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ABSTRACT  

The working temperature of an electric generator’s parts is important for its proper operation. The turbogenerator rotor’s temperature 

is of particular interest regarding its protection and maintenance. Because of the difficulty of measuring the temperature of dynamic 

parts with real and implicitly robust artificial neural network (ANN) sensors it was decided to use a virtual sensor (VS) by which aver-

age rotor winding temperature is estimated. Because ANN are characterised by learning through training rather than formal descrip-

tions, this has made them the preferred choice for modelling processes involving complex interrelated variables; some are found in 

the field of instrumentation, as in this research. This paper presents the development of an ANN-based VS applied to an electricity 

generating company’s 4 MW turbogenerator. 
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RESUMEN 

La temperatura de trabajo de diferentes partes de un generador eléctrico es una magnitud importante para su correcta explota-

ción. La temperatura del rotor del turbogenerador es de particular interés para implementar su protección o para el diagnóstico de 

mantenimiento. Por la dificultad de hacer las mediciones de temperaturas de partes dinámicas con sensores reales y la robustez 

implícita en las redes neuronales artificiales (RNA), se ha decidido implementar un sensor virtual (SV) y a través de este método 

poder estimar la temperatura media del devanado del rotor. Debido a que las RNA se caracterizan por aprender por medio del 

entrenamiento en lugar de descripciones formales, esto ha hecho que sean la opción preferida para modelar procesos de varia-

bles con interrelaciones complejas. Algunos de estos procesos se encuentran en el área de la instrumentación, como es el caso de 

este trabajo. Aquí se presenta el desarrollo de un SV basado en RNA aplicado a un estudio de caso de un turbogenerador de 4 MW 

de una empresa cogeneradora. 
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Introduction1 2 
Synchronous generators driven by primary motors, particularly 

steam turbines, have been the main source of generating electric-

ity around the world so far. Cogeneration in many industries 

makes these machines of primary importance, especially in the 

sugar industry, where some factories are completely or partially 

electrified and synchronised to the national grid. These machines 

are usually robust and reliable; however, failures are costly and 

usually incur increased energy consumption from the national 

grid to supply the temporary generating shortfall regarding faulty 

machine output. Stator winding faults are mainly due to thermal 
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and mechanical stress which leads to deterioration of the isola-

tion. The machines’ rotors have a higher failure rate in two pole 

machines (3,600 rpm). It should also be noted that assembly and 

disassembly is complicated due to the weight of the parts in-

volved and the pertinent rotor alignment and coupling. Several 

days or weeks are needed in the partial or total repair of a faulty 
rotor, involving the use of expensive materials and skilled labour. 

A rotor is dried to ensure high isolation resistance and the sup-

pression of any dynamic imbalances which may arise during 

winding preparation with locking wedges and tires. 

Obviously, the rotors in these machines are subjected to critical 

operating conditions:  

1. They are subjected to mechanical stress (shear) stress due to 

high rotation speed;  

2. They are subjected to thermal stress due to difficult ventilation 

conditions; and  

3. They are subjected to electrical stress, transient variation in 

load connection and disconnection operation, and automatic 

voltage regulation.  
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If a condition-based maintenance (CBM) programme is used for a 

turbogenerator, then this requires paying special attention to 

rotor condition, monitoring being the initial step in this type of 

maintenance (Mamikonyants, 2005; Ahmad, 2012). CBM consists 

of nothing more than regularly measuring one or more variables 

associated with the machine and interpreting the results to as-

certain its present state. Automatisation maintenance is initiated 

following CBM, its fundamental purpose is to automate meas-

urement where inference sensors (called virtual sensors (VS) or 

software sensors) are sometimes necessary. In the case of sta-

tors and other stationary parts, temperature is detected with the 

aid of thermocouples or resistance thermometers which allow 

the temperature to be measured at different parts, for example, 

the temperature of copper, steel, cooling agent flow (water and 

oil) and the temperature at supporting points. Obviously, using 

these sensors is extremely difficult when interest lies in measur-

ing the temperature of a moving winding rotor during machine 

operation. Where measurement concerns a difficult area for 

introducing measuring instruments or is very costly, then the 

information regarding such variable must be estimated. In many 

cases, immeasurable information about the variable of interest 

can be inferred from another magnitude, as in the case of an 

electrical machine’s rotor winding temperature, where the wind-

ing’s ohmic resistance is proportional to its average temperature. 

Software sensors (estimators) have been developed, also known 

as smart sensors, soft-sensors or VS, through which a variable is 

inferred by taking existing information regarding another variable 

into account. To make the inference, such software is based on a 

mathematical model in a heuristic or “smart” model (Leal and 

Herrera, 2008). 

An intelligent model relies on artificial neural networks (ANN); 

an ANN is a set of adaptable computing elements simulating a 

biological neuron’s behaviour. This paper describes developing a 

VS for estimating turbogenerator rotor winding average temper-

ature, selected as a base case. The rotor’s average temperature 

was constructed from the variables so measured in a circuit 

involving an ANN inferential model. 

The characteristics of the supervised equipment 
This study was carried out using a turbine installed in a generat-

ing plant; it has the following specifications: 

Primary motor: 
Back pressure turbine 
Direct steam pressure: 18 kg/cm

2
 

Direct steam temperature: 310°C 
Back pressure: 2 kg/cm

2
 

 

Generator: 

Power: 5,000 kVA 

Power factor: 0.8 

Voltage: 6,300 V, current: 459 A 

Connection and polarity: 2 pole 

Rotor resistance: 0.35199 Ω at 32°C 

Reference model 
VS requires a model and its accuracy is critical for obtaining 

reliable results. VS accuracy thus depends on the model’s accura-

cy and the actual accuracy of the sensors used. 

The reference model for the proposed application was defined 

by means of an equation calculating the winding’s average tem-

perature, using its electrical resistance. The actual data for train- 

ing the ANN was obtained and organised with this model. 

The average temperature of copper wound machines can be 

determined by knowing the value of internal resistance (Ro) 

measured at a specific temperature (θo). Internal resistance was 
measured each time there was a heating test and average winding 

temperature of was calculated using Equation (1): 

        (
     

  
)                 

(1) 

where: 

Rt - hot winding resistance at working temperature θcu in Ω 

Ro - winding resistance temperature in θo in Ω. 
 

If interest lies in continuous monitoring of resistance without 

stopping the machine, then the average temperature of the rotor 

must be constantly calculated, measuring voltage and current 

excitation, as: 

  
    

    
            (2) 

Iexc Vexc being current and voltage excitation whose measure-

ments are available from the power plant’s instrument panels. 

However, the resistance value obtained with these measure-

ments includes a component making the actual value differ from 

the rotor winding’s internal resistance due to the brushes’ con-

tact resistance which must be taken into account and corrected. 

The actual resistance is thus calculated as: 

                        (3) 

where: 

Re is the value of the brushes’ contact resistance, in Ω. 
 

Due to the complex nature of brush contact (Kostenko and 

Piotrosvki, 1979; Voldek, 1985), its resistance is not constant but 

depends on the current. The brushes’ voltamperic nature repre-

sents voltage drop ΔVe in the brushes’ contact layer, the brush-

es’ average current density being Je in A/cm2: 

     (  )            (4) 

This can be experimentally determined by varying the current 

through the field, Iexc, and the number of blades per ring, so as 

to vary the brushes’ total area, Se, and current density, Je. Vary-

ing the brushes’ current density, positive brush voltage drop was 

measured at the generator ring (ΔVe +) and the other at the 

negative brush (ΔVe-), obtaining fall (ΔVe) by summing them. 

Table 1 gives the measurement results. 

The value of the excitation current was calculated from experi-

mental data (Je) corresponding to this current density with six 

working brushes per ring and voltage drop curve (ΔVe) was 

obtained depending on current Iexc, as shown in Figure 1, and 

adjusted with R2 = 0.9615 correlation to equation (5): 

         (                 )       (5) 

Contact resistance was expressed as: 

   
   

    
              

(6) 

 

using equations (2), (3), (5), (6) and substituting into equation (1), 

thus obtaining Equation (7): 
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Table 1. Measuring voltage drop on the brushes 

For n = 6 brush/ring Se=38.4 cm2 

Iexc (A) ∆Ve+ (V) ∆Ve- (V) ∆Ve (V) Je (A/cm2) 

28 0.43 0.47 0.90 0.729 

30 0.478 0.509 0.987 0.781 

42 0.65 0.68 1.33 1.093 

50 0.836 0.885 1.721 1.302 

66 0.91 0.96 1.87 1.708 

88 1.298 1.312 2.61 2.291 

93 1.17 1.23 2.40 2.421 

For n = 3 brush/ring Se=19.2 cm2 

Iexc (A) ∆Ve+ (V) ∆Ve- (V) ∆Ve (V) Je (A/cm2) 

26 0.84 1.14 1.98 1.354 

36 1.09 1.46 2.55 1.875 

39 1.16 1.23 2.39 2.031 

52 1.37 1.79 3.16 2.708 

56 1.533 1.89 3.42 2.916 

91 1.78 1.83 3.61 4.739 

92 1.92 2.02 3.94 4.791 

For n = 2 brush/ring   Se=12.8 cm2 

Iexc (A) ∆Ve+ (V) ∆Ve- (V) ∆Ve (V) Je (A/cm2) 

27.6 1.27 1.35 2.62 2.156 

52 1.83 1.98 3.81 4.062 

91.6 2.14 2.30 4.44 7.156 

 

 

Figure 1. Characteristic voltage drop in the brushes 

 

        [
 

    
 (           (                 ))   

  
]             (7) 

Expression (7) constituted the reference model or a numeric 

prototype for generating the data used to train the ANN, con-

sidering the case analysed (Ro=0.35199 Ω and θo=32ºC). 

Case study: ANN-based virtual sensor (VS) 
development 
The available measurements were excitation voltage (Vexc) and 

excitation current (Iexc). The windings’ average temperature was 

calculated from these measurements and the use of expression 

(7), creating a database for developing an ANN-based VS, giving 

its output temperature (T) in °C (see Figure 2). This network 

was designed and trained using Matlab 7.8.0 neural network 

toolbox (R2009a). 

Single neurons are combined in a neuronal model to build a 

network whose architecture can be quite varied. An ANN is 

characterised by its topology, the nodes and learning rules or 

training. The technical literature suggests a multilayer feed-

forward network as being the most suitable for these applica-

tions (Halpin and Burch, 1997). 

This is a network where the set of neurons is arranged in levels 

so that the links are established from neurons at level i to neu-

rons at level j (i <j), so that information flows uni-directionally 

from the input units to the output units. Typically there is a layer 

of sensor units, one or more hidden layers of neurons and a 

layer of neurons for output. The network architecture used in 

this paper contained a first layer with input neurons, an interme-

diate layer with hidden neurons and an output neuron for the 

last layer. Although multiple hidden layer architecture can be 

used, it has been shown that a single hidden layer is usually 

enough (Halpin and Burch, 1997). The input vector (Vexc, Iexc) 

comprised voltage and excitation current. The rotor’s average 

temperature was estimated from such magnitudes (i.e. ANN 

output). The function used in the hidden layer’s neurons was a 

sigmoidal hyperbolic tangent function (tansig) and the output 

neuron function was linear (purelin) (Halpin and Burch, 1997). 

The network was trained with 297 experimental data sets of 

voltage and current excitation and the corresponding average 

temperature calculated by expression (7). Each input and output 

variable in the data set was normalised using the maximum value 

 

Figure 2. Diagram of the VS for inferring rotor temperature 
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Figure 3. Network behaviour during training 

 

Figure 4. Optimising the number of hidden layer neurons: 2-n-1 architec-
ture, 0.001 learning rate, 100 x 
 

of the variable, as recommended in the pertinent literature (Hal-

pin and Burch, 1997; Gomez, 2008). 60% of the data was used 

for training, 20% for validating and 20% for testing. Learning and 

convergence were satisfactory (see Figure 3), in which the Matlab 

window showed mean square error (MSE) evolution in training 

data sets for validating, testing and training. 

Regarding entries and departures, the network had two input 

and one output neurons. Selecting the appropriate number of 

hidden neurons was important, so the network was trained by 

varying their number and keeping all other parameters constant, 

resulting in three neurons in the hidden layer; network perfor-

mance was better (see Figure 4). 2-3-1 architecture was thus 

chosen, as shown in Figure 5. 

VS simulation 
The results obtained from the VS were statistically validated 

using average deviation expressed as a percentage. This gave the 

data points’ average absolute deviation, i.e.: 

         
 

 
∑|  ̅|        ] 

(8) 

where: 

n was the number of observations 

X was individual deviation, expressed as a percentage 

X    was the average value of all individual deviations ex-
pressed as a percentage. 
 

The entire experimental data universe was used in the analysis 

and the ANN model was used to simulate energy consumption; 

individual deviation was determined using the temperature given 

by the neuronal model in relation to the actual temperature data 

and applying expression (8). The average deviation was expressed 

as a percentage and standard variable led to better quality visuali-

sation of the model’s fit. 

The mean deviation defined by equation (8) was 0.14% 

the maximum deviation 5.15%. Individual deviation in 

95% of the data was less than 0.74% and previous data 

variance was 0.14%. Figure 6 gives the individual devia-

tion pattern, showing the model’s excellent response. 

The results of the rotor’s temperature, estimated by 

both methods, are shown to compare ANN response 

related to the resistance method, observing that the 

results practically coincided throughout the sampled 

interval (Figure 7). 

Conclusions 
An ANN-based virtual sensor was developed for esti-

mating the mean temperature of synchronous ma-

chines’ excited rotor winding, which could be used 

immediately due to the ease in operating it as only 

voltage and excitation current were considered as 

input variables. 

Good correlation was shown between VS results and 

the method serving as reference for electrical winding 

resistance. VS average deviation was 0.14% and 95% of 

the cases showed less than 0.74% individual deviation, 

which also demonstrated the quality of the modelling. 

These sensors work on-line with the plant, being inte-

grated with any monitoring system, thereby improving 

plant instrumentation, facilitating control and manage-

ment and also adding new variables, alarms and func-

tions. 

 

Figure 5. ANN architecture designed to estimate t rotor temperature 

 

Figure 6. Deviation of VS response related to resistance measurement 
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The proposed method did not involve additional costs, as it used 

the plant’s conventional monitoring equipment in its operation. 
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Figure 7. Rotor temperature measured every 20 min with VS and resistance 


