1 .000 (fixed) .000 (fixed) .000 (fixed) .000 (fixed) .000 (fixed) .000 (fixed) 

S2 -1.008*** (.406) -1.555*** (.594) -1.915*** (.618) -1.077*** (.387) -1.495*** (.491) -1.827*** (.573) 

S3 .173 (.202) .102 (.256) .086 (.278) .182 (.197) .155 (.233) .114 (.256) 

S4 1.000 (fixed) 1.000 (fixed) 1.000 (fixed) 1.000 (fixed) 1.000 (fixed) 1.000 (fixed) 

β1.int  -.366 (.243) -.197 (.188) -.180 (.180) -.378 (.232) -.252 (.181) -.231 (.182) 

β1.gender  .219 (.384)   .147 (.382)   

β1.age  .606 (.370) .550** (.273) .555** (.264) .520 (.355) .475* (.259) .481* (.263) 

β1.relig  2.468*** (.675) 1.62*** (.382) 1.613*** (.374) 1.882*** (.606) 1.469*** (.367) 1.507*** (.367) 

β1.gen.age  -.0167 (.609)   -.036 (.583)   

β1.gen.rel  -1.12 (.827)   -.488 (.773)   

β1.age.rel  -2.122*** (.797) -1.252*** (.481) -1.253*** (.473) -1.38* (.727) -.990** (.453) -1.026** (.463) 

β1.gen.age.rel

 
1.169 (1.063)   .485 (.981)   

β2.int  .388*** (.143) .314*** (.091) .344*** (.083) .387*** (.133) .336*** (.081) .369*** (.083) 

β2.gender  .514* (.267) .181 (.126)  .394* (.233) .159 (.113)  

β2.age  .073 (.219)   .0818 (.194)   

β2.relig  -.047 (.446)   .222 (.391)   

β2.gen.age  -.346 (.377)   -.230 (.315)   

β2.gen.rel  -.171 (.544)   -.322 (.469)   

β2.age.rel  -.174 (.508)   -.443 (.470)   

β2.gen.age.rel

 
.194 (.686)   .383 (.585)   



International Journal of Psychological Research, 2010. Vol. 3. No. 1. 
ISSN impresa (printed) 2011-2084 
ISSN electrónica (electronic) 2011-2079 

Hsieh, C., Von Eye, A., (2010). The Best of Both Worlds: A Joint Modeling 
Approach for the Assessment of Change across Repeated Measurements. 
International Journal of Psychological Research, 3 (1), 177-210. 

 

International Journal of Psychological Research         203 

2

L
σ  3.012*** (.603) 2.599*** (.474) 2.579*** (.496) 3.16***(.577) 2.766*** (.552) 2.821*** (.500) 

2

S
σ  .245** (.122) .169** (.079) .144** (.060) .231** (.109) .176** (.080) .147** (.059) 

LS
ρ  0.173 (.27) 0.107 (.232) .037 (.213) .209 (.236) .126 (.228) .067 (.210) 

2

e1
σ  1.167*** (.327) 0.996*** (.276) .977*** (.266) 1.159*** (.306) .999*** (.274) 1.014*** (.258) 

2

e2
σ  1.198*** (.442) .749* (.404) .614* (.370) 1.002** (.419) .645* (.356) .607* (.337) 

2

e3
σ  1.158*** (.318) 1.047*** (.293) 1.024*** (.290) 1.155*** (.304) 1.035*** (.287) 1.056*** (.276) 

2

e4
σ  .419 (.258) .407* (.225) .4101* (.227) .409 (.261) .359* (.203) .388* (.233) 

 

Goodness of fit 

indices 

 

DIC=3,336.880; 
Bayesian p=.478 

DIC=3,340.01; 
Bayesian p=.489 

DIC=3,341.7 ; 
Bayesian p=.488 

DIC=3,638.18; 
Bayesian p=.48 

DIC=3,638.90 ; 
Bayesian p=.495 

DIC=3,639.29 ; 
Bayesian p=.494 

-ote. 1. Each number inside the parenthes is stands for the standard deviation of the estimate. 
2. *p<.1 (1.6449), **p<.05 (1.96), ***p<.01 (2.5758) 

  
 

Taken together, the application of IRMs to 
responses gathered from repeated assessments allows us to 
take into consideration both the characteristics of item 
responses and measurement error in the analysis of 
individual developmental trajectories. We could combine 
and incorporate other item response models and latent 
growth models in this comprehensive modeling framework, 
such as unidimensional/multidimensional and 
dichotomous/polytomous IRMs, linear/nonlinear, and 
single/multiple domain(s) LGCs etc. As a simplified 
demonstration, in the present study we consider the 
modeling of only a unidimensional latent construct. 
However, in developmental research one is often interested 
in the way in which two or more repeatedly followed and 
interrelated dimensions evolve over time. In order to 
effectively accommodate a variety of data structures, it is 
clearly worthwhile to extend to multiple domains through 
the analysis of random effect regressions16 (e.g., Cheong, 
MacKinnon, and Khoo, 2003; Preacher et al., 2008; 
Raykov, 2007), and simultaneously make use of their 
interrelationship when we have multiple interrelated 
dimensions across the entire study period.   
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APPE�DIX: 

 

# WinBUGS codes for IRM-LGC model with varying residuals (conditional) 

 
 

#model specification:  

 

 
model 

{ 

   for (j in 1:n.ind) 
   {     

   for (i in 1:n.item) 

                      {  
 

              

             p1[j,i]<-max(.0001, p1.temp[j,i]) 

         p2[j,i]<-max(.0001, p2.temp[j,i]) 
         p3[j,i]<-max(.0001, p3.temp[j,i]) 

         p4[j,i]<-max(.0001, p4.temp[j,i]) 

               p1.temp[j, i]<-phi(alpha[i]*(theta[j, 1]-beta[i])) 

                   p2.temp[j, i]<-phi(alpha[i]*(theta[j, 2]-beta[i])) 

                  p3.temp[j, i]<-phi(alpha[i]*(theta[j, 3]-beta[i])) 

                  p4.temp[j, i]<-phi(alpha[i]*(theta[j, 4]-beta[i])) #measurement model: the normal ogive  
 

   rp1[j,i]<-max(.0001, rp1.temp[j,i]) 

        rp2[j,i]<-max(.0001, rp2.temp[j,i]) 

        rp3[j,i]<-max(.0001, rp3.temp[j,i]) 
        rp4[j,i]<-max(.0001, rp4.temp[j,i]) 

               rp1.temp[j, i]<-phi(alpha[i]*(theta[j, 1]-beta[i])) 

                  rp2.temp[j, i]<-phi(alpha[i]*(theta[j, 2]-beta[i])) 
                   rp3.temp[j, i]<-phi(alpha[i]*(theta[j, 3]-beta[i])) 

                   rp4.temp[j, i]<-phi(alpha[i]*(theta[j, 4]-beta[i])) 

  

                   ry1[j, i]~dbern(rp1[j, i])#generate the replicated data 

    ry2[j, i]~dbern(rp2[j, i]) 

                    ry3[j, i]~dbern(rp3[j, i]) 

                    ry4[j, i]~dbern(rp4[j, i]) 

                        chi.y1.rep[j,i]<-pow(ry1[j,i]-p1[j,i], 2)/p1[j,i]*(1-p1[j,i]) 

                        chi.y2.rep[j,i]<-pow(ry2[j,i]-p2[j,i], 2)/p2[j,i]*(1-p2[j,i]) 

                       chi.y3.rep[j,i]<-pow(ry3[j,i]-p3[j,i], 2)/p3[j,i]*(1-p3[j,i]) 
                         chi.y4.rep[j,i]<-pow(ry4[j,i]-p4[j,i], 2)/p4[j,i]*(1-p4[j,i])   

 

               y1[j, i]~dbern(p1[j, i]) 
    y2[j, i]~dbern(p2[j, i]) 

                y3[j, i]~dbern(p3[j, i]) 

                    y4[j, i]~dbern(p4[j, i]) 

                        chi.y1.obv[j,i]<-pow(y1[j,i]-p1[j,i], 2)/p1[j,i]*(1-p1[j,i]) 
                        chi.y2.obv[j,i]<-pow(y2[j,i]-p2[j,i], 2)/p2[j,i]*(1-p2[j,i]) 

                        chi.y3.obv[j,i]<-pow(y3[j,i]-p3[j,i], 2)/p3[j,i]*(1-p3[j,i]) 

                        chi.y4.obv[j,i]<-pow(y4[j,i]-p4[j,i], 2)/p4[j,i]*(1-p4[j,i])  
                        } 

   } 

 

chi.y.obv<-sum(chi.y1.obv[,])+sum(chi.y2.obv[,])+sum(chi.y3.obv[,])+sum(chi.y4.obv[,]) 

chi.y.rep<-sum(chi.y1.rep[,])+sum(chi.y2.rep[,])+sum(chi.y3.rep[,])+sum(chi.y4.rep[,]) 

chi<-step(chi.y.rep-chi.y.obv) # calculate the posterior predictive p-value 
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#structural model: the latent growth curve analysis 
 

 for (j in 1:n.ind) 

 { 

LS[j,1:2]~dmnorm(Mu[j,1:2], Inv_cov[1:2,1:2])  
          Mu[j,1]<-b1.int[1]+(b1.age[1]*age[j])+(b1.relig[1]*relig[j])+(b1.age.rel[1]*age[j]*relig[j]) 

Mu[j,2]<-b2.int[1] 

 

 

                      for (t in 1:n.occ)   

                     { 
   theta[j, t]~dnorm(MuY[j,t], Inv_sig_e[t]) 

   MuY[j, t]<-LS[j,1]+LS[j,2]*A[t]          

   } 

 
} 

        

#Prior distribution 
       

             beta[1]<-0#model identification 

                           alpha[1]<-1#model identification 
             for (i in 2:n.item) 

              { 

              beta[i]~dnorm(0,1) 

              alpha[i] ~ dnorm(0, 1.0E-2)I(0,) 
                            } 

 

             for (t in 1:n.occ) 

                 { 

           Inv_sig_e[t]<-pow(Sig_e[t], -1)  

  Sig_e[t]~dunif(0, 1.0E04) 
                            } 

 

   b1.int[1]~dnorm(0, 1.0E-4) 

  b1.age[1]~dnorm(0, 1.0E-04) 
  b1.relig[1]~dnorm(0, 1.0E-04) 

  b1.age.rel[1]~dnorm(0, 1.0E-04) 

  b2.int[1]~dnorm(0, 1.0E-4) 
 

                   A[1]<-0 

                            for (t in 2:3) 

                            { 

              A[t]~dnorm(0,1.0E-4) 

              } 

                   A[4]<-1 

 

       Inv_cov[1:2,1:2]~dwish(R[1:2,1:2], 3) 

       R[1,1]<-1 
       R[2,2]<-1 

       R[2,1]<-R[1,2] 

       R[1,2]<-0 
      

             #Transform the parameters    

             Cov[1:2,1:2]<-inverse(Inv_cov[1:2,1:2]) 

                  Sig_L<-Cov[1,1] 
                           Sig_S<-Cov[2,2] 

              rho<-Cov[1,2]/sqrt(Cov[1,1]*Cov[2,2]) 
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                # all parameter are put into para(s) 

                      for (i in 1:3)  
                         { 

             Para[i]<-beta[i+1] 

                          } 
                         for (i in 2:4) 

                             { 

                                 Para[2+i]<-alpha[i] 
                           } 

 

 

                        for (t in 1:4) 
                          { 

            Para[6+t]<-Sig_e[t] 

                           } 
          Para[11]<-Sig_L 

                 Para[12]<-Sig_S 

                 Para[13]<-rho 
                      Para[14]<-b1.int[1] 

                            Para[15]<-b1.age[1] 

                            Para[16]<-b1.relig[1] 

                           Para[17]<-b1.age.rel[1] 
   Para[18]<-b2.int[1] 

                            Para[19]<-A[2] 

                            Para[20]<-A[3] 

                            Para[21]<-chi 

                                                        

                                                                                        
 }                     

 

# End of model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


