Molecular characterization of Spanish Prunus avium plus trees

J. Fernandez-Cruz, J. Fernandez-Lopez*, M. E. Miranda-Fontaiña, R. Diaz and G. Toval
Centro de Investigación Forestal de Lourizán. Carretera de Marín, km 4. 36080 Pontevedra, Spain

Abstract

Aim of the study: The Breeding Program of wild cherry (Prunus avium) developed by Lourizán Forest Research Center (NW Spain), aims for the creation of the Main Breeding Population, that is formed by a large number of plus trees and for obtaining an Elite Population generated from controlled crosses of a number of plus trees selected by, at least, one trait of economic importance. The aim of this study was to genotype 131 accessions of Prunus avium plus trees, included in the breeding program.

Area of study: Prunus avium plus trees are located in the North, Northwest and Central Spain. Material and methods: Prunus avium plus trees were genotyped with nine microsatellites. Several genetic parameters were calculated. Genetic data were analyzed with STRUCTURE and the genetic distance between plus trees were calculated.

Main results: A total of 122 multilocus genotypes were detected. Several accessions with the same genotype were identified, which could be due to clonality or to labelling errors. The nine microsatellites are useful for identifying individuals because the combined probability of identity was low ($\mathrm{PI}=5.19 \times 10^{-9}$). Bayesian methods detected two genetic clusters in the sampled plus trees.

Research highlights: The unique genotypes identified in this work are suitable for being included in the elite breeding population for economic traits.

Key words: Prunus avium; breeding program; microsatellite; genetic distance.

Introduction

Wild cherry (Prunus avium) is a noble hardwood species of economic importance which is being used in clonal plantations in order to produce high quality timber. In 1998, the Lourizán Forest Reseach Center, located in Galicia, in the Northwest of Spain, started a phenotypic selection of P. avium plus trees. These trees were propagated by grafting to stablish clonal seed orchards. In addition, a clonal selection of other 30 individuals was developed to study their rooting ability and to select clones to be used in commercial plantations. Presently, the Innovation and Forest Tree Breeding Plan of the Galician region, aims to obtain long-term genetic gains in several traits of interest for wood production. For P. avium, the plan defines two different populations. On one hand, the Main Breeding Population contains plus trees from the North and Northwest coast and Central Spain, phenotypically selected on the basis of their value for timber produc-

[^0]tion. On the other hand, the Elite Population has the best individuals selected by at least one of the following breeding traits: growth, resistance to Blumeriella jaapii, straightness and propagation fitness. These individuals are being crossed in a half-diallel mating design to obtain high multi-trait genetic gain.

The main objectives of this study were to genotype, with nine nuclear loci, 131 accessions of P. avium plus trees that are being used in the Main Breeding Population and in the Elite Population and to detect a clonal and genetic structure. Several analyses were performed to know the necessary number of loci to distinguish all the multilocus genotypes and its discrimination power for individual fingerprinting.

Material and methods

Plant material and laboratory methods

The samples were collected from the seed orchards of Areas and Sergude, the clonal trial of Bos, the

Figure 1. Geographic location of sampled wild cherry (Prunus avium) in Spain.
germplasm collection of Mantequera and from several micropropagules located in in vitro laboratory. Up to 173 samples were collected from 131 accessions of P. avium that were classified as plus trees in different field prospections in the North of Spain (Figure 1). Individuals were classified into five populations: Navarra-Basque country, AsturiasLeón, Eastern Galicia-Asturias, Atlantic Galicia and Central Spain. A total of 42 replicas were sampled from 38 accessions in order to verify the clonal fidelity.

DNA was isolated from frozen leaves or buds using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and quantified using a BioPhotometer Plus (Eppendorf, Hamburg, Germany). Nine nuclear microsatellite loci were used to genotype Prunus avium plus trees: EMPaS01, EMPaS02, EMPaS06, EMPaS10, EMPaS12, EMPaS14 (Vaughan and Russell, 2004) and EMPA004, EMPA005 and EMPA015 (Clarke and Tobutt, 2003). The amplified products were analyzed in an automatic sequencer, CEQ 8800 Genetic Analysis System (Beckman Coulter, Fullerton, California, USA).

Statistical analysis

The presence of null alleles was determined using Micro-Checker ver. 2.2.3 (Van Oosterhout et al., 2004). Loci with estimated null allele frequencies higher than 0.19 were excluded from further analysis because from this threshold, the underestimation of the expected heterozygosity due to null alleles is significant (Chapuis et al., 2008).Several standard measures were calculated with GENCLONE v2.0 (Arnaud-Haond and Belkhir, 2007) in order to detect the presence of potential clones in the defined populations: the number of samples (N), the number of multilocus genotypes (MLGs), the number of repeated MLGs ($\mathrm{MLG}_{\mathrm{r}}$), the number of unique MLGs within each population ($\mathrm{MLG}_{\mathrm{l}}$) (Ellstrand and Roose, 1987), the number of multilocus lineages (MLLs), and the modified index of genotypic richness (R) (Dorken and Eckert, 2001). The probability that two individuals with the same MLG were originated from different sexual reproductive events, Psex, was also calculated.

Once the number of MLGs was established, the probability of identity (PI) and the combined
probability of identity was calculated with SPAGeDi v1.4 (Hardy and Vekemans, 2002) in order to know whether the set of loci are useful to estimate the real number of multilocus genotypes (MLGs). The probability of identity (PI) represents the average probability of a match for any genotype.

The number of alleles $\left(n_{a}\right)$, the effective number of alleles (n_{e}), and the number of privative alleles were calculated with SPAGeDi v1.4 (Hardy and Vekemans, 2002).

STRUCTURE version 2.3.4 software (Pritchard et al., 2000; Hubisz et al., 2009) was used to assign the defined MLGs to different genetic clusters. Two independent analyses were performed with and without LOCPRIOR model. In both cases, a model without admixture and with correlated frequencies was assumed. A burn-in period of 50,000 iterations followed by 100,000 Markov Chain Monte Carlo (MCMC) iterations was used for K values from 1 to 10. Ten independent runs were tested for each K value. The $\mathrm{L}(\mathrm{K})$ non parametric test (Pritchard et al., 2000) and ΔK approach (Evanno et al., 2005) were used to identify the most likely number of clusters (K).

The number of shared alleles was used to calculate the genetic distance between clones. The NEIGHBOR package of PHYLIP software (Felsenstein, 1989) was used to construct a dendrogram following the UPGMA method and it was displayed with FIGTREE 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/).

Flow cytometry

Prunus avium leaves of trees suspected to be triploid were sent to Centro Nacional de Biotecnología (CNB) in Madrid, Spain. A flow cytometry analysis was performed using Citomics FC500 (Beckman Coulter, Fullerton, California, USA). The intensity of the fluorescence of the cell nuclei of the putative triploid was compared with LU23 clone that was used as diploid control.

Results and discussion

The analysis with MICRO-CHECKER detected deviations from Hardy-Weinberg equilibrium for EMPA015 in Navarra-Basque country population due to the presence of null alleles. However, EMPA015 was maintained in further analysis because the estimated null allele frequency was 0.08 .

The amplification with nine loci showed one or two alleles in all samples except for the accessions SA4 and SA12 (Supporting information 1).

Although the samples SA4 and SA12, were coded as different accessions, they belong to the same plus tree because they display the same genotype, the same three alleles in loci EMPaS01, EMPaS10 and EMPaS12 and the same doubled alleles in the remaining six loci. Flow cytometry revealed that the fluorescence intensity of SA12 was nearly 1.5 times higher than the control LU23 and confirms that SA12 and, therefore SA4, are triploids. Natural triploids of P. avium are not very common in nature. Nevertheless, one individual was detected in Germany (von Schelhorn, 1947), another one in Belgium (De Cuyper et al., 2005) and eleven in France (Serres-Giardi et al., 2010). In general, they are phenotypically superior trees. Triploids have significantly better height and circumference growth than diploids and therefore, they can be suitable for wood production (Serres-Giardi et al., 2010).

A total of 122 MLGs were detected out of 131 accessions (Table 1). A clonal lineage (MLL) was also found; PO34 located in Areas was different from the micropropagated PO34 in one allele in locus EMPA015 (Supporting information 1) probably due to somatic mutation or scoring errors. There were 5 MLGs with at least two different accessions in the same population and one MLG, LU40-PO36, with the accessions generated from different populations. The psex values of the accessions LU40-PO36, LOURIZÁN 1-LU47, NA7-NA12, NA8-NA9-NA10-NA11, NA22-NA26 and PO33-PO34 suggest that they were produced by asexual reproduction because the probability of the genotype to be present once or more times as the result of different reproductive events are quite low (Supporting information 1). In addition, a labelling error can explain the MLG identity of LU40 and PO36, coming from different populations.

The nine loci used in this study are useful for fingerprinting because the probability of another random and unrelated individual with the same genotype is very low (Combined probability of identity $\left.=5.19 \times 10^{-9}\right)($ Supporting information 2$)$.

The genetic analysis of the 131 accesions of Prunus avium revealed that all microsatellite loci were polymorphic. A total of 84 alleles were detected. The number of alleles ranged from 17 in EMPA015 to 4 in EMPA014 (Supporting information 2). Nevertheless, the effective number of alleles decreased significantly

Supporting information 1. Geographic coordinates and allelic profiles of 131 accesions of Prunus avium plus trees genotyped with nine loci. Note that SA4 and SA12 are different accessions that belong to the same plus tree and PO34/IV is different from PO34 in locus EMPA015. Several accessions share the same geographic coordinates because it represents the parish or the council where the accessions are located. Accessions in bold belong to the same MLG and show the Psex value

Clone	Latitude	Longitude	MLG	Psex	EMPaSO1	EMPa502	EMPA004	EMPA005	EMPaSO6	EMPaS10	EMPa512	EMPA014	EMPA015
AS1	$43^{\circ} 18330 \mathrm{~W}$	$5^{59} 9551 \mathrm{~N}$	1		232	145/149	193	260	205/207	163/171	140/146	202216	242/258
ASO103/1	$43^{3} 22^{15} 0^{\prime \prime} \mathrm{W}$	$5{ }^{\circ} 32443 \mathrm{~N}$	2		226232	139/149	185/193	260	$205 / 223$	157/159	125	202	229/242
AS2	$43^{3} 188^{\prime \prime} 0^{\prime \prime} \mathrm{W}$	$5^{\circ} 10^{\circ} 0^{\prime \prime} \mathrm{N}$	3		232	147/149	193	260	2051221	163/171	140/146	202204	215/229
AS3	$43^{\circ} 1835^{\prime \prime} \mathrm{W}$	$5^{\circ} 1120^{\prime \prime} \mathrm{N}$	4		226232	145/149	185/193	260	$205 / 223$	157	140/146	216	215/242
AS4	$43^{3} 18335^{\prime \prime} \mathrm{W}$	$5^{\circ} 1120^{\prime \prime} \mathrm{N}$	5		232242	147/149	185/193	2481260	205/215	171	$138 / 140$	202	229
ASO402/3	$43^{\circ 24} 1^{\prime \prime W}$	$503752^{\prime \prime} \mathrm{N}$	6		232236	147	191	260	$205 / 223$	171	125/140	216	225/242
AS5	$43^{\circ} 1130^{\prime \prime} \mathrm{W}$	$5^{\circ 9} 400^{\prime \prime}$	7		232236	147/149	185	244260	$205 / 207$	157	140/148	202216	2291260
AS6	$43^{\circ} 1130^{\prime \prime} \mathrm{W}$	$5^{\circ 9} 400^{\prime \prime} \mathrm{N}$	8		232	149	185	244250	205/221	157	$138 / 146$	202	2291260
AS06/4	$43^{3} 20^{\prime} 16^{\prime \prime} \mathrm{W}$	503501 N	9		232	145/149	185	2481260	$205 / 209$	157/171	$138 / 146$	202204	225
AS0609/1	$43^{3} 20^{\prime} 16^{\prime \prime} \mathrm{W}$	503501 N	10		2261232	149	185/93	248	$207 / 223$	157/171	125/127	202216	225/242
AS7	$43^{\circ} 130^{\prime \prime} \mathrm{W}$	$6^{\circ} 35^{\circ} 0^{\prime \prime} \mathrm{N}$	11		2322336	149	191	2501260	205/207	157/187	125	202	227/242
AS07064	$43^{3} 20^{\prime} 16^{\prime \prime} \mathrm{W}$	$5{ }^{\circ} 3501 \mathrm{~N}$	12		232236	147/149	185	2481260	205	157/163	$146 / 148$	202	242/256
AS8	$43^{\circ 9} 55^{\prime \prime} \mathrm{W}$	$6^{\circ} 48155^{\prime \prime} \mathrm{N}$	13		232236	149	185/191	248260	205	157/173	125/148	202216	242
AS9	$43^{3} 277^{\prime \prime} 0^{\prime \prime} \mathrm{W}$	$6{ }^{\circ} 23330 \mathrm{~N}$	14		232	149	193/195	260	2051221	171	125/140	216	2421256
ASOOO3/1	$43^{\circ} 1125^{\prime \prime} \mathrm{W}$	$5^{\circ 9} 447 \mathrm{~N}$	15		232	147/149	185	2461260	205/207	157/163	140/146	204216	229242
AS1015/1	$43^{\circ} 1125^{\prime \prime} \mathrm{W}$	59047 N	16		226232	149	185/93	2501260	205	157/163	125/146	202	223/242
AS1017/1	$43^{\circ} 1125^{\prime \prime} \mathrm{W}$	$5^{\circ 9} 447 \mathrm{~N}$	17		232	145/149	191/193	248250	$205 / 223$	157/163	125/146	216	225/250
AS11	$43^{\circ} 180^{\prime \prime} \mathrm{W}$	$5^{\circ} 24^{1010} \mathrm{~N}$	18		232	145/149	191/193	2601264	2051221	163	138/146	202204	225/256
AS16	$43^{\circ} 111301 \mathrm{~W}$	$5^{\circ 9} 4010 \mathrm{~N}$	19		232	149	185/191	2461250	2051221	163	140/146	202	215/256
AS19	$43^{\circ} 120^{\prime \prime} \mathrm{W}$	$5^{9} 22^{10} 0^{\prime N}$	20		232	147/149	185/193	260	221223	171	138	202204	225/256
AV7	$40^{\circ} 21144^{\prime \prime} \mathrm{W}$	$5^{\circ} 37119^{\prime \prime} \mathrm{N}$	21		226	143/147	185/197	244260	205	157/187	140/146	202216	225
C39	$42^{2050} 0^{17} 7^{\prime \prime W}$	$8^{\circ} 13^{11} 18^{\prime \prime} \mathrm{N}$	22		232242	135/139	193	260	$205 / 223$	157/171	140	202216	242244
LEA	$439750^{\prime \prime} \mathrm{W}$	$5^{\circ} 2^{1} 14^{\prime \prime} \mathrm{N}$	23		226	145/147	185/191	2501260	2077209	157	138148	202	225/227
L0URIZÁN1	$42^{\circ 5} 1^{1} 45^{\prime \prime} \mathrm{W}$	7019'7"N	24		2261236	135/145	191/193	260	205/215	171	148	202/216	240
LU47	$42^{2554}{ }^{\prime \prime} \mathrm{WW}$	$7016^{\prime} 0^{\prime \prime}$	24	2.05×10^{-9}	2261236	135/145	191/193	260	205/215	171	148	202/216	240
LOURIZÁN2	$42^{2} 288^{\prime \prime} 2^{\prime \prime} \mathrm{W}$	$7{ }^{72} 0^{\prime \prime} 9^{\prime \prime}$	25		232238	149	193	260	$205 / 223$	163/171	140/146	202216	225/256
LU0104/1	422999"W	$7^{\circ} 14588^{\prime \prime} \mathrm{N}$	26		232	149	183/185	2481260	205/207	163/171	148	202216	225/242
Lu0108/2	422999"W	$7{ }^{014588 " N}$	27		232	145/149	183/193	260	205	163/171	148	202216	240242
Lu0504/2	$42^{2} 30337{ }^{\prime \prime} \mathrm{W}$	701751"N	28		2261236	149/151	185/193	260	223	157	138	202216	225/256
LU06/5	$42^{\circ 2777 \% W}$	$7^{\circ} 1646^{\prime \prime} \mathrm{N}$	29		232236	139/149	185	244260	205/209	171	$146 / 148$	202216	213/225
LU24	4203022"W	$7^{\circ} 1127^{\prime \prime} \mathrm{N}$	30		236	147/149	183/191	2501260	209222	157/163	138/146	202216	2401252
LU25	$42^{2} 27335^{\prime \prime} \mathrm{W}$	70759"N	31		232236	147/149	191/193	260	223	163	125/38	202	227/242
LU27	$42^{2} 288^{\prime \prime} 2^{\prime \prime} \mathrm{W}$	$7{ }^{9} 20^{\prime 9} 9^{\prime N}$	32		2322336	149	193	248260	223	163/171	$138 / 146$	202	225/256
LU31	$42^{2} 45^{\prime \prime} 12^{\prime \prime} \mathrm{W}$	$6^{\circ} 96530^{\prime \prime} \mathrm{N}$	33		226232	135/149	183185	260	$205 / 223$	171	146	202204	252
Lu32	$42^{\circ} 45^{\prime \prime} 12^{\prime \prime} \mathrm{W}$	695630 N	34		2322336	135/149	183/193	232260	2051221	171	109/146	216	225/242
LU35	42039339"W	$7^{\circ} 111^{\prime 2} \mathrm{~N}$	35		2261236	149	185/193	260	$221 / 223$	171	125/148	202216	227/242
LU37	$43^{\circ} 5336^{\prime \prime} \mathrm{W}$	$70117{ }^{17 N}$	36		226232	147	191/193	260	205	163/171	140/148	202	225/252
LU38	$43^{\circ} 13^{15} 8^{\prime \prime} \mathrm{W}$	79577"N	37		236	149	183/191	260	$207 / 223$	157/159	140/146	202	225/256
LU40	4293823"W	70911 N	38		2261232	135/147	183/193	2481260	205	157/171	109/148	202	242/256
P036	$42^{\circ} 400^{\prime \prime}{ }^{\prime \prime W}$	80325951 N	38	6.35×10^{-8}	$226 / 232$	135/147	183/193	2481260	205	157/171	109/148	202	2421256
LU45	420483311"W	$703652^{\prime \prime} \mathrm{N}$	39		232236	135/145	183/193	260	207215	157/171	109/148	216	223/242
LU48	$43^{\circ 9} 52^{\prime \prime} \mathrm{W}$	$7{ }^{0} 20^{\prime \prime} 12^{\prime \prime} \mathrm{N}$	40		232238	147/149	185/195	260	205	157/187	138/140	202	225/242
LU50	$42^{2} 500^{\prime 2} 6^{\prime \prime} \mathrm{W}$	$7{ }^{\circ} 10^{14} 6^{\prime \prime} \mathrm{N}$	41		236	135/149	185/193	232260	2051207	157/163	109/125	202	227/252
MEZ10/1	$42^{\circ} 147^{\prime \prime} \mathrm{W}$	$7{ }^{0} 2481{ }^{1 / \mathrm{N}}$	42		232	139/149	191/193	248	205/209	157/171	138	202216	227/258
MEZ4/2	$42^{\circ} 1477^{\prime \prime} \mathrm{W}$	702481 N	43		232236	147	185	2501260	207/209	187	138/140	202	225/258
MEZ8/2	$42^{\circ} 1747 \mathrm{~W}$	702481/	44		2322336	139/149	191/193	248250	205/223	165/171	138/140	202216	225/227
NAl	$43^{\circ} 1425^{\prime \prime} \mathrm{W}$	103825 "N	45		226236	145/149	185/193	260	205/207	163/171	140/146	202216	225
NA2	$43^{3} 14^{\prime \prime} 18^{\prime \prime} \mathrm{W}$	$1038255^{\prime \prime} \mathrm{N}$	46		226236	147	187/191	260262	205	157	138/148	202216	223/242
NA3	$43^{3} 1433^{\prime \prime} \mathrm{W}$	140020"N	47		2261242	145/149	191/193	260	$205 / 221$	157/171	140/146	202216	252/254
NA5	$43^{3} 166^{\prime 2} 1^{\prime \prime} \mathrm{W}$	$1^{1} 40^{\prime \prime} 0^{\prime N}$	48		2261242	145/147	193	232260	2051221	163	138/146	202	242/252
NA6	$43^{\circ} 166^{\prime 5}{ }^{\prime \prime} \mathrm{W}$	$1^{1} 400^{\prime \prime} 1 \mathrm{~N}$	49		232236	145	185/191	250	221223	157/187	140/146	202	225/252

Supporting information 1 (cont.). Geographic coordinates and allelic profiles of 131 accesions of Prunus avium plus trees genotyped with nine loci. Note that SA4 and SA12 are different accessions that belong to the same plus tree and PO34/IV is different from PO34 in locus EMPA015. Several accessions share the same geographic coordinates because it represents the parish or the council where the accessions are located. Accessions in bold belong to the same MLG and show the Psex value

Clone	Latitude	Longitude	MLG	Psex	EMPaS01	EMPaSO2	EMPA004	EMPA005	EMPaSO6	EMPaS10	EMPaS12	EMPA014	EMPA015
NA7	$43^{\circ} 12^{\prime} 40^{\prime \prime} \mathrm{W}$	$104352^{\prime \prime} \mathrm{N}$	50		$226 / 242$	149	193	260	205/221	171/183	138	202	223/225
Na12	43012'7"W	$1^{0} 44^{\prime 2}{ }^{\prime \prime} \mathrm{N}$	50	2.42×10^{-8}	$226 / 242$	149	193	260	205/221	171/183	138	202	$223 / 225$
NA8	$43^{\circ} 12339$ "W	$1^{0} 43^{\prime 2} 7^{\prime \prime} \mathrm{N}$	51		232/242	149/151	185	2501260	205/221	157	148	202	225
NA9	$43^{\circ} 12^{\prime} 40^{\prime \prime W}$	$1^{0} 433^{\prime \prime} 6^{\prime \prime} \mathrm{N}$	51		232/242	149/151	185	2501260	205/221	157	148	202	225
Na10	$43^{\circ} 12^{\prime 3} 9^{\prime \prime W}$	$1^{0} 411^{\prime 2} 2^{\prime \prime} \mathrm{N}$	51		232/242	149/151	185	2501260	205/221	157	148	202	225
Nal1	$43^{\circ} 12^{\prime} 41{ }^{\prime \prime W}$	$1^{0} 43156{ }^{\prime \prime} \mathrm{N}$	51	6.24×10^{-7}	232/242	149/151	185	2501260	205/221	157	148	202	225
NA13	$43^{\circ} 127^{\prime \prime} \mathrm{W}$	$1^{\circ} 43^{1} 57{ }^{\prime \prime} \mathrm{N}$	52		232	145/149	185/193	248260	$205 / 223$	163/171	138	202216	2521256
NA16	$43^{3} 1428^{\prime \prime} \mathrm{W}$	$1^{0} 42118 \mathrm{~N}$	53		232236	145/151	193	260	205	157/171	140/146	202	2521256
NA17	$43^{\circ} 1429{ }^{\prime \prime} \mathrm{W}$	$1^{182} 2^{18} 8^{\prime \prime} \mathrm{N}$	54		242	139/149	191	2481260	207/221	163/187	$138 / 140$	202216	256
NA18	$43^{\circ} 1429{ }^{\prime \prime} \mathrm{W}$	$1^{\circ} 42^{\prime} 18^{\prime \prime} \mathrm{N}$	55		232	149/151	185/193	2481260	205/209	157/187	146	202216	225/252
Na19	$43^{\circ} 1429{ }^{\prime 2} \mathrm{~W}$	$1^{\circ} 42116 \mathrm{~N}$	56		226/242	145/149	185	244248	205/207	157	1401/46	202	225/242
NA2O	$43^{10} 1427^{7} \mathrm{~W}$	$1^{0} 42^{1} 17{ }^{\prime \prime} \mathrm{N}$	57		226/242	$145 / 149$	193	248260	205/209	157	146	202216	2521256
NA21	$43^{19} 1427{ }^{\prime} \mathrm{W}$	$1^{0} 42^{\prime 1} 11 \mathrm{~N}$	58		2261242	145	$185 / 193$	2501260	205/207	157/171	140	202	242256
Na22	$43^{\circ} 14^{\prime 2} 9^{\prime \prime W}$	$1{ }^{10} 2^{1} 12$ "N	59		232	145	185/193	2441260	207/223	171/187	138/146	202/216	$223 / 225$
NA26	$43^{\circ} 16^{\prime 3} 2^{\prime \prime} \mathrm{W}$	$1^{029} 51^{\prime \prime} \mathrm{N}$	59	4.81×10^{-8}	232	145	185/193	2441260	207/22	171/187	138/146	202/216	$223 / 225$
NA23	$43^{\circ} 155^{\circ} 7^{7} \mathrm{~W}$	$1^{1032311 " N}$	60		2322236	145/149	185/193	2481260	2091221	157/171	138/148	202216	225
NA24	$43^{3} 16^{\prime} 14^{\prime \prime} \mathrm{W}$	$1^{032} 215{ }^{\prime \prime} \mathrm{N}$	61		232245	145	$185 / 193$	260	2091223	157/187	1401/46	202	225
NA25	$43^{3} 16477 \mathrm{~W}$	$10326^{\prime \prime} \mathrm{N}$	62		226/242	145/149	$185 / 193$	2481260	205	157/163	140	216	225/242
NA27	$43^{1016344 W}$	$1^{129948 " N}$	63		232	145/149	193	244260	207	171/187	146	204216	2231225
NA28	$43^{\circ 7} 115^{\prime \prime} \mathrm{W}$	$1^{033} 3^{\prime \prime} 8^{\prime \prime} \mathrm{N}$	64		232236	145/151	185/193	260	205/209	157/183	$146 / 148$	202216	225/256
NA29	$43^{\circ} 6^{6} 22^{\prime \prime} \mathrm{W}$	103449'N	65		232242	149	193/195	260	2091221	163/169	$138 / 146$	202216	225
NA30	$43^{\circ} 6^{6} 22^{\prime \prime} \mathrm{W}$	$1^{1334490} \mathrm{~N}$	66		2322336	145/149	$185 / 193$	2501260	205/209	157/171	140/146	202216	225
NA31	$43^{\circ} 6^{6} 24^{\prime \prime W}$	$103452^{\prime \prime} \mathrm{N}$	67		2261232	147/149	$185 / 193$	244248	2051221	169/189	140/148	202	2251256
NA32	$43^{\circ} 8^{2} 28^{\prime \prime} \mathrm{W}$	$1^{10362929} \mathrm{~N}$	68		232242	$145 / 147$	193/195	244260	221/223	157/183	140/146	202	225/256
NA33	$43^{\circ} 8^{\circ} 36^{\prime \prime} \mathrm{W}$	$103638{ }^{\prime \prime} \mathrm{N}$	69		232236	149	193	2501260	205/223	157/163	$138 / 146$	2021204	256
Na34	$43^{\circ} 8^{\circ} 37^{\prime \prime} \mathrm{W}$	$1036388^{\prime \prime} \mathrm{N}$	70		226/242	149	193	2501260	223	163/169	$138 / 146$	202204	256
NA35	$43^{\circ} 8^{\prime \prime} 13^{\prime \prime} \mathrm{W}$	$1^{\circ} 42^{4} 49^{\prime \prime} \mathrm{N}$	71		226	145/149	191/193	2481260	223	163/187	138	202	256
NA37	$43^{29} 25^{\prime \prime} \mathrm{W}$	$1^{0} 45^{\prime \prime} 1^{\prime \prime} \mathrm{N}$	72		226/242	147/149	1831193	244260	223	163/187	148	202	2231256
NA38	$43^{3} 653^{\prime \prime} \mathrm{W}$	$1^{\circ} 44^{13} 3^{\prime \prime} \mathrm{N}$	73		242	147/149	$185 / 193$	244248	221/223	163/189	125/138	202	225
NA47	42594351 W	$102466^{\prime \prime} \mathrm{N}$	74		2261232	149/151	193	2481260	207	157/159	1401146	202216	252
OU02013	$42^{2} 253371 \mathrm{~W}$	$705155^{\prime \prime} \mathrm{N}$	75		232	147/149	$185 / 193$	260	2091223	157/187	$138 / 148$	202216	225/258
0U02021	$42^{202537} 7^{\prime \prime W}$	$75^{95} 55^{\prime \prime} \mathrm{N}$	76		232/242	147/149	$185 / 193$	260	209	157/187	$138 / 148$	202216	258
0003022	$42^{22} 55^{\prime 2} 11 \mathrm{~W}$	$7{ }^{0} 157 \mathrm{~N}$	77		232/242	139	185193	2501260	205	157/189	138	216	2271256
$0 \mathrm{Ul1}$	$42^{2} 203^{\prime \prime} \mathrm{W}$	$7^{0} 14446^{\prime \prime} \mathrm{N}$	78		232236	151	1851193	250	205/223	157/163	$138 / 148$	202	2421256
OU13/13	$42^{2} 2850^{\prime \prime} \mathrm{W}$	$6^{\circ 951288 " N}$	79		2261236	145/149	183/193	260	223	157/171	$109 / 138$	2021204	2521256
OU20	$42^{\circ} 0^{\prime} 15^{\prime \prime} \mathrm{W}$	7026411 N	80		226/242	149	185/193	260	205/207	187	109/125	216	2421256
0021	$42^{\circ} 11^{\prime \prime}{ }^{\prime \prime} \mathrm{W}$	$7{ }^{\circ} 222^{\prime \prime}{ }^{\prime \prime N}$	81		236	145/149	183/191	2501260	223	157/197	125/156	202216	225
$0 \mathrm{U22}$	$42^{\circ} 18^{\prime \prime} 16^{\prime \prime W}$	$70^{\circ} 1111 \mathrm{~N}$	82		$226 / 232$	139/147	183/185	260	207/223	163/171	$138 / 140$	216	225
$0 \mathrm{C42}$	$42^{\circ} 22^{\prime 3} 0^{\prime \prime} \mathrm{W}$	$8^{8} 4544^{1 / \mathrm{N}}$	83		232/236	149/151	1831193	250	205/221	$163 / 171$	146	202	225/256
P028	$42^{22} 24300 \mathrm{~W}$	$8339445^{\prime \prime} \mathrm{N}$	84		2361242	147	185	260	215/223	157	125/138	202	223
P029	$42^{2} 243301 \mathrm{~W}$	$833945^{\prime \prime} \mathrm{N}$	85		226/242	139/147	185/191	260	215/223	157/183	140	202	2231225
P033	$42^{2} 20311^{\prime \prime W}$	$8^{\circ} 44^{\prime \prime} 1 \mathrm{~N}$	86		2401242	139/147	185	260	205/223	157/163	125/138	202	242/256
P034	$42^{2} 20311^{\prime \prime W}$	$8^{\circ} 44^{1} 1 \mathrm{~N} \mathrm{~N}$	86	1.13×10^{-5}	2401242	139/147	185	260	205/223	157/163	125/138	202	242/256
P034IV	$42^{2202311 " W}$	$8^{8} 44^{1117}$	86		240242	139/147	185	260	205/223	157/163	125/138	202	242258
P041	$42^{2020311 " W}$	$8^{8} 44^{111} \mathrm{~N}$	87		232	139/149	$185 / 195$	260	205/223	157	140148	202	225/256
P043	$42^{\circ} 32220{ }^{\prime \prime} \mathrm{W}$	$8^{\circ} 32332^{\prime \prime} \mathrm{N}$	88		232236	147/149	191/193	2321260	221	171/187	140/148	202	225/258
PV2	$43^{\circ} 3^{\prime \prime} 12^{\prime \prime} \mathrm{W}$	$22^{295330}{ }^{\prime \prime} \mathrm{N}$	89		232	139/147	183	2461250	205	163	125/140	216	$219 / 229$
PV4	$43^{3} 250^{\prime \prime} \mathrm{W}$	$23352^{\prime 2} \mathrm{~N}$	90		232236	145/147	$185 / 193$	244250	205/209	157/159	140	202	2231225
PV5	42553377 W	388451 N	91		232/242	145/149	185/191	250	205/209	163/171	1381140	202216	2291254
PV6	$42052366^{\prime \prime W}$	$38^{60} 531 \mathrm{~N}$	92		2261232	147/149	185193	2501260	205/223	157/187	$138 / 140$	202	227/256
PV7	$42^{\circ} 5335^{\prime \prime} \mathrm{W}$	$3^{\circ} 11110^{\prime \prime} \mathrm{N}$	93		232242	149	185/191	2501260	2051223	157	125/146	202	223/229

Supporting information 1 (cont.). Geographic coordinates and allelic profiles of 131 accesions of Prunus avium plus trees genotyped with nine loci. Note that SA4 and SA12 are different accessions that belong to the same plus tree and PO34/IV is different from PO34 in locus EMPA015. Several accessions share the same geographic coordinates because it represents the parish or the council where the accessions are located. Accessions in bold belong to the same MLG and show the Psex value

Clone	Latitude	Longitude	MLG	Psex	EMPaS01	EMPas02	EMPA004	EMPA005	EMPaS06	EMPaS10	EMPaS12	EMPA014	EMPA015
PV10	$42^{295644 " W}$	30922 N	94		232	147/149	185/191	260	2091223	157163	140/146	202	2291242
PV11	4204444"W	2288291"N	95		232236	143/149	193	2501260	$207 / 223$	157	140	202216	225/242
PV13	42049224"W	$2233112 " N^{\prime \prime}$	96		2361242	147/149	191/193	$244 / 260$	205	157	125/140	202	2521256
PV15	$43^{\circ} 2^{2} 42^{\prime \prime} \mathrm{W}$	205430"N	97		232242	147/149	183/185	248250	223	157/163	125/138	202	215122
PV17	4205717\%W	204720"N	98		2261232	145/147	185/187	248252	205	157	140	202216	227256
PV18	$42^{2956333}{ }^{\prime \prime W}$	$2^{2481818 " N}$	99		232242	149	185	2501260	2051221	157/159	146	202	2271242
PV19	$42^{2} 55^{\prime 2} 3^{\prime \prime} \mathrm{W}$	$2^{\circ} 4723^{\prime \prime} \mathrm{N}$	100		238242	149	185/193	2481252	2051221	157	140/148	202	223
PV21	$43^{\circ} 4^{\prime 2} 44^{\prime \prime} \mathrm{W}$	$3^{0} 6477 \mathrm{~N}$	101		232234	135/139	173/183	248260	$207 / 223$	163	140	204	229/242
PV22	$42^{25} 51101{ }^{10}$	20550'N	102		232	149	193	250	205	157	$138 / 146$	202	$229 / 242$
PV24	$43^{\circ} 5^{\circ} 13^{\prime \prime} \mathrm{W}$	$228001 N$	103		232242	147/149	183/185	244	$205 / 207$	157/163	$146 / 148$	216	$223 / 242$
PV25	$42^{2} 52^{\prime \prime} 12^{\prime \prime} \mathrm{W}$	$2^{09531} 15^{\prime \prime} \mathrm{N}$	104		232	149	185/193	248260	2051223	157/187	138	202216	2421262
PV28	$43^{\circ} 2553^{\prime \prime} \mathrm{W}$	$26^{6} 8^{\prime \prime} \mathrm{N}$	105		2261242	147/149	185/187	244260	2051207	157	140150	202	242256
PV30	$43^{\circ} 633^{\prime \prime} \mathrm{W}$	$3^{\circ} 2366^{\prime \prime N}$	106		232236	149	185	2501260	2051223	157	140	202216	2421256
PV31	$42^{\circ} 394^{\prime \prime} \mathrm{W}$	$2^{24} 4624 \mathrm{~N}$	107		226	145/147	185	2441260	2051209	157/163	140/146	202216	225/252
PV32	$42^{2} 45^{4} 41^{11 W}$	$3{ }^{978} 81 \mathrm{~N}$	108		232	147	185/193	2501260	223	157	138/140	216	225
PV33	43901031"W	3937 N	109		232242	147/149	185/193	246248	2051207	157/187	$138 / 140$	202216	$213 / 256$
PV35	$43^{\circ} 2^{\prime 2} 0^{\prime \prime} \mathrm{W}$	$233436{ }^{\prime \prime} \mathrm{N}$	110		232236	147/149	185/193	248260	2051223	157	140/146	202	225/227
PV36	$43^{\circ} 0^{\prime \prime} 14^{\prime \prime W}$	$233146^{\prime \prime} \mathrm{N}$	111		2261232	145/149	191/193	244258	2051207	157	140	202216	229
PV38	$43^{\circ 8} 8^{\prime \prime} 6^{\prime \prime} \mathrm{W}$	$2^{2} 29000 \mathrm{~N}$	112		236	147	183/185	2501260	2051223	157	140	202	2271242
PV39	$43^{\circ} 2^{\circ} 30^{\prime \prime} \mathrm{W}$	$2^{23342901 N}$	113		232	147/149	191/193	244/250	205	157	140/146	202	225/227
PV40	$43^{\circ} 4^{\prime \prime} 18^{\prime \prime} \mathrm{W}$	$2^{22} 2977 \mathrm{~N}$	114		2261232	147/149	185/193	2481260	2051207	159/163	140	202216	225/242
PV41	$43^{\circ} 22^{\prime \prime} \mathrm{W}$	$2933433^{\prime \prime} \mathrm{N}$	115		2261236	147	185/193	2441260	2051223	157/163	140/146	202	215/256
PV42	$43^{\circ} 2^{\prime 2} 14^{\prime \prime} \mathrm{W}$	20844"N	116		232242	147/149	185/191	248250	2051207	157	$146 / 148$	202	223/256
PV43	$43^{\circ} 733^{\prime \prime} \mathrm{W}$	$2225544^{\prime \prime} \mathrm{N}$	117		232236	149	183/185	2501200	2051207	157	$138 / 148$	202	242
PV44	$43^{\circ} 733^{\prime \prime} \mathrm{W}$	$233154^{\prime \prime} \mathrm{N}$	118		2261232	149	183/193	$244 / 248$	223	187	$138 / 140$	202	223
PV45	$43^{\circ} 14^{\circ} 0^{\prime \prime} \mathrm{W}$	$2233^{101 \mathrm{~N}}$	119		2261236	149	183/185	244260	2051223	163	$138 / 140$	202	2231242
PV46	$43^{303} 0^{\prime \prime} \mathrm{W}$	$2^{233748 " N}$	120		$226 / 232$	145/151	185/193	2501260	2051223	159/163	138	202216	256
SA2	$4003432{ }^{2} \mathrm{~W}$	$505781{ }^{1 / \mathrm{N}}$	121		232236	145/149	185/191	2441260	2051207	157/163	140	202216	$225 / 229$
SA4=SA12	4020251"W	$5{ }^{\circ} 5736{ }^{1 / \mathrm{N}}$	122		228/232/236	141/141/149	185/185/193	22612601200	205/207/207	157/171/187	123/138/148	174/202202	225/252/252

Table 1. Clonal paramenters of 131 P. avium plus trees clustered in 5 populations

Population	\mathbf{N}	MLG	MLG $_{\mathbf{r}}$	MLG $_{\mathbf{1}}$	MLL	\mathbf{R}
Navarra-Basque Country	67	62	3	62	0	0.92
Asturias-León	18	18	0	18	0	1.00
Eastern Galicia-Asturias	33	32	1	32	0	0.97
Atlantic Galicia	9	7	1	6	1	0.75
Central Spain	4	3	0	3	0	0.66
Total	131	122	5	121	1	0.93

N, number of individuals; MLG, number of multilocus genotypes; MLG $_{\mathrm{r}}$, number of repeated MLGs; MLG ${ }_{l}$, number of local unique MLGs; MLL, number of multilocus lineages; R, genotypic diversity.
which means that only a few alleles have high allelic frequencies in each locus. The number of privative alleles ranged from 12 in Navarra-Basque country population to 1 in Asturias-León population. No privative alleles were detected in Atlantic Galicia and Central Spain populations (Data not shown). The
allelic range of the loci overlaps or partially overlaps with the results of other works (Guarino et al., 2009; Tanceva Crmaric et al., 2011; De Rogatis et al., 2013).

The minimum combination of loci to distinguish all MLGs is EMPA015, EMPaS12 and EMPaS06. However, there still were 58 MLGs that were different

Supporting information 2. Genetic parameters of nine microsatellite loci estimated from 122 MLGs

	Allelic range	$\mathbf{n}_{\mathbf{a}}$	$\mathbf{n}_{\mathbf{e}}$	PI
EMPaS01	$226-245$	9	3.41	0.13
EMPaS02	$135-151$	8	3.36	0.13
EMPA004	$173-197$	8	3.4	0.14
EMPA005	$226-264$	11	2.82	0.16
EMPaS06	$205-223$	6	3.76	0.11
EMPaS10	$157-197$	11	3.76	0.11
EMPaS12	$109-156$	10	4.84	0.08
EMPA014	$174-216$	4	1.93	0.35
EMPA015	$213-262$	17	6.7	0.04
Overall		9.33^{a}	3.77^{a}	$5.16 \times 10^{-9 \mathrm{~b}}$

n_{a}, number of alleles; n_{e}, effective number; PI, probability of identity. ${ }^{a}$ Average of the estimated value across all loci. ${ }^{\mathrm{b}}$ Combined probability of identity, considering all markers.
in only one allele. To ensure that all MLGs are genetically different, five loci (EMPA015, EMPaS12, EMPaS06, EMPaS10, EMPaS01) with the lowest
probability of identity, were needed to distinguish the 122 MLGs and to avoid MLLs. These five loci can be useful for the routinely identity verification of the individuals of the Breeding Program of wild cherry and for detecting labeling errors during their manipulation.

STRUCTURE software detected, with nine loci, two main clusters only when LOCPRIOR model was used. When LOCPRIOR model was disabled, STRUCTURE did not find any population structure. The LOCPRIOR model takes into account the sampling locations and it is suitable for detecting a genetic structure when the signal is too weak (Hubisz et al., 2009). The least negative value of $\operatorname{Ln} P(K)$ with the lower standard deviation was at $K=2$. All runs at $\mathrm{K}=2$ displayed the same result. From $K=3, \operatorname{Ln} P(K)$ decreased and the standard deviation in the different K values was very high. In addition, the Evanno method also detected two main clusters. The 122 MLGs could be classified into two genetic clusters (Figure 2). The first group

Figure 2. Membership coefficients calculated by the program STRUCTURE (Pritchard et al. 2000) for 122 MLGs and one MLL (PO34/IV) for $K=2$. Each individual is represented by a vertical line partitioned into light gray and dark gray segments, the lengths of which indicate the posterior probability of membership in each group.

Supporting information 3. UPGMA dendrogram of genetic distances between 122 MLGs and a MLL (PO34/IV). A total of 6 MLGs contain more than one accession. Highlighted individuals indicate that the clone was selected for the Elite Population
comprised individuals sampled in Navarra, the Basque country, Asturias, León and Central Spain. The second genetic pool contained individuals from Atlantic and Eastern Galicia-Asturias. No clear assignation is achieved for individuals AS0402/3, AS1, AS 19 (AsturiasLeón), OU42-PO28-PO29 (Atlantic Galicia). Notably, the triploid SA4 $=$ SA12 is different from the other individuals of the Central Spain population and it was assigned to the Asturias-Galicia group. The two genetic clusters detected in this study can be explained by population fragmentation and reproductive isolation. The information provided by STRUCTURE can be useful for the selection of stands for the production of seeds for conservation plantations.

A dendrogram constructed according to nine nSSR data (Supporting information 3) of 122 MLGs and 1 MLL divided them into two main clusters. The accession PV2 and PV21 have the most different genotypes. The highlighted individuals are being used in the elite population for crosses. They are genetically quite different among them and it is expected that the crosses between these parental lines will produce individuals with a superior expression of economic traits.

Acknowledgments

This study was funded by the research project: "Selección de cerezos por caracteres adaptativos y de crecimiento y creación de nuevos clones para la obtención de una población de mejora de Galicia 10MRU502022PR" funded by Xunta de Galicia. We thank M. Carmen Moreno-Ortiz for the flow citometry analysis.

References

Arnaud-Haond S, Belkhir K, 2007. GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol. Ecol. Notes 7: 15-17.
Chapuis M-P, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, et al., 2008. Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol. Ecol. 17: 3640-3653.
Clarke JB, Tobutt KR, 2003. Development and characterization of polymorphic microsatellites from Prunus avium "Napoleon." Mol. Ecol. Notes 3: 578-580.

De Cuyper B, Sonneveld T, Tobutt KR, 2005. Determining self-incompatibility genotypes in Belgian wild cherries. Mol. Ecol. 14: 945-955.
De Rogatis A, Ferrazzini D, Ducci F, Guerri S, Carnevale S, Belletti P, 2013. Genetic variation in Italian wild cherry (Prunus avium L.) as characterized by nSSR markers. Forestry 86: 391-400.
Dorken ME, Eckert CG, 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J. Ecol. 89: 339-350.
Ellstrand NC, Roose ML, 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74: 123-131.
Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14: 2611-2620.
Felsenstein J, 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 164-166.
Guarino C, Santoro S, Simone LD, Cipriani G, 2009. Prunus avium: nuclear DNA study in wild populations and sweet cherry cultivars. Genome 52: 320-337.
Hardy OJ, Vekemans X, 2002. SPAGeDI: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2: 618-620.

Hubisz MJ, Falush D, Stephens M, Pritchard JK, 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9: 13221332.

Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
Serres-Giardi L, Dufour J, Russell K, Buret C, Laurens F, Santi F, 2010. Natural triploids of wild cherry. Can. J. For. Res. 40: 1951-1961.
Tanceva Crmaric O, Stambuk S, Satovic Z, Kajba D, 2011. Genotypic diversity of wild cherry (Prunus avium L.) In the part of its natural distribution in croatia. Sumar. List 135: 543-555.
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P, 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.
Vaughan SP, Russell K, 2004. Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol. Ecol. Notes 4: 429-431.
Von Schelhorn M, 1947. Über eine triploide Vogelkirsche. Der Züchter 17-18: 232-235.

[^0]: *Corresponding author: josefa.fernandez.lopez@xunta.es Recibido: 06-06-13. Aceptado: 15-01-14.

