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A classifier model for detecting pronunciation errors  

regarding the Nasa Yuwe language’s 32 vowels 
 

Modelo de clasificación para la detección de errores en la pronunciación 

de las 32 vocales de la lengua Nasa Yuwe 

R. C. Naranjo1, G. I. Alvarez2 

ABSTRACT  
The Nasa Yuwe language has 32 oral and nasal vowels thereby leading to one being used instead of the other; such confusion can 

change the meaning of the spoken word in Nasa Yuwe. A set of classifier models have been developed to support correct learning 

of this language which is in danger of extinction aimed at detecting confusion in the pronunciation of the 32 vowels; about 85% 

were obtained after experimenting with a variety of linear and nonlinear classifiers, rates of sensitivity, specificity and accuracy. A 

support software prototype was designed with these trained classifiers for the correct pronunciation of the language’s vowels. 

Keywords: Classifier model, Nasa Yuwe language, pronunciation correction, pattern recognition, computer-assisted language 

learning (CALL). 

 

RESUMEN 
La lengua nasa yuwe tiene 32 vocales, dividas en orales y nasales, lo que lleva a confusiones en las que una vocal es utilizada en 

lugar de otra. En nasa yuwe esta confusión puede cambiar el significado de las palabras pronunciadas. Con el fin de apoyar el 

aprendizaje correcto de esta lengua en peligro de extinción se ha desarrollado un conjunto de modelos de clasificación que per-

mitan detectar tales confusiones de pronunciación de las 32 vocales. Luego de experimentar con una variedad de clasificadores 

lineales y no lineales, las tasas de sensibilidad, especificidad y precisión que se obtuvieron están alrededor del 85%. Con los clasifi-

cadores entrenados se construyó un prototipo de herramienta de software diseñada para apoyar la práctica de la correcta pro-

nunciación de las vocales de esta lengua. 

Palabras clave: modelos de clasificación, lengua nasa yuwe, corrección de la pronunciación, reconocimiento de patrones, 

CALL (Computer Assisted Language Learning). 
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Introduction1 2 
The Nasa people are the second largest ethnic group in Colom-

bia, South America, predominating in the Cauca Department. A 

lot of the Nasa people’s knowledge is passed on via an oral tradi-

tion, mainly by the community’s elders (Cric, 2000) (Cric, 2001). 

Spoken language is the oldest means of communication and 

transcendence for the Nasa community (Rojas, 2001) (Rusell, 

2004) which is now gradually losing the use of their language, 

even though efforts have been made to maintain their oral tradi-

tion. The Nasa alphabet defining symbolic representations of the 

Nasa Yuwe language has been unified (Marsico et al., 1998); it 

defines four basic vowels (i, e, a, u) which can be pronounced as 

oral or nasal vowels. Each vowel can be pronounced in basic, 

glottal, aspirate or elongated form (i.e. 32 vowels: 16 oral and 16 

nasal). Such broad vowel subdivision causes great difficulty in 

pronunciation, as an aspirated oral vowel is pronounced differ-

                                                
1
 Roberto Carlos Naranjo Cuervo. Affiliation: Universidad del Cauca, MSc Systems 

and Computer Engineering, member of the Destino group at the Javeriana Universi-

ty in Cali. E-mail: maranjo@unicauca.edu.co 
2
 Gloria Inés Álvarez Vargas. Affiliation: Pontificia Univesidad Javieriana, Cali, 

Colombia. PhD Recognition of Forms and Artificial Intelligence, member of the 

Destino group at Javeriana University, Cali, E-mail: galvarez@javerianacali.edu.co 

 

How to cite: Naranjo R. C., Alvarez G. I. (2012). A classifier model for detecting 

pronunciation errors re-garding the Nasa Yuwe language’s 32 vowels. Ingeniería e 

Investigación. Vol. 32, No. 2, August 2012, pp. 74-78. 

ently to an elongated oral or glottal oral one, the same occurring 

with nasal vowels. In practice, pronouncing a glottal oral a vowel 

/ a' / is different to pronouncing a glottal nasal a vowel / ã' /. They 

mean different things for the same word semantically, meaning 

that mispronunciation may change the meaning of an intended 

message. This paper develops a classifier model for the afore-

mentioned 32 vowels to produce prototype support software 

for the correct pronunciation of Nasa Yuwe vowels. 

Describing the vowels 
Nasa Yuwe has four vowels: a, e, i and u. Each group is subdivid-

ed into oral and nasal, having four modes of articulation within 

each division (simple, with glottal stop, aspirated and elongated), 

therefore producing 32 classes of vowels in 4 vowel groups, each 

group having 8 nasal and oral members with their respective 

modes of articulation (Rojas, 2001). 

Methodology 
The five-step Kuncheva method (Kuncheva, 2004) was followed. 
Step one involved collecting the corpus (i.e. collecting spoken or 

written texts regarding the language which were selected using 

explicit linguistic criteria). For example, there is uniform distribu-

tion in the appearance of phonemes. The vowels were segment-

ed from the words so recorded (samples). Step two involved 

feature extraction and selection by calculating 39 linear predic-

tion coefficients (LPC) (Huang et al., 2001) and the residual ener-
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gy for each vowel segment. A classifier model was chosen in step 

three after evaluating the following linear and nonlinear classifi-

ers: linear discriminant classifier (LDC) (Kuncheva, 2004), K-

nearest neighbour classifier (KNN) (Kuncheva, 2004), percep-

tron classifier (Haykin, 1998), multilayer neural network classifier 

(MLP) (Haykin, 1998), support vectorial machine classifier (SVC) 

(Duda et al., 2001), clustering classifier (Duda et al., 2001) and 

hidden Markov models (HMM) (Rabiner et al., 1993). Step four 

consisted of training and testing the chosen classifiers by prepar-

ing data-sets with a certain percentage of data for training and 

another for testing and calculating performance rates (Kuncheva, 

2004), i.e. sensitivity, specificity and accuracy. The results were 

evaluated in step five and decisions made to either repeat some 

of the above steps and/or choose classification models. 

Background 
There is no history of building such systems for the Nasa Yuwe 

language; previous work has thus used models which have been 

tested for other languages for detecting pronunciation errors. 

Franco (Franco et al., 1999) used models based on calculating the 

likelihood ratio test (LRT) from a phonetically-etiquetted non-

native speakers’ database to produce two acoustic models for 

each phoneme. The first model (λc) was produced using correct 

pronunciation (native speakers) whilst the second (λm) used 

incorrect pronunciation (non-native speakers). The likelihood 

ratio (LLR)(o, q) was calculated for each segment q belonging to 

pronunciation s and o was observation, using correct and incor-

rect acoustic models. The LLR(o, q) score was compared to the 

phoneme-dependent threshold to detect whether if segment q 

were being pronounced correctly or not.  

Witt (Witt et al., 2000) [19] proposed a model of goodness of 

pronunciation (GOP) to detect pronunciation errors; the mean 

and variance obtained from data analysis could be used to select 

an appropriate threshold for each phoneme. If the GOP below 

this threshold were considered well-delivered, then if the con-

trary occurred it would be considered a pronunciation error. 

Troun (et al., 2009) used acoustic-phonetic models with classifi-

ers to compare two recognition techniques (decision trees and 

linear discriminant analysis) to classify sounds causing most prob-

lems with pronunciation, fricative / x / and occlusive / k / in 

Dutch. The first consisted of a classifier and a decision tree with 

classification rate of increase (ROR); if peak ROR was above a 

certain threshold it was considered occlusive, otherwise it was 

considered fricative. This method achieved a degree of certainty 

(75% to 91%). The second method used the LDC, using ampli-

tude characteristics, higher ROR and duration. Five amplitude 

measurements were taken (i1, i2, i3, i4 and i5) at 5, 10, 15 and 20 

ms intervals. The results of this method had 85% to 95% classifi-

cation accuracy. 

Nasa Yuwe language vowel modelling 
The following describes the activities and results from applying 

the five-step Kuncheva method in detecting confusion in pro-

nouncing vowels in the Nasa Yuwe language, exploring various 

classification methods to find the most accurate classifiers. 

Corpus construction 

Four steps were followed in building the corpus. Step one in-
volved word choice; a group of 250 words was selected having a 

phonetic structure made up of vowel-consonant (VC), conso-

nant-vowel (CV), consonant-vowel-consonant (CVC) and conso-

nant-consonant-vowel-consonant-vowel (CCVCV). The words 

were recorded in step two; 4,224 recordings were collected 

using five native-speakers (three men and two women) and 132 

repetitions were obtained for each vowel. The corpus was rec-

orded at 44.1 kHz frequency in mono format and processed 

from 0db to 60db. Step three established a centroid for each 

word. Spectrograms of all occurrences of each word were 

aligned (frequency compared to time, using 5msg Hamming 

windows). Dynamic time wrapping (DTW) was used for such 

alignment (Sakoe et al., 1978; Dtw Matlab, 2011). All aligned 

paths were averaged, finding a centroid for each word (Casacub-

erta et al., 1991). Step four involved vowel segmentation; start 

and end windows for the vowel present in each centroid were 

found using a reference word. The reference word and centroid 

were aligned with DTW. The advantage of having a centroid for 

each word was that it presented the mean and variance for all 

pronunciations of a particular word. All the whole corpus’ vow-

els were automatically segmented using DTW between the 

centroid and every word, thereby obtaining a spectrogram for 

each vowel in each word in this corpus.  

Characteristic extraction and selection 

39 LPC coefficients and the residual energy were obtained for 

each segment of each vowel. Once the vectors had been gener-

ated, as it was observed that the values were almost zero after 

the first 15 coefficients they were rejected, leaving only 15 LPC 

coefficients and the residual energy for each sample. A class label 
was added (1 to 32, according to each vowel) and this was char-

acteristics of the voice signal for building models. 

Choosing a classification and testing model  

Several classification methods were analysed; the idea was to use 

the same information with all of them for experimentally estab-

lishing which one was best suited to the task of characterising 

Nasa Yuwe vowels. MathLab 7.0 (Matlab, 2011) was used for 

experimentation, specifically the library PrTools (Prtools, 2011). 

The project involved four iterations of Kuncheva method stages 

3, 4 and 5 and characterising them. 

First iteration: A classifier for each of the four groups of vowels (a, 

e, i, u) had to classify each of the 8 classes (vowels) forming part 

of each group. Classifier input consisted of 16 LPC coefficients 

for each sample (8 outputs for each class from the same group). 

Linear classifiers were tested, such as LDC and Perceptron and 

nonlinear ones such as KNN (with three nearest neighbours, 3-

nn), SVC (grade two radial base kernel), cluster (8 clusters were 

formed per vowel group and used as the training algorithm for 

the nearest  mean), HMM (silence node, vowel node and silence 

node, all interconnected, with Baum-Welch 50 cycles) and MLP 

(16 node input layer, two 25 neuron hidden layers, output layer, 

Levenberg-Marquardt training algorithm and 300 training epoch). 

These settings were found to be the best for the corpus collect-

ed and maintained for the other iterations. The dataset for this 

test was satisfied as follows; 2 datasets were created by vowel 

group (8 in all), four corresponded to training data, 80% random-

ly selected samples (106 objects per vowel), the other four 

groups being test data containing the remaining 20% (26 objects 

per vowel). MLP was the best classifier for each vowel group, but 

performance was lower than 65% in all vowel groups, meaning 

that the degree of accuracy had to be increased and a second 

iteration was thus carried out. 

Second iteration: A classifier was trained for each of the 32 vowels 

in this iteration. The aforementioned data representation and 

classification methods were explored and the best classifier 
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selected, bearing sensitivity, specificity and accuracy in mind. Each 

training set was balanced between positive and negative samples 

(212 samples). Each test set was balanced too (52 samples). MLP 

was the best classifier, sensitivity being higher than specificity. 

There was clear improvement in all three measurements in this 

iteration and a variety of classifiers showed the best performance 

for each vowel. No classifier was optimal for all vowels and the 

rates obtained were around 75%. 

Third iteration: Further improvement of the rates obtained in 

iteration two was sought so a bagging technique was chosen and 

all classifiers were used (low-performing, unstable classifiers and 

a small corpus setting) (Kuncheva, 2004). Bagging training in-

volved five randomly-selected datasets with replacement from 

the training set having each vowel group (42 sample size: 21 
positive and 21 negative samples) since each training set con-

tained 106 positive and 106 negative objects for each vowel 

(group size = 212 / 5 = 42). A classifier of the same type was 

developed with each of the five datasets and went into the same 

bag. For example, there is an LDC bag for a vowel where five 

LDC classifiers were developed with each of the five groups. 

Test sample label was calculated by a vote among the 5. Bagging 

often improved previous iteration performance. Nonlinear bag-

ging classifiers were chosen for a vowels for most of the vowels. 

Sensitivity was high (above 88%). Specificity rates were lower 

than sensitivity rates (mean = 70.19%). Non-linear bagging classi-

fiers were selected for the e vowels (53% to 100% sensitivity 

rates, 57% to 84% specificity rates, specificity rates being lower 

than sensitivity rates). Nonlinear bagging classifiers were selected 

for the i vowels for most vowels (56% to 100% sensitivity rates 

76% to 88% specificity rates but range being smaller and values 

better than sensitivity rates). A variety of classifiers was chosen 

for the u vowel group (57% to 100% sensitivity, 65% to 96% 

Specificity). This iteration improved u and i vowel accuracy rates, 

although rates stayed the same for a and e vowels. Low specifici-

ty regarding sensitivity might be improved by including more 

samples in the training set (impossible for positive samples, as all 

available are already being used, but the number of negative 

samples could be increased).  

Fourth iteration: Iteration two and three models were retaken; 32 

individual and bagging classifiers and the data for this experiment 

were kept the same as the previous configuration. Negative 

training samples were increased to 742 for each vowel. The LDC 

classifier was identified as best for the a vowel group (Table 1) 

for a, a' ã' and aː; it was LDC bagging KNN and MLP for the 

others (65% to 100% sensitivity rates and 69.23% to 100% speci-

ficity rates, 82.21% average sensitivity and 82.69% average speci-

ficity). Bagging classifiers MLP and KNN were selected for the e 

group of vowels (Table 2) e, e',   ', eː and   ː and individual non-
linear classifiers like KNN and MLP for the other vowels (84% to 

100%,specificity rates for all vowels being better than sensitivity 

rates: 50% to 100%:  75.96% average sensitivity, 94.71% specifici-

ty and 85.34% accuracy). A bagging classifier like LDC MLP and 

SVC was selected for the I vowel group (Table 3) for six of the 

eight vowels; an individual classifier such as Perceptron and MLP 

was chosen for the other two. Bagging schemes worked better 

for this group of vowels (80% to 100% sensitivity, 69% to 100% 

specificity, 88.94% average sensitivity, specificity and accuracy). 

Bagging classifiers were selected for the first three vowels for the 

u vowel group (Table 4) from CLUSTERING, SVC and MLP and 

linear and MLP classifiers were taken for the final five, like KNN 

and SVC (76% to 100% sensitivity, 57% to 100% specificity, 

87.98% average sensitivity, 85.10% specificity and 86.54% accura-

cy). 

Increased specificity was observed in iteration four re iteration 

three. There was a slight decrease in sensitivity rates showing an  

Table 1. Iteration 4 with linear and nonlinear bagging and individu-

al classifiers in the a vowel group 

Vowel 
Selected 

classifier 
Sensitivity Specificity Accuracy 

a LDC 0.8462 0.6923 0.7693 

a' LDC 0.8462 0.7692 0.8077 

ã LDC bagging 0.6538 0.6923 0.6731 

ã' 
LDC 

bagging 
0.6923 0.6923 0.6923 

aʰ 
MLP 

bagging 
0.8462 0.8462 0.8462 

  ʰ MLP 1.0000 1.0000 1.0000 

aː LDC 0.6923 0.9615 0.8269 

  ː KNN 1.0000 0.9615 0.9808 

Mean 0.8221 0.8269 0.8245 

 

Table 2. Iteration 4 with linear and nonlinear bagging and individu-

al classifiers in the e vowel group 

Vowel 
Selected 

classifier 
Sensitivity Specificity Accuracy 

e MLP bagging  0.6154 0.8462 0.7308 

e' KNN bagging  0.7308 1.0000 0.8654 

ẽ KNN 0.5000 0.8462 0.6731 

  ' MLP bagging  1.0000 1.0000 1.0000 

eʰ MLP 0.5385 0.9615 0.7500 

ẽʰ MLP 0.9231 0.9231 0.9231 

eː  MLP bagging  0.7692 1.0000 0.8846 

  ː  MLP bagging 1.0000 1.0000 1.0000 

Mean 0.7596 0.9471 0.8534 

 

Table 3. Iteration 4 with linear and nonlinear bagging and individu-

al classifiers in the i vowel group  

Vowel 
Selected 

classifier 
Sensitivity Specificity Accuracy 

i Perceptrón 0.8462 0.8846 0.8654 

i' LDC bagging 0.8077 0.8077 0.8077 

Ĩ SVC bagging 0.8077 0.6923 0.7500 

Ĩ' LDC bagging 0.8462 0.9231 0.8846 

iʰ MLP bagging 0.9231 0.9231 0.9231 

 ʰ KNN 1.0000 1.0000 1.0000 

iː  MLP bagging 0.8846 0.8846 0.8846 

  ː  MLP 1.0000 1.0000 1.0000 

Mean 0.8894 0.8894 0.8894 

 

Table 4. Iteration 4 with linear and nonlinear bagging and individu-

al classifiers in the u vowel group 

Vowel 
Selected 

classifier 
Sensitivity Specificity Accuracy 

u 
Clustering 

bagging 
0.9231 0.5769 0.7500 

u' SVC bagging 0.8846 0.8462 0.8654 

ũ MLP bagging 0.8077 0.7692 0.7885 

ũ' MLP 0.8462 0.9231 0.8846 

uʰ SVC 0.7692 0.7692 0.7692 

ũʰ MLP 1.0000 1.0000 1.0000 

uː  KNN 0.8077 0.9231 0.8654 

  ː  MLP 1.0000 1.0000 1.0000 

Mean 0.8798 0.8510 0.8654 
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increase in accuracy for most vowels but not for vowels a, e', eː, 

i, i' and uː, a slight decrease being due to decreased sensitivity 

rate. The classifiers chosen for constructing prototype software 

were due to the overall improvement found in this iteration. 

Software prototype 
A support software prototype was built for the correct pronun-

ciation of Nasa Yuwe vowels, enabling any person to practice 

pronouncing these vowels. The software prototype had a menu 

showing the four vowel groups; once a vowel group was chosen, 

it showed the 8 vowels of that group. Once a user selected a 

particular vowel, it was presented with a menu where the words 

associated with the chosen vowel were found and the user could 

select one. After a user had chosen a word, the software played 

a recording of the word found in the corpus and the user imme-

diately pronounced it. The system then divided the vowel pre-

sent in the spoken word into segments using the word’s centroid 

and this segment was analysed using a set of previously-

developed classifiers, determining whether it was the right or 

wrong pronunciation. The system accepted a pronunciation if it 

exceeded the threshold defined for the vowel. The two vowels 

more likely to be confused by the pronunciation were deter-

mined for incorrect pronunciation. The user received a message 

in a cyclical process depending on a user’s goals. The threshold 

for each vowel was taken from the mean of all test samples’ 

acceptance probabilities and the  standard deviation calculated 

from the same odds. This software prototype was based on a 

classifier model for defined vowels developed in iteration four 

having a pipe and filter architecture (Figure 1) having the follow-

ing packages: word pronunciation, vowel segmentation, vowel 

centroid, LPC coefficient calculation, vowel classifier, a combina-

tion of classifiers and user response. 

Figure 2 gives an example of pronunciation of the word Tũpx 

(nude), which contains the ũ vowel; the ũ vowel’s classifier found 

that the pronunciation was correct, having 0.9809 probability. 

This information would be presented to the user as a success 

message. 

(1)  

(2)  

Figure 2. Correct pronunciation exercise 

Figure 3 gives an example of pronunciation of the word ãph (fly), 

containing the ã vowel; the ã vowel’s classifier found mispronun-

ciation and the other classifiers in the a vowel group found an ã' 

vowel having 0.7481 probability. This message would be present-

ed to a user as a mispronunciation message. A user could prac-

tice these exercises many times, depending on their goals. 

(1)  

(2)  

Figure 3. Mispronunciation exercise 

The software prototype was subjected to two live tests in a 

noisy place, the first with 12 native speakers of the language, men 

and women of different ages and from different reservations in 

the Department of Cauca. This test was conducted at the Dxi 

Phanden School in the Lopez Adentro Reservation in the Cauca 

Department, Colombia. The test consisted of choosing one word 

for each vowel and pronouncing it in the system, each speaker 

making 32 utterances. The system determined whether it was 

pronounced correctly and the user informed. Sensitivity rate was 

calculated as this involved correct pronunciation. Sensibility rates 

were similar to those found in iteration four. Rates were 82% to 

100% for the a vowel group, with only a and ã having 50% to 

60%. For the e vowel group, most rates were between 75% and 

100%, except for e: whose sensitivity was 50%. For the i vowel 

group, sensitivity rates were above 98%, except for i whose 

sensitivity was 68%. All vowels were above 92% for the u vowel 

group  

The second test whaving a particular vowel and pronounced 

them twice in the system, so there were 128 pronunciations per 

speaker. This test was aimed at identifying which vowels led to 

the greatest confusion and determined the vowel of confusion. a 

and aʰ caused the least confusion for the a group of vowels 

(Table 5). Vowels   ː and aː, the elongated ones, involved in-

creased confusion, mainly being confused with a. There was least 

confusion concerning eʰ and   ʰ for the e group of vowels (see 

Table 6); ẽ’ was most mainly confused with e', followed by elon-

gated vowels, ẽ: and e:, being mainly confused with ẽ. The vowel 

ĩ' and ĩ had the lowest level of confusion for the i group of vow-

els (Table 7) and most confusion was caused by i: and ĩ: mainly 

confused with ĩ. Vowels u and u' had the lowest level of confu-

sion for the u group of vowels (Table 8), ũ: and ũ involving most 

confusion, being mainly confused with u. 

 

Figure 1.  Software prototype architecture 
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Conclusions and future work 
This project modelled the 32 Nasa Yuwe vowels, even with the 

complexity involved in this due to their extensive division and 

different features. This was achieved by making use of specialised 

classifiers for each vowel and building a support software proto-

type for correct pronunciation based on classifier models pro-

posed in iteration four using filter and pipe architecture. There 

was     average software prototype accuracy, meaning that 

rates were well above this value for a  ʰ, e   , e  ː, i ʰ, i ː, u ʰ and u ː 
(100% accuracy), the opposite occurring with ã, ã' and ẽ (less 

than  70%). Accuracy was 70% to 95% for all the other vowels, 

these rates being within those found in related projects, although 

it should be noted that most projects had few classes, unlike this 

one (32). Multilayer neural networks and K-nearest neighbour 

were the best classifiers for most vowels. The most appropriate 

MLP configuration was two hidden layers having 25 neurons in 

each layer and KNN was the best option for 3-neighbors. Future 

work could involve using other classifier training strategies such 

as AdaBoost (Freund, 1997), increasing the corpus of positive 

samples at least threefold and using special equipment like a 

nasograph to better capture the features of nasality. 

Table 5. Live test results with non-native speakers for the a group 

of vowels 

 
a  ’ aʰ a: ã ã'   ʰ   ː 

a 14 1 
   

1 
  

 ’ 2 10 1 1 1 1 
  

aʰ 
  

12 2 2 
   

a: 8 
 

1 4 1 2 
  

ã 1 1 2 4 7 1 
  

ã' 1 1 2 
 

1 11 
  

  ʰ 
  

2 2 4 
 

8 
 

  ː 7 2 1 4 
   

2 

 

Table 6. Live test results with non-native speakers for thee group of 

vowels 

 
e e' eʰ e: ẽ ẽ’   ʰ ẽ: 

e 7 4 1 1 3 
   

e' 3 9 
  

2 2 
  

eʰ 
 

1 15 
     

e: 2 2 
 

5 6 
   

ẽ 3 1 1 1 10 
   

ẽ’ 3 6 4 
 

1 2 
  

  ʰ 
  

3 
 

2 
 

11 
 

ẽ: 3 2 3 
 

3 
  

5 

 

Table 7. Live test results with non-native speakers for the i group of 

vowels 

 
i i' iʰ i:    '   ʰ  : 

i 10 
   

5 
 

1 
 

i' 
 

10 
  

3 2 
 

1 

iʰ 1 3 6 
 

2 4 
  

i: 
 

1 1 2 7 4 
 

1 

  2 
   

12 1 1 
 

 ' 
 

1 
  

2 13 
  

  ʰ 
    

6 
 

8 2 

 : 1 
   

7 2 1 5 

 

Table 8. Live test results with non-native speakers for the u group 

of vowels 

 
u u' uʰ u: ũ ũ' ũʰ ũ: 

u 14 
  

2 
    

u' 1 14 
   

1 
  

uʰ 4 
 

8 
 

1 2 1 
 

u: 2 
 

1 8 3 
  

2 

ũ 7 
 

2 
 

5 1 1 
 

ũ' 2 
 

4 
  

10 
  

ũʰ 3 
 

2 
 

1 1 8 1 

ũ: 8 
   

2 4 
 

2 
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