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ABSTRACT  

In this paper, we present two algorithms for approximating a period given a discrete data set. These algorithms superimpose two 

consecutive sections of the data for several candidate periods. The first algorithm counts the number of shuffling points per candidate 

period, whereas the second algorithm computes a distance between points when sorted by time. The best candidate period maxim-

izes the number of shuffling points in the first algorithm, whereas the second algorithm minimizes the distance between points. The 

experimental validation with noiseless data demonstrates that the relative error for the estimations is less than half of the sampling 

period and shows that this error does not depend on the harmonic content, as normally occurs with algorithms that estimate a period. 

The application of the algorithms demonstrates that they properly track the frequency of a power grid and accurately estimate the 

period of a Van der Pol oscillator, which serves to confirm their applicability to real-time problems. 
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RESUMEN 

En este artículo se presentan dos algoritmos para estimar el periodo de una señal, dado un conjunto de datos discretos, estos algorit-

mos superponen dos secciones de datos a varios periodos. El primer algoritmo cuenta el número de puntos que se mezclan por cada 

periodo, mientras el segundo, calcula la distancia entre los puntos cuando se ordenan por tiempo. De esta manera, el mejor candi-

dato para periodo maximiza el número de puntos que se mezclan en el primer algoritmo, mientras que en el segundo, minimiza la 

distancia entre puntos.  

La validación experimental con señales sin ruido, demuestra que el error relativo de las estimaciones cae por debajo de la mitad del 

periodo de muestreo, y a su vez, muestra que ese error no depende del contenido armónico de la señal, como ocurre con los algo-

ritmos para estimar periodo. La aplicación de los algoritmos demuestra que pueden seguir la frecuencia de un sistema de potencia 

y además, pueden aproximar el periodo de un oscilador Van der Pol, lo cual sirve para confirmar que estos algoritmos se pueden 

aplicar para solucionar problemas en tiempo real. 

Palabras clave: estimación de frecuencia, medida de frecuencia, funciones periódicas, monitoreo de sistemas de potencia y 
reconstrucción de señales. 
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Introduction12 
The discretization performed by an electronic device to record 
samples of an analog signal depends on the device’s memory, the 
frequency of its internal clock, and the required precision. How-
ever, in general, it does not depend on the period of the signal 
itself because this value almost always remains unknown. Thus, 
generally speaking, the measurement of discrete signals produces 
data points that do not match the period of the signal, and conse-
quently, the computation of the period results in a mere approxi-
mation of the true value. The inevitable errors that occur when 
estimating a period influence a wide variety of processes, such as 
signal reconstruction and prediction.  
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Given the availability of several methods for reconstructing a signal 
given its period and given appropriate data sampled at an appro-
priate rate (Petrovic and Stevanovic, 2011), the problem consists 
of estimating the period of a signal or, equivalently, approximating 
its fundamental frequency. Current work in frequency estimation 
focuses on sinusoidal signals, whereas the approach in this paper 
extends the estimations to a broader family of functions: functions 
of bounded variation. One example is the method of phase un-
wrapping, which estimates the frequency by performing a linear 
regression on the phase of the signal (McKilliam et al., 2010). How-
ever, this method cannot be used in real-time applications due to 
its high computational requirements. Another method guarantees 
results for noiseless conditions and bases its results on the solu-
tion of a system of linear equations using a DFT for two time in-
tervals (Provencher, 2010). In contrast, So and Chan combine a 
matrix of elements converted to two unitary vectors to provide 
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an estimate of the frequency, but their algorithm requires an iter-
ative process (So, Chan, and Weize, 2011). Other approaches al-
low several sinusoidal components. One approach minimizes the 
mean squared error between an assumed signal model and the 
actual signal to estimate the frequency of a power system (Chud-
amani, Vasudevan, and Ramalingam, 2009). This last approach fo-
cuses on methods that can be implemented in electronic circuits, 
but the methods neither guarantee the performance nor compare 
the performance of their algorithm with popular estimators. Pan-
tazis and colleagues (2010) suggest a time-varying sinusoidal rep-
resentation to estimate frequencies for various signals such as 
speech and audio signals. The experimental results show that the 
suggested algorithm outperforms FFT-based approaches in non-
stationary environments. Finally, a more general family of algo-
rithms uses the DFT as a basis for estimating frequencies. For in-
stance, a method exclusively used for complex exponential wave-
forms in the presence of white noise uses DFT in the first stage, 
after which the three terms with the highest spectral magnitudes 
produce a better estimate (Candan, 2011). Candan claims that the 
estimation performs well for small and medium sampling rates, but 
nothing is said about high sampling rates. Yang and Wei (2011) 
present a non-iterative method consisting of two parts: a coarse 
estimation, given by the FFT, and a fine estimation, using least 
squares minimization of three spectral lines. 

The contribution of this paper consists in the presentation of two 
new algorithms for approximating a period given a discrete data 
set. Some of the main advantages include the lack of assumptions 
about the number of data points and the independence of the har-
monic content, as clearly shown by comparisons with the most 
common method used to approximate a period: the periodogram 
(Ta-Hsin and Kai-Sheng, 2009). The approximations depend exclu-
sively on the distance between the last data point before the pe-
riod and the period itself. However, requirements on the data set 
and the use of iterations to produce an estimate may make the 
algorithms computationally expensive. 

The following section studies the periodogram as a method for 
approximating a period and focuses on the error in its estimations. 
Then, for all of the algorithms, Section 3 analyzes the effects of 
having errors in an estimated period, which subsequently justifies, 
in Section 4, the introduction of the new algorithms to reduce the 
errors. Then, Section 5 presents an evaluation of the quality of the 
approximations for the new algorithms given noiseless and noisy 
data. Once the experimental evidence validates the algorithms, 
Section 6 details two examples that show the applicability of the 
proposed methods. Finally, Section 7 presents the conclusions and 
discusses future work.  

Approximation of a period by a periodo-
gram 
This section analyzes the error of approximating the period by a 
method known as the periodogram. This method has become a 
reference for comparing algorithms in terms of the estimation of 
a period from discrete signals. A periodogram uses equally spaced 
samples from a signal, producing a candidate period based on the 
harmonic decomposition of the signal (computed by a Fast Fourier 
Transform) (Stoica and Moses, 2005). This candidate has a period 
that is equal to the inverse frequency of the harmonic with the 
highest magnitude (Ta-Hsin, 2013). Thus, the periodogram as-
sumes that the signal’s fundamental harmonic has the maximum 
amplitude across the whole frequency spectrum. Another strong 
assumption states that the sampling time should assure the acqui-
sition of a number of data points per period that is equal to an 

integer power of two; otherwise, the method does not guarantee 
results. 

A group of 25 discrete functions served to test the periodogram 
method. The results with these functions allowed us to classify the 
functions into three sets according to the error, which indicates 
the quality of the approximation. The error corresponds to the 
difference between a true period (T) and its approximation (T*) 
relative to the sampling period. The first set of functions decreases 
the relative error as the length of the data (N) increases. This set 
will be labeled as a group of “friendly” functions because they sat-
isfy all the assumptions required for the periodogram. A triangular 
function and a sine function with low harmonic content belong to 
this first set. The second group, “tractable” functions, is composed 
of functions that exhibit a behavior that is similar to the first group, 
but some zones, which may be small, present errors that are 
greater than one. The third group, “hard” functions, contains func-
tions in which the error is never less than one regardless of the 
value of N. This behavior may be explained by a failed assumption 
of the periodogram. The following sections use the six representa-
tive functions for the three sets to study the influence of the error 
in the approximation on the reconstruction of a signal.  

All 25 functions have two features in common: they have no noise 
in the data points, and their mean value equals zero. The noise-
free characteristic facilitates the analysis, whereas a null mean 
value avoids having candidate periods equal to infinity, which re-
sults from a zero frequency component as the highest magnitude 
in the spectrum. 

 

 
Figure 1. Relative error surface, maximum relative error, and error 
as a function of 6N for a triangular function with 8 data points per 
period 
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An example of the error surface shown in Fig. 1 shows the relative 
error when approximating a triangular function (a friendly func-
tion) for eight points in the first period. In addition to the N axis 

in the figure, the second axis, ΔN, represents the distance between 
the last data point before the period and the period itself relative 

to the sampling period. Thus, 0 ≤ ΔN < 1. This ΔN parameter 
proved relevant because an assumption of the Fast Fourier Trans-

form is that a data point always matches the period; therefore, ΔN 
is presumed to always equal zero, which in general proves false. 
The error when estimating a period finds its source precisely in 

the existence of this ΔN. 

The relative error in the upper part of Fig. 1 decreases as N in-
creases, but it does not become less than 1 before N = 32. Specif-
ically, the periodogram requires data equivalent to at least 4 peri-
ods (given eight points per period) to have a relative error of less 
than one. The intermediate plot in Fig. 1 presents the maximum 

error for each N, regardless of ΔN. This plot demonstrates a step 
behavior, jumping when N becomes equal to a power of two. The 
lower panel of Fig. 1 shows a bell shape for the error. This shape 
decreases its magnitude and augments its quantity as N increases.  

Experimenting with friendly and tractable functions confirms that 
a periodogram may require a large amount of data to estimate a 
period with relative errors of less than one. The example in Fig. 1 
needs four periods, but this requirement may grow to fifty or even 
hundreds when N does not match 2k, with k being a natural num-
ber. In general, larger values of N for a period require a larger 
number of periods in the data set to produce estimations with an 
error of less than one. 

Effects of the errors on the estimation of a 
period 
This section studies some effects of having errors in the estimation 
of a period, which justifies the presentation of two new algorithms 
for approximating a period in the next section. The results come 
from worked performed in Matlab by the authors using the three 
families of functions defined in the previous sections.  

Influence on Fourier coefficients 

This section studies the effects of approximating a period on the 
values of the coefficients in a Discrete Fourier expansion. The 

range for the period estimation reaches ±5% of the true period, 
where T equals 2K. This range exceeds the errors given by a per-
iodogram for the friendly and tractable functions. Thus, the range 
guarantees the generality of the results in this section. Therefore, 
given an estimated period, the process consists in computing the 
Fourier coefficients and subsequently comparing them with a ref-
erence, which corresponds to the coefficients computed for the 
continuous version of each trial function at the true period.  

The preliminary results show that, given the trial functions, ∆N 
does not have any influence on the values of the approximated 
coefficients. The error surface proved to be completely defined as 
a function of variations in N and in the estimated period, as illus-
trated in Fig. 2. The results also show that given an approximation 
(T*) equal to T, increases in N reduce the difference between the 
approximated coefficients and their continuous versions. This ef-
fect becomes visible via the depression in Fig. 2. Another major 
effect allows us to state that underestimating the period may imply 
lower errors in the coefficient computation compared to overes-
timating the period, especially for a small number of points, such 
as less than a hundred points, as shown in Fig. 2. This feature be-
comes evident by observing the depression in the error surface at 

the left side of the figure. This effect may be explained, in part, by 
the shapes of the functions. Overestimating a period may induce 
jumps in the function at the true period, whereas underestimating 
the period, in general, preserves the main features of the function, 
which are correlated with the coefficient values. 

 
Figure 2. Error surface for a coefficient of the Fourier expansion 

Influence on signal reconstruction 

Consider a continuous function with errors in the estimation of 
its period. Likewise, suppose that we have an analog reconstruc-
tion of that function coming from the approximation given by the 
expansion of the Fourier coefficients at the estimated period. 
Now, because of computational requirements, the comparison be-
tween the reference function (f) and its reconstruction (f*) uses a 
sampling equal to five thousand data points per approximated pe-
riod instead of the continuous version of each function. The meas-
ure of quality for the approximation (root mean squared error - 
rmse) helps us study the effect of errors on the period estimation 
as well as analyze the effect of different numbers of harmonics on 
the reconstruction. 

The error in signal reconstruction inherits some properties from 
the approximation of the Fourier coefficients because the recon-
struction considered in this section uses a number of Fourier co-
efficients to reconstruct a signal. However, some features of the 
errors result from the reconstruction itself and not by inheritance. 
For instance, the process of signal reconstruction by Fourier co-
efficients generates equal approximations at the initial and final 
ends of a period interval. As a result, increasing the number of 
harmonics as well as the number of data points N may not result 
in the rmse converging to null. 

Influence on electrical energy computation 

The negative effects of misleading signal reconstructions can im-
pact a large variety of areas, with implications of varying degrees 
of seriousness. Among them, computations concerning energy 
may be some of the most extreme examples because of their con-
sequences to consumers and generators. Any deviation from the 
true value implies that electrical companies either lose money or 
are billed for more electricity than what is actually generated, with 
opposite effects for the consumers.  

Measuring electrical energy requires the precise sampling of volt-
age and current over time, which can be performed by electrical 
devices based on electromagnetic principles (Bernieri et al., 2010) 
or by reconstructing voltage and current signals using samples, as 
is performed by static meters (Berrieri, et al., 2012). This section, 
to analyze effects on energy computation, supposes an ideal load 
of 1 ohm, and f = 60 Hz. Thus, the analysis starts by defining an 
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approximated period, with errors from -5% through 5%, whereas 
the true period equals 1/60 of a second, which are greater than 
normal deviations in power grids. The next step involves an ap-
proximation of the Fourier coefficients, from which the current 
and voltage signals are reconstructed. Finally, the approximated 
transmitted energy compared with the true transmitted energy 
serves as a measure of error.  

The first experimental observation, performed at T* equal to T, 
shows that greater numbers of harmonics and data points per pe-
riod, in general, better approximate the transmitted energy. Simi-
lar results, computed at approximated periods T* different from 
T, show that increasing N when approximating the coefficients, or 
increasing the number of harmonics when reconstructing a signal, 
generally improves the quality of the approximation. In addition, 
some trial functions display increases in the approximated energy 
for underestimations of the period, whereas others show the op-
posite behavior. Thus, the error in the energy computation given 
an estimated period T* cannot be generalized, and every function 
requires its own analysis. However, an extreme case in the exper-
iment exhibited an error of 78% in the energy computation at 5% 
error in the period. 

Two new algorithms for estimating a period 

Because of the errors generated in the estimation of a period, as 
was explained using a periodogram, and also given the effect of 
these errors on signal reconstruction, as discussed in the previous 
section, this section proposes two algorithms for improving the 
estimation process. The first part of this section defines the prob-
lem, and the second part presents the variables, the algorithms, 
and a concept of error. This section concludes with a brief exam-
ple of both algorithms approximating a period. 

Problem definition 

This paper only concerns the so-called functions of bounded vari-
ation over a finite interval. They include the usual signals describ-
able by smooth functions but do not include all continuous func-
tions. However, they include large families of discontinuous func-
tions.  

Definition. A function f : [a,b] � R is of bounded variation, de-

noted f ∈ BV[a,b], if there exists some constant M such that ∑ |f(ti) 

- f(ti+1)| ≤ M (the summation goes from i = 0 to n) for every parti-

tion π of a finite interval [a,b], where a = t0 < t1 <…< tn = b. 

The function f defines a periodic function over the real numbers 
R, with [a,b] as the fundamental period. The problem to be solved 
consists of finding an estimated value T* of an unknown period T 
based on a discrete set of observations of f at points sampled at a 
constant rate t1. The approximation of the period requires the 
following assumptions. 

A1. The variation in the function f is bounded over the fundamen-
tal period [a,b]. 

A2. The system samples data at an exact sampling rate. Later sec-
tions consider the problem of the sensitivities of the algorithms. 

Thus, the problem to be solved corresponds to estimating an ap-
proximation T* of T given a set of data D as follows. The data set 
D has the form D = {(it1, f(it1)), i = 0,1,2, …, n}, with sampling period 
t1 and a periodic signal f of unknown period T. The algorithm also 
requires an initial estimation of the period T0 whereby T- < T0 < 
T+. For instance, T- = 6T/7 and T+ = 8T/7; in other words, T±14.2%. 

 

Two approximation algorithms 

In this section, we present (in pseudo code) two algorithmic solu-
tions to the period approximation problem. Given a tentative 
value for the period (tn), the term ‘section’ refers to data points 
taken at time points in the interval [t0,tn] or to data points taken 
at times in the interval (tn,2tn].  

1) First algorithm: Sf 

The first algorithm, called Sf, evaluates the position of f(tn+i) rela-
tive to f(ti) and f(ti+1). The point f(tn+i) is shuffled (sp) if the point 
falls between f(ti) and f(ti+1); otherwise, the point will be classified 
as a non-shuffling point (nsp). As a result, the best candidate period 
maximizes the difference between shuffling points and non-shuf-
fling points, as shown in Table I. 

Table 1. Sf algorithm 
Input: data set D, initial guess of the period (T0), sampling rate (t1) 

Output: An approximate value of the period (T*) or “Insufficient data” 

sp  0, nsp  0 
Ni  floor((7/8)(T0/t1)) 
Nf  ceiling((7/6)(T0/t1)) 
for n = Ni: Nf  
    for i = 0 : n 

          if f(tn+i) ≤≤≤≤ f(ti+1) & f(tn+i) ≥ f(ti), or f(tn+i) ≥ f(ti+1) & f(tn+i) ≤≤≤≤ f(ti) 
                sp  sp + 1 
          else 
                nsp  nsp + 1 
          end 
          Sf(n)  (sp - nsp)/n 
end 
if max(Sf) ≥ 0.0 
        m  n that maximizes Sf  
        T*  (m + 0.5)t1 
else 
      “Insufficient data” 
end 

The error Sf(n) corresponds to a measure of the periodicity of the 
values between two consecutive sections for a candidate period 
value t of the target function. The functional Sf(n) remains piece-
wise constant on the interval [ti,ti+1). Therefore, any approximation 
of T on the basis of D cannot be guaranteed to be any closer than 
half of the radius of the partition, t1/2, to T. The algorithm returns 
a value of T* = (m + 0.5)t1 such that m maximizes Sf(n) over the 
interval [tNi,tNf]. 

If the comparison between two sections results in zero points be-
ing shuffled, then Sf = -1. In contrast, if all the points are shuffled, 
Sf = 1. The bound Sf = 0.0 may be used as a threshold to guarantee 
the quality of the approximation. This threshold implies that the 
number of shuffling points should be at least equal the number of 
non-shuffling points to guarantee the quality of the approximation. 
If the output of the algorithm Sf is insufficient data, then t1 should 
be changed before running the algorithm again. 

2) Second algorithm: ∆f 

N will denote the unique (unknown) n such that tN ≤ T < tN+1. With 
this notation in place, we now turn to the description of the algo-

rithm for estimating T. The second algorithm, ∆f(n), minimizes the 
error functional written in Equation (1) over the sampling partition 
of the interval [tNi, tNf] into intervals of the same length t1, as 
defined in Table II. 

( ) ( ) ( ) ( ) ( )( )∑
≤

−++ −−=∆
tt

iiniin

i

tftftftftf 1,max  
(1) 
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The functional ∆f in Table 2 measures the difference between data 
points for two sections. Thus, the best candidate period exhibits 
the smallest difference between sections. 

Table 2. ∆f algorithm 
Input: data set D, initial guess of the period (T0), sampling rate (t1) 

Output: An approximate value of the period (T*) 

Ni  floor((7/8)(T0/t1)) 

Nf  ceiling((7/6)(T0/t1)) 

for n = Ni : Nf  

     compute ∆∆∆∆f(n)  

end 

m  n that minimizes ∆∆∆∆f 

T*  (m + 0.5)t1 

Illustrative example 

Consider the target signal f(t) = (1/2π)sin(5t)t, which belongs to 
the third group of functions ("hard" functions) and which is 

chunked with period T = 2π, where N = 100 and ∆N = 0.5. Figure 
3 shows that the maximum Sf matches the true period. Notice 
that every candidate period different from the best candidate re-
sults in negative measurements of the functional Sf. In addition, the 
maximum Sf surpasses zero, which was defined as the quality 
threshold for the approximation. 

 
Figure 3. Computation of the functional Sf for a trial function 

Given a maximum possible error in the first approximation (T0) 
equal to 14.2%, and limits [tNi tNf] equal to [7T0/8 7T0/6], Fig. 3 
and Fig. 4 show the total search range, which consequently covers 
[3T/4 4T/3]. In addition, Fig. 4 shows the situation using the func-

tional ∆f. The exploration of the search range shows two local 
minima, which justifies the search for the global minimum. 

 
Figure 4. Output of the algorithm ∆f 

Quality of the approximation 
This section presents the results of two experimental evaluations 

used to analyze the quality of the approximations given by ∆f and 
Sf. The first evaluation analyzes the performance of both algo-
rithms using noiseless data, whereas the second evaluation studies 
the influence of noisy data on the quality of the estimations.  

The evaluation of the algorithms for noiseless data focuses on the 

relative error, defined as Er = |T – T*| / t1, for ∆f and Sf under a 
wide range of sampling periods as well as for the 25 functions from 
the three groups: friendly, tractable, and hard. This analysis is com-
prised of three steps: 1) setting the value of the true period T (for 

instance, to 2π); 2) defining a sampling period as well as a function 
for each experiment to generate artificial data; and, finally, 3) com-
puting both approximations. Now, given that the sampling period 
depends on N and ∆N according to t1 = T / (N - 1 + ∆N), this 

analysis uses 64 ≤ N ≤ 190 and 0 ≤ ∆N < 1, as shown in Fig. 5. 

The errors for both estimations in Fig. 5 proved to be equal be-
cause both approximations have the same value in every experi-
ment. We compare this result with the error surface for a peri-
odogram estimation in Fig. 1. The “V” shape for the error shows 
that the approximations do not depend on the number of data 
points per period, N, or on the harmonic content. The approxi-

mations depend only on the value of ∆N; thus, a constant average 
value in the signal (null frequency) does not have any influence on 
the approximation. In addition, Er has a bound equal to 0.5, which 
guarantees approximations for noiseless data under half of a sam-
pling period. 

 
Figure 5. Error surface for the ∆f and Sf algorithms 

A second experimental evaluation to measure the quality of the 
approximations focuses on the performance of the algorithms un-
der noisy conditions. Traditionally, the Signal-to-Noise-Ratio 
(SNR) measures the noise content of a signal. Thus, for each SNR, 
given in decibels, the analysis required 1×105 Monte Carlo simula-
tions. Each experiment results in a relative error (Er = |T – T*| / 
t1), and the set of all 1×105 results per SNR generates an error 
equal to their mean squared error (RMSE). 

Each Monte Carlo simulation randomly changes several parame-
ters to evaluate the influence of those parameters on the perfor-
mance of an algorithm. In this case, the parameters N, ∆N, and T0 

vary between the bounds 70 ≤ N ≤ 300, 0 ≤ ∆N < 1, and ¾T ≤ T0 

≤ 5/4T, respectively. In addition, for each trial, the Monte Carlo 
method chooses a function from among the six trial functions used 
in this paper. Finally, the true period randomly varies over 10 pos-

sible values: 3/2, ¾ ½, 4/5, 1, !, √2, e1, (1+√5)/2, √3. 

High SNRs (higher than 40 dB in Fig. 6) have an asymptote corre-
sponding to the average of the “V” shape in Fig. 5, which equals 

0.25. In addition, Fig. 6 also shows that the ∆f algorithm performs 
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better than does the Sf algorithm for SNRs from 5 to 40 dB, which 
is a normal noise content for a signal such as the data collected for 
the tracking frequency in the next section. This difference in the 
range of 5-40 dB can be explained by properties of the algorithms. 
Remember that Sf discretizes the contribution of each data point, 

adding one or zero to Sfi, whereas ∆f uses the difference between 

two data points to define ∆fi. Both algorithms, however, exhibit 
the same performance for noiseless or quasi-noiseless data points. 
Figure 6 also shows a poor performance for the periodogram, 
which is mainly caused by the "hard" functions (two of the six trial 
functions) because they do not meet the restrictions of a periodo-
gram. 

Figure 6. RMSE for ∆f and Sf algorithms for a noisy signal 

Applications 
This section shows the application of the proposed algorithms for 
the estimation of the period in two classical problems. The first 
part approximates the period of a Van der Pol oscillator, and the 
second part approximates the power grid frequency. 

Van der Pol oscillator 

A Van der Pol oscillator is a nonlinear dynamical system. The 
mathematical model for this oscillator corresponds to the differ-
ential equation in equation (2). The application in this paper uses 
a computer to find the solution of the system when µ = 1, with 
initial conditions y(0) = 2, y´(0) = 0. 

( ) 0'1''
2 =+−− yyyy µ  (2) 

 

 
Figure 7. Period approximation of a Van der Pol oscillator 

The approximation of the period starts with a coarse estimation, 
for instance, T0 = 6.6 s, and a sampling period, t1, equal to 0.1 s. 

Then, the ∆f and Sf algorithms produce the first approximations 
T* = 6.65. These approximations serve as initial guesses (T0) for 

the second iteration, which differs from the initial iteration by a 
reduced sampling period, as show in Fig. 7. In summary, this itera-
tive process uses an approximation at the end of an iteration as an 
initial guess for the subsequent iteration but using a reduced sam-
pling period for each run. The absolute value of the difference be-
tween approximations at consecutive iterations, as shown in the 
lower part of Fig. 7, demonstrates the convergence of the method. 
The best estimation in Fig. 7 uses a sampling period t1 = 1×10-6 s, 
which results in an approximated period of T* = 6.663250 s. 

Power grid frequency 

Most of the algorithms used for estimating the power grid fre-
quency assume a perfect sinusoidal wave as a base for their esti-
mations. For example, the algorithm proposed in the IEEE stand-
ard 1057TM-2007 for Digitizing Waveform Recorders (IEEE 
Standard, 2011) minimizes the square error between a sinusoidal 
wave and the data. The IEEE standard 1057TM-2007 presents an 
iterative method for approximating the amplitude, phase, contin-
uous component and frequency of a sinusoidal signal. This method 
accurately approximates a frequency for signals with low harmonic 
content, but the estimation degrades as the signal deviates from a 
perfect sine wave. Other algorithms base their results on the Dis-
crete Fourier Transform, Kalman Filters, and maximum likelihood 
estimates, among many other techniques. 

The application of the ∆f algorithm in this section implies a reduc-
tion from a nominal voltage (120 V) to 5 V using a transformer. 
This reduction allows a data acquisition card (NI 6024E) and 
Matlab to record data at a maximum sampling rate of 5 µs, which 
corresponds to 3333 data points per period at the nominal fre-
quency (60 Hz). The analysis of the quality of the estimations uses 
the measurements from a three-phase power quality and energy 
analyzer, the Fluke 435, as a reference. 

Limitations of the analyzer set the interval between approxima-
tions to half a second. Thus, every 500 ms, Matlab records data in 

real time for 50 ms, and subsequently, the ∆f algorithm generates 
a candidate period using a constant T0 = 1/60 s. The maximum 

sampling rate of the data acquisition card (5 μs) limits the precision 
to 0.01 Hz, while the precision of the analyzer exceeds this preci-

sion by ten times. However, remember that the error in the ∆f 
approximation equals half of t1 for noiseless data. Thus, the preci-

sion of ∆f may be increased by simply using a faster acquisition 
card. This experiment was carried out in October 22 of 2013, 
from 12:49 through 13:49 in Bogotá, Colombia. 

Figure 8. Measured and approximated power grid frequency 

Figure 8 shows the estimations given by the ∆f algorithm (black 
line) and by the analyzer (white line). The figure shows that the 

estimation algorithm ∆f properly tracks the power grid frequency. 
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Conclusions 
The value of an estimated period highly influences a number of 
processes, such as signal reconstruction; for instance, errors of 
less than 5% in the period may cause errors exceeding 50% in the 
approximation of some harmonics. One of the most common 
techniques used to estimate periods, a periodogram, as well as 
other algorithms assume a certain sampling rate or may also re-
quire prior knowledge about the signal, such as the function shape, 
rendering them useless in many practical applications. In contrast, 

this paper presents two algorithms, ∆f and Sf, that guarantee a 
bounded relative error equal to half of the sampling rate, addition-
ally assuring complete independence between the harmonic con-
tent for noiseless data and the estimations. The results for noisy 
signals also proved promising. In addition, future studies may seek 
to reduce the amount of data required to obtain an approxima-
tion, for instance, only using a representative subset of the data to 
generate a candidate period instead of using the whole data set. 
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