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larrosa, J. m. C. (2014). Formación de redes de stackelberg no cooperativas. 
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Los juegos de formación de red en organización industrial analizan cómo se crean 
enlaces entre empresas. El modelo supone que los enlaces conllevan información 
que reduce costos de producción y el acceso a dicha información no es recíproco. 
se estudia las consecuencias en los beneficios si una firma puede mover primero 
al establecer los enlaces. Un modelo clásico de liderazgo exógeno de stackelberg 
es desarrollado y las ventajas de primer movedor son observadas.
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Les jeux de création de réseaux en organisation industrielle analysent comment se 
créent des liens entre entreprises. Le modèle implique que les liens sont porteurs 
d’une information qui réduit les coûts de production et l’accès à cette information 
n’est pas réciproque. On étudie les conséquences dans les avantages si un groupe 
peut prendre l’initiative lors de l’établissement du lien. On développe un modèle 
classique de leadership exogène de stackelberg et on observe les avantages de 
prendre les devants.
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Os jogos de formação de rede em organização industrial analisam como são cria-
dos vínculos entre empresas. O modelo supõe que os vínculos contêm informa-
ção que reduz os custos de produção e o acesso à mencionada informação não é 
recíproco. são estudadas as consequências nos benefícios se uma firma puder se 
movimentar primeiro estabelecendo os vínculos. É desenvolvido um modelo clás-
sico de liderança exógena de stackelberg e são observadas as vantagens de ser o 
primeiro a se mexer.

palavras-chave: jogo não cooperativo, estratégias de formação de rede, equilíbrio 
de stackelberg, decisão sequencial.
Jel: c72, d43, L13, d85.
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introduCtion
sequential decisions arise in many fields of the literature relating to industrial 
organization. One key model is the stackelberg oligopoly. In this model, agents 
(firms) act sequentially. One example is when an agent extracts information from 
a set of potential competitors. It could gather information on better practices and, 
therefore, reduce production costs. Once the cost structure of the firm that moves 
first (leader) is determined, competitors (followers) decide how much to produce 
accordingly. Another example is when a provider offers interconnection services 
to a network of customers. The firm must anticipate customers’ service demand 
(nodes in the network) for investing in network capacity. Once installed, custom-
ers determine how much demand there is for what proportion of the service. The 
provider behaves as a classic stackelberg leader, while the group of firms follows, 
taking the constraints imposed by the leader as a given (Hoesel, 2008; Korilis, 
Lazar & Orda, 1997). 

This contribution focuses on network formation in an oligopoly where one 
firm creates links in the first place (leader) and, after observing these connec-
tions, the other firms (followers) decide their structure of connection as well. 
In many circumstances, cooperation seems to facilitate the sharing of non-triv-
ial information among firms. For example, firms can build alliances for the 
development or acquisition of cost-reducing technologies. This situation has 
been modeled by goyal and joshi (2003). Their model studies models of the 
emergence of networks of collaboration among firms that compete in terms 
of quantities (cournot) and prices (bertrand). They model linking benefits as 
a bidirectional externality that helps cooperating firms to reduce production 
costs. This is the usual modeling option in the literature for mutual consent 
agreements where technical information and collaboration are shared. On the 
other hand, connections can also be modeled as a one-way externality shed-
ding light on new features of this network formation game. For instance, bil-
land and bravard (2004) use goyal and joshi’s basic structure but allow only 
for a one-way externality flow. This way of modeling the externality flow is 
meaningful in the case of firms that access other firms’ cost-reducing public 
or private information without requiring reciprocity. A question arises as to 
the efficiency and stability of the structure of connections for exploiting these 
externalities. different optimal topologies emerge when initial investments in 
connection infrastructure are compared. The main point of this work is there-
fore: Which network topology emerges as optimal? In the previous case, opti-
mal connection structures were: 1) for the case of the lowest cost investment 
infrastructure, the complete (in cournot competition) and the star (in ber-
trand competition) networks; and, 2) for the case of a higher cost investment 
infrastructure, the empty network is also the optimal structure of connections 
whether we consider markets of quantity or price competition. Intermediate 
topologies also emerge in the case of the cournot market  (see Table 1).
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TAbLE 1. 
OPTIMAL TOPOLOgIEs

authors type of  
externality Flow

type of market  
Competition

equilibrium topology

goyal 
and joshi 
(2003)

bidirectional

Quantity competition 
(cournot market)

•	 complete network

Price competition
(bertrand market)

•	 Empty network

billand 
and bra-
vard 
(2004)

Monodirectional

Quantity competition
(cournot market)

•	 For higher investment cost: 
Empty network 

•	 For intermediate investment 
cost: Firms make connec-
tions but neither complete 
nor empty networks are 
observed

•	 For lower investment cost: 
complete network

Price competition
(bertrand market)

•	 For higher investment cost: 
Empty network 

•	 For lower investment cost: 
centered sponsored star net-
work

source: The author.

Our contribution adds the influence of sequential decisions in the formation of the 
structure of connections and simultaneous competition under the one-way exter-
nality case. suppose a market with n firms and that, exogenously given, one firm 
can move first by establishing links with other firms in the market and the n – 1 
follower firms observe this and then choose their own connection structure. In the 
following stage, they will compete in terms of quantities or prices. We investigate 
what topology emerges from this setting in equilibrium.

It must be noted that another branch of academic literature criticizes the exogene-
ity in the selection of any firm as leader firm, and considers all-equal firms a priori. 
These contributions model leader firm selection as a previous stage of the game 
where firms can choose whether they were going to move first or second. Exam-
ples of endogenous models of stackelberg competition are Amir and grilo (1999) 
and damme and Hurkens (1999).

The main outcomes of this contribution are as follows. First, in the stackelberg 
equilibrium in a market with a single leader firm and the rest of the firms behaving 
as followers (single-leader-rest-followers market hereafter) with (simultaneous) 
quantity competition, the leader firm can obtain, in the worst case, similar benefits 
as any (average) follower firm depending on the number of links and the cost of 
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investment in network infrastructure. second, the stackelberg equilibrium in a sin-
gle-leader-rest-followers market with (simultaneous) price competition, only the 
leader firm obtains benefits. More specifically, depending on the value of the initial 
fixed investment cost, optimal topologies vary. If this cost is low enough, the opti-
mum topology is the complete network (where the leader firm connects to every 
follower firm and each follower firm connects to each other follower firm and to 
the leader firm as well) in a market with quantity competition. In markets with 
price competition, the optimum topology for this level of investment is the leader-
firm-sponsored star network, i.e. a star topology of connections with the leader firm 
acting as the hub. If this cost is high enough, for both types of competition, the 
optimum topology is the empty network. Notwithstanding, for intermediate costs, 
quantity competition allows for optimum architectures that are neither the empty 
network nor the complete network, but an intermediate structure of connections 
between firms. These results are relatively similar to those found by billand and 
bravard (2004). However, we found that the leader firm usually performs at least 
as well as  any follower firm and has a wider range of possible optimal outcomes. 
sequential decision making allows the first mover to obtain higher profits.

The work is organized as follows. section 2 describes the model and provides def-
initions. section 3 presents the results in the quantity competition market and price 
competition market. section 4 ends the contribution with the conclusions.

FrameWorK and model
We follow billand and bravard’s (2004) modeling structure. In this framework, 
links represent the (positive) externality benefit of information accessing (techni-
cal, technological, legal, marketing, management practices, and the like). This infor-
mation allows firms who initiate and maintain the link to reduce production costs by, 
for instance, adopting more efficient management practices. Thus, we assume that 
information improves the production function by (linearly) reducing costs. When 
the externality flow is asymmetric (technically, by using directed graphs), firms 
that form links have access to linked firm information and link formation cannot 
be refused. This modeling approach assumes situations such as: 

1) Accessing to firms’ public information by

a) surfing competitors’ web sites for acknowledging their products, pricing 
policies, market prestige and the like, for benchmarking management 
policy.

b) Analyzing balance sheets of firms operating in the stock exchange to 
determine their economic and financial performance,

c) consulting the Patent Register for competitors’ new products,

d) Reading business magazines that report competitors’ best practices.

2) Accessing to firms’ private information by
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a) Accessing other firms’ private information through illegal means; for 
example, industrial espionage, among others.

We define concepts to be applied later on. Let N i j n= { }1, , , , ,  , with n ≥ 3  , 
be the set of ex ante identical firms. For any i j N, ∈ , gi j, = 1  means that a firm i 
has formed a direct link with firm j, gi j, = 0  in any other case. Thus, we denote 

g g g g g gi i i i i i i j i n= ( )− +, , , , ,, , , , , , , ,1 1 10    to firm i‘s link vector.

A network g gi j i N j N
= ( ){ }∈ ∈, ,  is a formal description of the directed links that 

exist among firms. Let G be the set of directed networks without self-loops (a firm 
cannot form a link with itself).

We assume that a link gi j, = 1  allows firm i to access to j’s information but not 
vice versa. We focus on one-way resource flows. Let N g j gi i j( ) = ={ }, 1  be the 
set of firms j such that i obtains externalities from j. Let n

i
 (g) be the cardinal of N

i
 

(g). We frequently refer to all other firms distinct from i as i’s opponents and will 
be noted as –i. We note n g n gi ji j− ≠( ) = ( )∑  as the number of links in the network 
g excluding those links generated by firm i. n

–i
 (g) can be interpreted as the num-

ber of externalities that benefit all other firms except firm i.

We define the main network topologies that will be used extensively through out 
our work. A network g is complete if for every pair of firms i and j, there exists a 
link from i to j. A complete network is denoted as gc. A network g is a center spon-
sored star if and only if there is a firm i such that i has formed one link with every 
firm j, and every j  i has formed no link at all (Figure 1). center sponsored star 
network is denoted as gs. A network g is empty if there is no firm that has formed 
any link. This network is denoted as ge.

FIgURE 1.
NETWORK ARcHITEcTUREs

a) Empty network b) complete network c) center sponsored 
star network

source: The author.
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linking and Cost reduction 
We assume that establishing a link requires a fixed investment cost given by  > 0 ,
and that firms are initially symmetric with identical cost functions. We consider 
that establishing a link is a way of reducing production costs, and, more specifi-
cally, that firm’s marginal and average variable cost of a generic firm i N∈  has 
the same functional form:

 c n ni i ig g( )( ) = − ( )g g0  (1)

where g g0 , *∈ +R , such that g g0 1> −( )n . A network g induces an average vari-
able cost vector given by the following function: c g c c g c gn( ) = ( ) ( ) ( ){ }1 2g , , , .

equilibrium networks
A network g G∈  is said to be an  equilibrium if, leaving the set of links formed by 
other firms as constant, any firm that has a connection to any other firm in g G∈  
has an incentive to  keep that link. Moreover, any firm that is not connected to 
another firm in g G∈  has no incentive to form a link to any other firm. Let ′g be 
a network where i is the only firm that has the same links in g.

Let Πi i in ng g( ) ( )( )−,  be the net benefits of firm i N∈ . A network g is an equilib-
rium network, if for every i, we have that:

 
Π Πi i i i i in n n n Gg g g g   g( ) ( )( ) ≥ ′( ) ′( )( ) ∀ ′ ∈− −, , ,

 (2)

staCKelBerg netWorK game
competition in link formation in a stackelberg game is represented by a three-
stage game. In the first stage, only the leader firm moves by choosing who to con-
nect with. In the second stage, follower firms observe the leader firm’s choice and 
make their own decisions in terms of connection. Finally, in the third stage, firms 
simultaneously compete in quantities or prices (Figure 2). As the leader firm moves 
first, it will envisage follower firms’ behavior and maximize benefits accordingly 
by using backward-induction. 

FIgURE 2. 
gAME sETTINg

 Sequential moves Simultaneous moves

Leader chooses  
connection  

structure n
l
 (g)

Followers choose  
connection  

structure n
j
 (g)

Quantity / Price  
competition  

(cournot / bertrand)

 1st. stage 2nd. stage 3rd. stage

source: The author.
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single-leader-rest-followers is a market where two types of firms exist: the leader 
firm i with i j≠  that for convenience we denote as i ∈[ ]1  and there are (n – 1) 
firms labeled with the subindex j such that j i≠  and j n∈[ ]2, ,  that we will 
refer to as the set of follower firms. As mentioned above, two kinds of market com-
petition will be modeled: quantity and price competition. The next section begins 
with quantity competition definitions and modeling. 

sequential Connection structure with simultaneous Quantity 
Competition
Let q

i
 be the quantity produced by firm i and p the market price. We model a mar-

ket with homogeneous products and quantity competition. We assume a linear 
inverse demand function:

 
p

q q
q

ii N ii N

ii N

=
− <

≥
>





∈ ∈

∈

∑ ∑
∑

a a

a
a

0
0

 if 
 if 

 with ,  (3)

We also assume that the nonnegative production condition (NPc hereafter) 
α γ γ−( ) > −( )0

21n  is verified. given these definitions we postulate the follow-
ing Lemma:

lemma 1. Given any network g ∈G  assume (1), (3), and NPC. In a single-
leader-rest-followers market with quantity competition, the leader firm’s equi-

librium quantity is q q n n
nn n n
ni i i j
i j* * , is g g

g g( ) ( )( ) =
−( ) + ( ) − −( ) ( )

+
α γ γ γ0 1

1
. If 

all the above is verified, the representative follower firm’s equilibrium quantity 

q q n n
n n
nj j i j

j i* * , is g g
g g( ) ( )( ) =

−( ) + ( ) − ( )
+

α γ γ γ0 2
1

.

Proof: see Appendix.

both reaction functions are increasing in the number of own links and decreasing 
in the creation of links made by the other firms. The isolation output is always pos-
itive as we assume that α γ> 0 . 

The benefit function in quantity competition at equilibrium is defined by:

 
Πi i j i i j in n q n n ng g g g g( ) ( )( ) = ( ) ( )( )( ) − ( )∗, ,

2


 
(4)

Following this, we postulate: 

proposition 1. Assume (1), (3), and NPC. Also assume a Stackelberg setting with 
single-leader-rest-followers market with quantity competition. Then, in an equi-
librium network g* the leader firm i makes n g ni

∗( ) ∈ −{ }0 1,  connections. More 
precisely:
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1) if δ γ
α γ γ γ

<
−( ) + −( ) + −( )( )( )

+( )
n

n n n

n

2 2 1 7 1

1

0
3 2

2
, then the complete net-

work gc is the only equilibrium network for the leader firm;

2) if δ γ
α γ γ

>
−( ) + −( ) −( )

+( )
n

n n

n

2 2 1

1
0

2
, then the empty network ge is the only 

equilibrium network the leader firm;

3) if δ γ γ
α γ γ γ γ α γ∈

−( )+ −( )+ −( )( )
+( )

−( )+ −( ) −n n
n n n n

n

n n2 2 1 7 1

1

2 2 10
3

2
0, (( )

+( )






γ

n 1 2 , then in an equilibrium 

network g*, the leader firm i connects so that n ni g∗( ) ∈ −{ }2 2, .

Proof: see Appendix.

For the case of a follower firm, which works with the analogous benefit func-
tion Π j i j j i j jn n q n n ng g g g g( ) ( )( ) = ( ) ( )( )( ) − ( )∗, ,

2
 , the following proposition 

applies:

proposition 2. Assume (1), (3), and NPC. Also assume a Stackelberg setting with 
single-leader-rest-followers market with quantity competition. Then, in an equi-
librium network g* each of all follower firms j makes n g nj

∗( ) ∈ −{ }0 1,  connec-
tions. More precisely:

if δ γ
α γ

<
−( )
+( )

4
1

0
2n

, then the complete network gc is the only equilibrium network 

for each follower firm;

if δ γ
α γ γ

>
−( ) + −( )

+( )
4

1

1
0

2

n

n
, then the empty network ge is the only equilibrium net-

work for each follower firm;

if δ γ γα γ α γ γ∈( )−( )
+( )

−( )+ −( )
+( )

4 40
2

0
21

1

1n

n

n
, , then in an equilibrium network g* there are x firms 

j, x n∈ −{ }2 2, ,

, such that n nj g∗( ) = −1  and n – x  firms j such that nj g∗( ) = 0 .

Proof: see Appendix.1

example 1. We reproduce Example 1 from billard and bravard (2004, p. 598) 
so we define a = 200 , g0 50= , g = 0 2. , n = 100 and =1. Figure 3.a repre-
sents benefit surface for a leader and follower firm given these initial values and 
increasing link quantities for both, from 0 to 100. The leader firm shows exponen-
tial benefits when its number of links does not coincide with those of the follow-
ers as shown in Figure 3.a. In this example, the leader firm obtains, at least, the 
same benefits as any follower. If both agree on the number of links to be estab-

1 Notice that condition 1 of Proposition 1 is nonnegative for a narrower range of parameter values.
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lished, both will obtain the same amount of benefits. disagreement in the numbers 
of established links reports higher benefits to leader firm. 

However, an interesting aspect arises. We can present bi-dimensional information 
of Figure 3.a by plotting the functional form contours given the values in Exam-
ple 1. This is done in Figures 3.b and 3.c where Figure 3.a’s contour plot is pre-
sented. The axes represent the number of formed links by leader (horizontal) and 
follower (vertical) firms and the lighter gray scale indicates higher benefits sur-
face, whereas the darker gray scale represents a lower benefits surface. The model 
assumes that connection infrastructure investment cost is exogenous. so, as the 
leader firm moves first, it will choose the number of connections that would maxi-
mize its benefits. given the data in Example 1, this is observed in n

i
 (g) = 99 (Fig-

ure 3.b). In the second stage of the game, follower firms will observe this choice 
and will choose their optimal connections’ strategy. This is observed in Figure 3.c 
in the lighter color choice, that is n

j
 (g) = 0. In this way, these connections’ strate-

gies sustain a leader firm sponsored star network.

FIgURE 3.
bENEFIT sURFAcEs ANd cONTOUR PLOTs (N = 100)

300

200

100

0

-100

100

80

60

40

20

0

100

80

60

40

20

0

80

40

0 0
40 60 80 100

Benefits

Follower links

Leader links

Follower Firm Benefits Surface

Leader Firm Benefits Surface

(a)

(b) (c)

Leader Benefits Follower Benefits

Leader LinksLeader Links
0 20 40 60 80 100 0 20 40 60 80 100

source: The author.
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Another interesting point emerges when we sort threshold cost values for 
optimum connections infrastructure investment for both players. so, let 

δ γ
α γ γ γ

c
L n n n

n
n=

−( )+ −( )+ −( )( )( )
+( )

2 2 1 7 1

1

0
3 2

2
 be the value of d to which the leader firm (L) 

decides to establish links to all other firms (gc) if the current investment cost 

is lower, and let δ γ α γ γ

e
n n

n
nL = −( )+ −( ) −( )

+( )
2 2 1

1
0

2
 be the threshold value for determin-

ing whether the leader firm decides to adopt the empty network ge. Also, let 

δ γ α γ

c
F

n
= −( )

+( )
4 0

21
 and δ γ α γ γ

e
F n

n
= −( )+ −( )

+( )
4 0

2

1

1
 be the analogous d threshold values for the 

follower firm (F). Next  postulate:

Corollary 1. Given the above definitions, the d threshold values in a quantity com-
petition Stackelberg market are sorted, form highest to lowest, in the following 

way:    e
L

e
F

c
F

c
L> > > .

 

Proof: Trivial. 

The interval of sorted d threshold values shows that the leader firm critical values 
are significantly separated. The same range of critical values for follower firm strat-
egy choice is narrower. Figure 4 represents a network with two follower firms and 
one leader firm over the range of d threshold values. From left to right, we begin 
from the lowest d value where the best response for the leader and the follower firms 
coincides, which means that gc (complete network) becomes optimal. However, 
just as the threshold value surpasses c

L , the leader firm has no incentive to play gc 

and stops connecting to all follower firms. However, on the interval   c
L

c
F< < ,

 follower firms play the complete network as best response. Only on the interval 
  c
F

e
F< <  neither the leader nor the follower firms have incentives to play full 

connections, so connections exist but they are neither complete nor empty. Once 
 > e

F , follower firms will find it optimum to stay disconnected, while the leader 
firm still finds it best to remain connected but not making full connections. Finally, 
when  > e

L , the empty network (ge) topology is the best decision for both.

FIgURE 4. 
THREsHOLd VALUEs ANd OPTIMAL TOPOLOgIEs FOR TYPE OF FIRM

source: The author.
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The leader firm requires a much higher investment cost for choosing isolation as the 
optimal response and, for (1), isolation won’t reduce production costs. simply put, 
more links imply higher profits through cost reductions. so, it is more likely that 
the leader firm will play any strategy of connections compared to an average fol-
lower firm. Even in the worst case, when investment cost is highest, the leader 
firm generates as much profit as any follower firm (both play empty network.) The 
model as presented predicts that it is possible that diverse configurations of leader-
firm-sponsored star networks could emerge as the current optimal response, i.e., 
the leader firm will most probably establish links with the followers.

sequential Connection structure with  
simultaneous price Competition
New definitions are required. Let D p p( ) = −a  be the market demand function. 

For price competition, the case demand faced by firms is: 

 

d p
D p
D p k

p p
p p
p p

j
ji i

i

i

i j

i j

i j

( )






( )
( )

<
=
>

∀
∀

0

if 
if 
if 

 wi
,
,
,

, tth equality for  firms
 for some 

k
j i≠

 (5)
In price competition, the total net benefit function for firm i is given by:

 Πi i i i i i i i in n d p p c n ng g g g( ) ( )( ) = ( ) − ( )( )( ) − ( )−, d  (6)

The game setting structure remains similar in the first two sequential decisions 
stages. However, in the third stage, competition focuses on prices (Figure 2). Fol-
lowing, we analyze what the optimum price is and what topology sustains it. 

The leader firm would definitely expect follower firms to play bertrand price in the 
second stage, so the leader firm should anticipate this move and play accordingly. 

We assume that the demand faced by firm i if it fixes price p
i
 is given by (5). Firm 

i's total net benefit function is determined by (6). The network equilibrium in a 
market with price competition competing à la stackelberg is given by the follow-
ing lemma:

Lemma 2. Assume a single-leader-rest-followers Stackelberg market. Assume also 
that (1), (5), (6) and the NPC are verified. In a price competition market, in equi-
librium, there is only one firm establishing connections with all other firms and 
that firm is the leader firm.

Proof: see Appendix. In other words, in the first stage, the leader firm sets a price 
based on other firms’ connections strategy profiles. As cost function decreases the 
number of links, prices quickly tend to the fixed cost. Then, the leader firm antic-
ipates that follower firms will play bertrand equilibrium price so it cuts the price 
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by the minimum feasible amount of price reduction and follower firms will be out 
of the connection market in the second stage.

Once it is proven that by moving first, the leader firm obtains an advantage, all 
that has to be determined are the optimal market topologies. For that to be accom-
plished, we postulate the following proposition:

proposition 3. Assume that equations (1), (5), (6) and the NCP verify. Assume that 
there is price competition in a Stackelberg market. Then the only firm which estab-
lishes links is the leader firm and for that firm it is verified that:

if δ γ α γ> −( )0
, the empty network, ge, is the only equilibrium network;

if δ γ α γ< −( )0 , the leader-firm sponsored star network, gs, is the only equilib-
rium network. 

Proof: see Appendix II.

Paradoxically, there are few examples of stackelberg price competition models 
in the economic literature. A good exception is dastidar (2004) who finds that in a 
sequential price competition in duopoly, the leader firm gets a higher market share 
at a lower price and the follower firm gets a smaller market share but a higher 
price. In equilibrium, both earn equal profits. Neither the leader nor the follower 
firms have any advantage under this setting. In our case, in contrast, the leader firm 
gets it all. As pointed out in goyal and joshi (2003), in price competition markets, 
competition is so tight that the probability of connections among firms becomes 
really small.

ConClusions
This contribution extends previous literature on network formation in oligopolies. This 
case is another example of first mover advantage (gal-Or, 1985) where firms look 
for resource allocation in economic intelligence investment. Early access to com-
petitors’ information might be associated with higher benefits. depending on the 
cost structure of the intelligence sector, moving first (or investing higher) gives 
early movers better chances of obtaining higher benefits. Investing more in eco-
nomic intelligence could imply copying competitors’ best practices that will trans-
late into the adoption of lower cost production techniques.

The leader firm enjoys a wider range of positive benefits when there is quan-
tity competition. Follower firms could also enjoy nonnegative benefits but criti-
cal investment cost values in intelligence infrastructure are narrower. In the case 
of price competition, results are analogous to former contributions. Again, equi-
librium architectures are sensitive to the way information is produced or accessed. 

One path of future research relates to the exogenous parameters and other assump-
tions used in this first approach. We have assumed that role selection is exogenous. 
The leader firm is arbitrarily selected among a priori symmetric firms. No process 
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of endogenous role selection is analyzed and this could enrich the analysis. We 
also assume that information has no decay or depreciation. A dynamical hierarchi-
cal analysis of wiring and rewiring links with changing value of information could 
also be considered a promising field of analysis. 
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appendix  
proof of lemma 1: This is a stackelberg model with quantity competition. In the three-
stage leader-follower game, the leader firm chooses, first, its connection structure that deter-
mines quantities to be produced and, after observing the leader firm’s connection structure, 
the follower firms establish, in a second stage, their own connection structure. In the third 
stage, firms compete in quantities. The game is solved by backward induction.

An (inverse) demand function is assumed p Q q q qj ii N i jj i= − = − ∑ = − + ∑( )∈ ≠a a a  
(where i refers to the leader firm and j, to the rest of the firms) that is twice differentiable, 
continuous and concave and a cost function that is twice differentiable, continuous and con-
vex. In the first stage, the leader firm i chooses a quantity q

i
  0. In the second stage, given 

q
i
, firms j choose their optimal quantity q

j
. by deriving First Order condition (FOc) (and 

second Order condition, sOc) to check whether it is a maximum) for the follower firm 
profit function Π j i i j j i j j j j jq n n q n n p Q q c n q, , ,( ) ( )( ) = ( ) − ( )  is derived the reaction func-
tion of the follower firm to any leader firm strategy. 

Then, the same FOc and sOc is derived for the leader firm but the reaction function of the 
followers is introduced into the optimum. In this way, the reaction function of the leader 
firm is obtained: 

 
q

nn n n
ni
i j* =

−( ) + ( ) − −( ) ( )( )
+

α γ γ0 1
1

g g

 (A.1)
And then the follower reaction function is updated:

  

q
n n

nj
j i* =

−( ) + ( ) − ( )( )
+( )

α γ γ0 2
1

g g

 (A.2)
Outcomes (A.1) and (A.2) represents a subgame perfect equilibrium.

proof of proposition 1: demonstration is in three parts. First, we show that in an equilib-
rium network g*, for the leader firm i, we have that n ni g* ,( ) ∈ −{ }0 1 . 

1) Let g* be an equilibrium network where at least the leader firm i is such that 
n ni g* ,( ) ∈ −{ }2 2 . suppose that n ki g*( ) = . We show that if i has no incentive to 
sever a link, then it has an incentive in forming a link (and inversely). We know that in 
an equilibrium network, a firm never has an incentive for severing a link. so we have 

that: Π Πi j i jk n k n, , ,g g∗ ∗( )( ) − − ( )( ) >1 0   that is n k n n n

n

jγ δ
α γ γ γ2 2 1 2 1

1

0
2 0−( )+ −( ) − −( ) ( )

+( )( ) − >g ,  

and then δ γ
α γ γ γ< −( )+ −( ) − −( ) ( )

+( )
n k n n n

n

j2 2 1 2 1

1

0
2

g  = A. In the same manner, in an equilib-

rium network, a firm never has incentive to form new links. That is to say that, 

Π Πi j i jk n k n, , ,g g∗ ∗( )( ) − + ( )( ) >1 0   that is − + +( )( )+ −( ) ( )+( )
+( )

+ >
n k n n n n

n

jg 2 1 2 2 1

1

0

2 0
α γ γ γ γ

δ
g   

and then δ γ
α γ γ γ< −( )+ +( )− −( ) ( )

+( )
n n k n n

n

j2 2 1 2 1

1

0
2

g
 = B. This way, we must have that A B− > 0 .

That never verifies given A B n

n
− = − <( )

+( )
2

1

2

2 0g
. Thus, if a leader firm i has formed k 

links such that k n∈{ }2, ,   then it is never in equilibrium. In equilibrium, a leader 
firm forms none or n – 1 links with its followers. 
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2) This is a two-part demonstration. In the first part, we are going to show that in equi-

librium and once a firm has formed a complete network, it has no incentives in sever-

ing links. In 2.a we will show that if δ γ
α γ γ< −( )+ −( ) −( )

+( )
n n n

n

2 2 1

1
0

2   then gc is an equilibrium 

network and in 2.b we are going to show that there’s no other network that could be 
an equilibrium network.

a) A leader firm has no incentives in severing link under complete network gc configu-
ration. Then we have to prove that: Π Πi in n n k n− −( )( ) − − − −( )( ) >1 1 1 1 02 2, , .

In fact, we arrive at 
− − + + + −( )( )−( )





+( )
− >

n n k n

n

γ α γ γ

δ
2 2 2 2 2

1

0
2

2 0   which verifies that 

δ γ
α γ γ γ γ γ

<
−( )+ −( )+ −( )−( )

+( )
n

n n n n kn

n

2 2 1 8 1

1

0
3

2
. If this inequality verifies for k n= −1 , then 

it verifies for all k. so we have that δ γ
α γ γ γ

<
−( )+ −( )+ −( )( )( )

+( )
n

n n n

n

2 2 1 7 1

1

0
3 2

2 . This result 
will be necessary next.

b) Following, we show that a network g  gc is not an equilibrium network. In (1), 
we proved that in equilibrium a leader firm forms links with all or none of the 
follower firms. To confirm this outcome, we are going to prove whether there is 
a chance that a leader firm could establish connections with every firm except 
one or maybe with a cluster of firms and this would be an equilibrium out-
come. We establish that a contradiction by supposing that there exists an equi-
librium network g* such that the leader firm establish no contacts. As it is an 

equilibrium network it should be check that: Π Πi j i jn k n0 0, , ,* *g g( )( ) − ( )( ) >  

or what is the same δ γ
α γ γ

>
−( )+ − ( )( )+ ( )( )

+( )
n

n k n n

n

j j2 2 2

1

0

2

g g
. Then, there is a configura-

tion n
j
 (g*) such that a leader firm i has no incentives for forming any links with 

the follower firms whatever their connection structure. so, we could have that: 

δ γ
α γ γ γ

>
−( )+ −( )+ −( )( )( )

+( )
n

n n n

n

2 2 1 7 1

1

0
3 2

2
, that is a contradiction with (2.a).

3) Finally, we show that network ge is an equilibrium network for the leader firm if 

δ γ
α γ γ> −( )+ −( )

+( )
n n n

n

2 1

1
0

2
. We prove first that if ge is an equilibrium then, in the second 

part, there’s no other equilibrium network.

a) First, we establish that any firm has incentive to form links in ge. Then we have 
that: Π Πi i k0 0 0 0, ,( ) − ( ) > , from which we obtain that δ γ

α γ γ> −( )+

+( )
n k n

n

2

1
0

2 .

 If this result verifies for k = n – 1 then it is verified for all k. We obtain that 

δ γ
α γ γ> −( )+ −( )

+( )
n n n

n

2 1

1
0

2 . 

b) Now we demonstrate that there’s no other equilibrium than the empty net-
work ge when it emerges as an optimum topology. We have proved in 
the first part that a network g where there is a leader firm i such that 
n ni ( ) ,g ∉ −{ }0 1  cannot be an equilibrium network. Then, we must prove that 
a network g, where there is at least one firm i such that n ni ( )g = −1  is not an 
equilibrium network. For establishing a contradiction, let suppose that an equi-
librium network, g*, where there is at least one firm i such that n ni ( )g∗ = −1 .
We have that Π Πi j i jn n n− ( )( ) − ( )( ) >∗ ∗1 0 0, ,g g , which verifies that 
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δ γ
α γ γ γ

<
−( )+ −( ) − ( )( )

−( )
n n n n

n

j2 1

1

0

2

g , so in this particular case should also verify: 

δ γ
α γ γ< −( )+ −( )

+( )
n n n

n

2 1

1
0

2
. contradiction.

proof of proposition 2: This proof is analogous to what is proven by Proposition 1. Again, 
we divide it into three parts. First, we show that in an equilibrium network g*, for the fol-
lower firm j, we have that n nj g* ,( ) ∈ −{ }0 1 . 

1) Let g* be an equilibrium network where there is at least one firm j such that 
n nj g* ,( ) ∈ −{ }2 2 . We suppose that n kj g*( ) = . We will show that if j has no incen-
tive to sever a link, then it is interested in forming a link (and conversely). We know 
that in an equilibrium network a firm never has incentives to sever a link. Then we 
have that: Π Πj i j in k n kg g∗ ∗( )( ) − ( ) −( ) >, , 1 0  , and this is always accomplished if 

δ γ
α γ γ< −( )+ − − ( )( )

+( )
4 0

2

2 1

1

k n

n

i g = A. Again, in an equilibrium network, a follower firm never 
has incentives to form new links. That is to say, Π Πj i j in k n kg g∗ ∗( )( ) − ( ) +( ) >, , 1 0 ,

which is right if the following inequality is verified: δ γ
α γ γ< −( )+ + − ( )( )

+( )
4 0

2

2 1

1

k n

n

i g
= B.

This way, we must have that A B− > 0 . but this is not verified given that 
A B

n
− = − <

+( )
8

1

2

2 0g . Then, a firm j that has formed k links such that k n∈{ }2, ,   

is never in equilibrium. In equilibrium, a follower firm initiates zero or n – 1 links 
with all other market firms. 

2) We are going to show again, in two parts, that under certain cases the complete net-
work is an equilibrium network and if this topology is an equilibrium network then 
there’s no other equilibrium architecture.

a) A follower firm has no incentives in severing link in a complete network config-
uration, gc. We must prove that: Π Πj jn n n n k− −( ) − − − −( ) >1 1 1 1 0, , . That 

is verified always that δ γ
α γ γ< −( )+ + −( )

+( )
4 0

2

1

1

k n

n
. If this inequality is verified for a fol-

lower firm, then k = n – 1 so we obtain δ γ
α γ< −( )

+( )
4 0

21n
. This result will be neces-

sary later.

b) Now, we show that a network g  gc cannot be an equilibrium network. In (1) 
it has been proved that a follower firm in equilibrium establishes links with all 
the follower firms or it does not establish any links at all. To confirm this result 
we are going to prove that if there’s a chance that a follower firm could initi-
ate a link with all but one or a group of the rest of follower firms or the leader 
firm less than the total number of firms. We establish a contradiction by sup-
posing that there’s an equilibrium network g* such that a follower firm does not 
establish connections. given that it is an equilibrium network, it should be ver-

ified that: Π Πj i j in n kg g* *, ,( )( ) − ( )( ) >0 0, that is, δ γ
α γ γ> −( )+ − ( )( )

+( )
4 0

21

k n

n

i g
. Then, 

there’s a configuration n
j
 (g*) such that a follower firm i has no incentives to form 

any links with any other firm no matters the number of the links. so, we could 
have that (for k n gi= ( ) ): δ γ

α γ> −( )
+( )

4 0
21n

, which is a contradiction to (2.a).
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3) Finally, we show that the empty network ge is an equilibrium network for a follower 
firm if δ γ

α γ γ> −( )+ −( )
+( )

4 0
2

1

1

n

n
. First, we prove that ge is an equilibrium network and if that 

happens, then there’s no other configuration that could be an equilibrium.

a) First, we establish that any firm has an incentive to form links in ge. We have 

that: Π Πj j k0 0 0 0, ,( ) − ( ) > , where we obtain that δ γ
α γ γ> −( )+

+( )
4 0

21

k

n
. If this result 

is verified for k = n – 1 then it is verified for all k. We then get δ γ
α γ γ> −( )+ −( )

+( )
4 0

2

1

1

n

n
 

The demonstration follows.

b) Now we have to proof that there’s no other equilibrium different from the 
empty network ge when it is the optimal topology. We have proved in the first 
part that in a network g where there exists a firm j such that n nj ( ) ,g ∉ −{ }0 1   
cannot be an equilibrium network. Then, we must prove that in a network g, 
where there exists at least one firm j such that n nj ( )g = −1  is not an equi-
librium network. For establishing a contradiction, assume an equilibrium net-
work, g*, where there is at least one firm j such that n nj ( )g∗ = −1 . We have that 

Π Πj i j in n ng g∗ ∗( ) −( ) − ( )( ) >, ,1 0 0 , which verifies that δ γ
α γ γ< −( )+ −( )− ( )( )

−( )
4 0

2

1

1

n n

n

i g  .

 Particularly, it is verified also for: δ γ
α γ γ< −( )+ −( )

+( )
4 0

2

1

1

n

n
. contradiction.

proof of lemma 2. 

A. Backward induction first stage 

We begin by presenting the following lemma: 

lemma aii.1. (billand & bravard, 2004, p. 601) In equilibrium, there is at least one fol-
lower firm that forms links

proof del lemma aii.1: We establish a contradiction by assuming that there exists an 
equilibrium network where two firms j

1
 and j

2
 have formed links such that j j n1 2 2, , ,∈{ } .

Let us suppose that n nj j2 1
g g( ) ≥ ( )  verifies. given now that c n c nj j j j2 2 1 1

g g( )( ) ≤ ( )( )  , j
1
’s 

brute benefit is null given that in equilibrium p nj j1 10= −g g . because of that, we obtain 
that the main component of the net benefit is nj1 :

 Π j j j j jj N jn n g
1 1 2 1 21 2

g g( ) ( )( ) = − ∑ ∈ { }, ,\

given that firm j
2
 has a variable cost c nj j2 2 0g( )( ) < g , firm j

1
 should not produce anything 

if it has not formed any link. Therefore, we have 

 Π j jn1 2
0 0, g( )( ) =

It follows that

 
Π Πj j j j j j jj N jn n n g

1 2 1 1 2 1 21 2
0 0, , ,\g g g( )( ) − ( ) ( )( ) = ∑ >∈ { }

given that we have assumed that g j jj N j 1 21 2
1,\∈ { }∑ ≥ . This is a contradiction. specifically for 

our own setting, in equilibrium we have that in the second stage of the stackelberg game 
only one firm will establish links, while the rest of the firms will not establish any links at all.

Let x be the lowest feasible monetary denomination, which we suppose that converges to 
zero. Then, we postulate the price this firm would set in the market.
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lemma aii.2. (billand & bravard, 2004, p. 601) Suppose there is one and only one firm 
in the market (say firm l) that forms links. Then the Bertrand equilibrium price is given by 
pl = −γ ξ0 .

For our case, we suppose that l is such that l n∈{ }2, , , i.e., it is part of the set of follower 
firms that the leader firm must anticipate. given that follower firm l will face a demand 
function such that:

 

d p

D p p p
p p
p p

j N
j Nl l

l
D p
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l j

l j

l j
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=
>

∀ ∈
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0

if 
if 
if 

 wit
,
,
,

, hh equality for  firms
 for some 

k
j l≠










which means that if the follower firm sets a lower price than any other firm j, it will supply 
all the demand alone. If it sets an equal price to any other firm j, they will equally share the 
demand and if it sets a higher price than j’s then it will not supply anything. Thus, if firm l is 
the only one that has formed a link, then it has the lowest marginal cost and it sets the price 
in pl = −γ ξ0  so as to displace the rest of the firms in the market. so, there will be n − 3   
firms that will not establish any link while one of them, conventionally denoted as firm l 
will form links with all the others follower firms and the leader firm by setting a price a bit 
lower thank the fixed cost g0 .

How does the leader firm react? given that l has set a price pl = −γ ξ0 , i will play again 
and set an even lower price given that there would only be one firm establishing links. 
Using the same line of reasoning as Lemma AII.1 and AII.2, there would only be one firm 
forming links and that firm will set the lowest price. Facing the same demand function:
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γ

,
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 ≠

with equality for  y ,
for some 

i l
j l

the leader firm has to decide whether it will match firm l’s price or whether it will cut the 
price. If it matches p

l
 given the model’s demand rationing rule, they will share demand 

with l. If it cuts the price, they will earn nonnegative profits. The same would happen if the 
leader firm cut the price by another lowest feasible monetary unit, x, being the leader firm’s 
new price set in pi = −γ ξ0 2 . Let see what decision brings more benefits to the leader firm:

 
d p p c n p c ni i i i

d p
l i i

i( ) − ( )( )( ) − − ( )( )( ) ≥( )g g2 0
  

 

1
2

3 3 7 3 00n ni ig g( ) −( ) + +( ) − ( ) +( )( ) ≥γ α ξ ξ α ξ γ ξ γ

given that x  0, then we have that 1
2 0 0γ α γni g( ) −( ) ≥ , which verifies for all feasible val-

ues of the game. so, the leader firm will set pi = −γ ξ0 2 . Under some specific functional 
forms of D pi( ) , price elasticity could play a different role in this interpretation.
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B. Backward Induction Second Stage

In the second stage, follower firms will watch the price set by the leader firm and they will set their 
own optimal price. but they will find that d pj j( ) = 0  given that γ ξ γ ξ0 0 2− = > = −p pj i   

then for avoiding losses associated with Π j i j jn n ng g g( ) ( )( ) = − ( ),   they will choose 
nj g( ) = 0 . 

proof of proposition 3. The leader firm maximization problem will be determined by

 

Πi i j

d p p

in n n
i i

g g g( ) ( )( ) = − +( ) − − + (
( )

, α γ ξ γ ξ γ γ0 0 02 2� ��� ��� ��� �� ))














− ( )
( )( )c n

i

i i

n
g

g� �� �� δ

which is summarized in

 
δ γ α γ ξ

ξ α γ ξ
= − +( ) −

− +( )
( )0

02
2 2

ni g

and given that  → 0 , we have that

 
δ γ α γ= −( )0

There are two distinguished cases:

If δ γ α γ> −( )0  the benefit function Πi i jn ng g* *( ) ( )( ),  would be decreasing in ni g*( ) ,
which implies that the leader firm will not have incentives to form links. The leader firm 
will remain isolated and optimal market topology will be the empty network.

If δ γ α γ< −( )0  then the benefit function Πi i jn ng g* *( ) ( )( ),   increases in ni g*( )
 
which 

implies that the leader firm would have higher incentives to form links. The leader firm will 

connect to all of the follower firms and optimal market topology will be a leader-firm-spon-
sored star network.


