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ABSTRACT  

This paper develops a mathematical model for fixed-end moments for two different types of loads on beams with a parabolic shaped 

variable rectangular cross section. The loads applied on beam are: 1) a uniformly distributed load and 2) a concentrated load located 

anywhere along the beam length. The properties of the rectangular cross section of the beam varies along its axis, i.e., the width “b” 

is constant and the height “h” varies along the beam, this variation follows a parabolic form. The consistent deformation method 

based on the superposition of the effects is used to solve these problems. The deformation anywhere along the beam is obtained by 

using the Bernoulli-Euler theory. Traditional methods used to obtain deflections of variable cross section members are any techniques 

that perform numerical integration, such as Simpson's rule. Tables presented by other authors are restricted to certain relationships. 

Beyond the effectiveness and accuracy of the developed model, a significant advantage of it is the moments are calculated at any 

cross section of the beam using the respective integral representations as mathematical formulas. 

Keywords: fixed-end moments, variable rectangular cross section, parabolic shape, consistent deformation method, Bernoulli-

Euler theory. 

 

RESUMEN 

En este trabajo se desarrolla un modelo matemático para momentos de empotramiento para dos tipos diferentes de cargas en las 

vigas de sección transversal rectangular variable de forma parabólica. Las cargas aplicadas sobre la viga son: 1) carga uniforme-

mente distribuida, 2) carga concentrada situada en cualquier parte de la longitud sobre la viga. Las propiedades de la sección 

transversal rectangular de la viga varía a lo largo de su eje, es decir, el ancho "b" es constante y la altura "h" varía a lo largo de la 

viga, esta variación es de tipo parabólico. El método de deformación consistente basado en la superposición de los efectos se utiliza 

para resolver tales problemas, y por medio de la teoría de Bernoulli-Euler se obtienen las deformaciones en cualquier parte de la viga. 

Los métodos tradicionales usados para obtener las deflexiones de miembros de sección transversal variable son por medio de la regla 

de Simpson, o alguna otra técnica para llevar a cabo la integración numérica y algunos autores presentan tablas que se limitan a 

ciertas relaciones. La eficacia y la precisión del modelo desarrollado, una ventaja significativa es que los momentos se calculan en 

cualquier sección transversal de la viga usando las representaciones integrales respectivas como fórmulas matemáticas. 

Palabras clave: Momentos de empotramiento, sección transversal rectangular variable, forma parabólica, método de deforma-

ción consistente, teoría de Bernoulli-Euler. 
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Introduction1 

A major concern of structural engineering over the past 50 years 

is proposing dependable elastic methods to satisfactorily model 

variable cross section members, so that there is certainty when 
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determining the mechanical elements, strains and displacements 

that are necessary to properly design this type of member.  

Between 1950 and 1960, several design aids were developed, such 

as those presented by Guldan (1956) and the popular tables pub-

lished by the Portland Cement Association (PCA) in 1958 (“Hand-
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book”, 1958), in which the stiffness constants and fixed-end mo-

ments of the variable section members created extensive calcula-

tions, which was a limitation at that time. In the PCA tables, several 

hypotheses were used to simplify this problem; the most im-

portant hypotheses was that the variation of the stiffness (linear 

or parabolic, based on the geometry) was either considered to be 

a function of the main moment of inertia in bending or considered 

to be an independent cross section., However, this hypothesis has 

been demonstrated to be incorrect. Furthermore the shear defor-

mations and the ratio of length:height of the beam is neglected 

when defining the stiffness factors. These simplifications can lead 

to significant errors when determining the stiffness factors (Tena-

Colunga, 2007). 

The elastic formulation of stiffness for members with variable sec-
tions evolved over time. After publication of the PCA tables, the 

following works helped further the knowledge of beam theory. 

Just (1977) was the first to propose a rigorous formulation for 

variable section members of drawer type and “I” based on the 

classical beam theory by Bernoulli-Euler for two-dimensional 

members without including axial deformations. Schreyer (1978) 

proposed a more rigorous theory of beams for members varying 

linearly. His hypothesis generalized Kirchhoff’s rules to account 

for the shear deformations. Medwadowski (1984) solved the prob-

lem of bending in a nonprismatic beam of shear using the theory 

of variational calculus. Brown (1984) presented a method that 

used approximate interpolation consistent functions with beam 

elastic theory and principle of virtual work to define the stiffness 

matrix of members with a variable section. 

Matrices of elastic stiffness for two-dimensional and three-dimen-

sional members with variable sections based on classical beam the-

ory by Euler-Bernoulli and flexibilities method that account for the 

axial and shear deformations and the cross section of the shape 

are found in Tena and Zaldo (1994), Zaldo (1995) and in Appendix 

B (Tena-Colunga, 2007). 

In the traditional methods used for the variable cross section 

members, the deflections are obtained by Simpson's rule or some 

other technique to perform numerical integration. Tables present-

ing certain limited relationships are available in books (Vaidya-

nathan et al., 2005; Hibbeler, 2006; Williams, 2008). 

This paper presents two mathematical models for fixed-end mo-

ments of a beam subjected to a uniformly distributed load or con-

centrated load applied anywhere along the beam for a rectangular 

cross section taking into account: the width “b” is constant and 

height “hx” varies along the beam in a parabolic form. 

Mathematical development of the models 

General principles of the parabola 

Figure 1 shows a beam in elevation and also presents its rectangu-

lar cross-section taking into account the width “b” is constant and 

height “hx” varies in a parabolic shape. 

 
Figure 1. Rectangular section with the height varying in a parabolic 
shape 

 

The value “hx” varies with respect to “x”, which gives: 

hx = h + y (1) 

Now, the properties of the parabola are used: 

y =
4y0

L2
(x −

L

2
)

2

  (2) 

Equation (2) is substituted into equation (1): 

hx =
4y0x2−4Ly0x+(h+y0)L2

L2
  (3) 

Derivation of the equations for a uniformly distrib-
uted load 

Figure 2(a) shows the beam AB subjected to a uniformly distrib-
uted load with fixed-ends. The fixed-end moments are found by 

the sum of the effects. The moments are considered positive in 

the counterclockwise direction and negative in the clockwise di-

rection. Figure 2(b) shows the same beam simply supported at its 

ends with the load applied to find the rotations ƟA1 and ƟB1. Now, 

the rotations ƟA2 and ƟB2 are caused by the moment MAB applied 

at support A, according to Figure 2(c), and in terms of ƟA3 and ƟB3 

are caused by the moment MBA applied at support B, as shown in 

Figure 2(d) (Przemieniecki, 1985). 

 
Figure 2. Beam fixed at its ends 

The conditions of geometry are (González Cuevas, 2007; Luéva-

nos Rojas, 2012; Luévanos Rojas, 2013): 

ƟA1 + ƟA2 + ƟA3 = 0  (4) 

ƟB1 + ƟB2 + ƟB3 = 0  (5) 

The beam of Figure 2(b) is analyzed to find ƟA1 and ƟB1 by Euler-

Bernoulli theory to calculate the deflections (Ghali et al., 2003; Mc 

Cormac, 2007). The equation is: 

dy

dx
= ∫

Mz

EIz
dx  (6) 

where dy/dx = Ɵz is the total rotation around the axis “z”; E is the 

modulus of elasticity of material; Mz is the moment around the axis 

“z”; and Iz is the moment of inertia around the axis “z”. 
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The moment anywhere along the beam on the axis “x” is (Gere et 

al., 2009): 

Mz =
w(x2−Lx)

2
  (7) 

The moment of inertia for a rectangular member is: 

Iz =
bhx

3

12
  (8) 

Equation (3) is substituted into equation (8): 

Iz =
b

12
[

y0(2𝑥−𝐿)2+hL2

L2
]

3

  (9) 

Now, equations (7) and (9) are substituted into equation (6): 

dy

dx
=

6wL6

Eb
∫

x2−Lx

[y0(2𝑥−𝐿)2+hL2]3
dx  (10) 

The integral of the equation (10) becomes: 

dy

dx
=

6wL6

Eb
{−

3y0−h

64L3h5/2y0
3/2

Atan [
y0

1/2(2x−L)

h1/2L
] −

(2x−L)[x2(3y0−h)+Lx(h−3y0)]

16L3h5/2y0
1/2[y0(2𝑥−𝐿)2+hL2]2

−
(2x−L)(h+y0)(3y0+h)

64Lh5/2y0
3/2[y0(2𝑥−𝐿)2+hL2]2

}  
(11) 

Substituting x = 0 into equation (12) to find the rotation at support 

A: 

ƟA1 =
6wL6

Eb
{

3y0−h

64L3h5 2⁄ y0
3/2

Atan [
y0

1 2⁄

h1 2⁄ ] +
3y0+h

64L3h2y0(h+y0)
}  (12) 

Substituting x = 0 into equation (12) to find the rotation at support 

A: 

ƟA1 =
6wL6

Eb
{

3y0−h

64L3h5 2⁄ y0
3/2

Atan [
y0

1 2⁄

h1 2⁄ ] +
3y0+h

64L3h2y0(h+y0)
}  (13) 

Substituting x = L into equation (12) to obtain the rotation at sup-

port B: 

ƟB1 = −
6wL6

Eb
{

3y0−h

64L3h5 2⁄ y0
3 2⁄ Atan [

y0
1 2⁄

h1 2⁄ ] +
3y0+h

64L3h2y0(h+y0)
}  (14) 

Now, the member of Figure 2(c) is analyzed to find ƟA2 and ƟB2 as 

a function of MAB: 

The moment anywhere along the beam on the axis “x” is: 

Mz =
MAB(L−x)

L
  (15) 

Equations (9) and (15) are substituted into equation (6): 

dy

dx
=

12MABL5

Eb
∫

L−x

[y0(2𝑥−𝐿)2+hL2]3
dx  (16) 

The integral of the equation (16) becomes: 

dy

dx
=

12MABL5

Eb
{

3

32L4h5/2y0
1/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

12x3y0−18Lx2y0+L2x(5h+9y0)

16L3h2[y0(2𝑥−𝐿)2+hL2]2
−

3y0
2+5hy0−2h2

32h2y0[y0(2𝑥−𝐿)2+hL2]2
+ C1}  

(17) 

Equation (17) is integrated to obtain the displacements because 
there are no known conditions for rotations. The equation is as 

follows: 

y =
12MABL5

Eb
{

6xy0−L(3y0−h)

64L4h5/2y0
3/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

4x2y0+4Lx(2h−y0)+L2(y0−7h)

256L3h2y0[y0(2𝑥−𝐿)2+hL2]
+ C1x + C2}  

(18) 

The boundary conditions x = 0 and y = 0 are substituted into 

equation (18) to find C2: 

C2 = − {
3y0−h

64L3h5/2y0
3/2

Atan [
y0

1/2

h1/2
] +

y0−7h

256L3h2y0(h+y0)
}  (19) 

Then, the boundary conditions x = L and y = 0 are substituted into 

equation (18) to obtain C1: 

C1 = − {
1

32L4h3/2y0
3/2

Atan [
y0

1/2

h1/2
] +

1

32L4hy0(h+y0)
}  (20) 

Once the constant C1 is obtained, this is substituted into equation 

(17): 

dy

dx
=

12MABL5

Eb
{

3

32L4h5/2y0
1/2

Atan [
y0

1/2(2x−L)

h1/2L
]  +

12x3y0−18Lx2y0+L2x(5h+9y0)

16L3h2[y0(2𝑥−𝐿)2+hL2]2
−

3y0
2+5hy0−2h2

32h2y0[y0(2𝑥−𝐿)2+hL2]2
−

1

32L4h3/2y0
3/2

Atan [
y0

1/2

h1/2
] −

1

32L4hy0(h+y0)
}  

(21) 

Substituting x = 0 into equation (21) to find the rotation at support 

A: 

ƟA2 =
12MABL5

Eb
{−

3y0+h

32L4h5/2y0
3/2

Atan [
y0

1/2

h1/2
] −

3y0
2+6hy0−h2

32L4h2y0(h+y0)2
}  (22) 

Substituting x = L into equation (21) to find the rotation at support 

B: 

ƟB2 =
12MABL5

Eb
{

3y0−h

32L4h5 2⁄ y0
3 2⁄ Atan [

y0
1 2⁄

h1 2⁄ ] +
3y0+h

32L4h2y0(h+y0)
}  (23) 

Then, the member of Figure 2(d) is analyzed to find ƟA3 and ƟB3 

as a function of MBA: 

The moment anywhere along the beam on the axis “x” is: 

Mz =
MBA(x)

L
  (24) 

Equations (9) and (24) are substituted into equation (6): 

dy

dx
=

12MBAL5

Eb
∫

x

[y0(2𝑥−𝐿)2+hL2]3
dx  (25) 

Equation (25) is evaluated in the same manner as Figure 2(c) to 

find the rotations. They are: 

ƟA3 =
12MBAL5

Eb
{−

3y0−h

32L4h5/2y0
3/2

Atan [
y0

1/2

h1/2
] −

3y0+h

32L4h5/2y0
3/2(h+y0)

}  (26) 

 

ƟB3 =
12MBAL5

Eb
{

3y0+h

32L4h5 2⁄ y0
3 2⁄ Atan [

y0
1 2⁄

h1 2⁄ ] +
3y0

2+6hy0−h2

32L4h2y0(h+y0)2
}  

(27) 

Equations (13), (22) and (26) corresponding to support A are sub-

stituted into equation (4), and equations (14), (23) and (27) corre-

sponding to support B are substituted into equation (5). Subse-

quently, the generated equations are solved to obtain the values 

of “MAB” and “MBA”. These are presented in equations (28) and 

(29). 

MAB =
wL2(h+y0)

8y0
{[(h + y0)(3y0 − h) Atan [

y0
1/2

h1/2
] +√hy0(3y0 +

h)] / [3(h + y0)2 Atan [
y0

1/2

h1/2
] + √hy0(3y0 + 5h)]}  

(28) 

 

MBA =
wL2(h+y0)

8y0
{[(h + y0)(3y0 − h) Atan [

y0
1/2

h1/2
] +√hy0(3y0 +

h)] / [3(h + y0)2 Atan [
y0

1/2

h1/2
] + √hy0(3y0 + 5h)]}  

(29) 
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Derivation of equations for a concentrated load 

Figure 3(a) shows the beam AB subjected to a concentrated load 

located anywhere along member or fixed-ends. The fixed-end mo-

ments are found by the procedure used for the previous case. 

The conditions of geometry are shown in equations (4) and (5). 

The beam of Figure 3(b) is analyzed to find Ɵ A1 and Ɵ B1 using the 

Euler-Bernoulli theory to calculate the deflections using equation 

(6). 

 
Figure 3. Beam fixed at its ends 

The moment anywhere along the beam on the axis “x” is: 

For 0 ≤ x ≤ a 

Mx = −
P(L−a)x

L
  (30) 

For a ≤ x ≤ L 

Mx = −
Pa(L−x)

L
  (31) 

The moment of inertia for a rectangular member is shown in equa-

tion (9). 

a) For the portion of the beam where 0 ≤ x ≤ a  

Equations (9) and (30) are substituted into equation (6): 

dy

dx
= −

12P(L−a)L5

Eb
∫

x

[y0(2𝑥−𝐿)2+hL2]3 dx  (32) 

The integral of the equation (32) becomes: 

dy

dx
= −

12P(L−a)L5

Eb
{

3

32L4h5/2y0
1/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

12x3y0−18Lx2y0+L2x(5h+9y0)

16L3h2[y0(2𝑥−𝐿)2+hL2]2
−

3y0
2+5hy0+2h2

32h2y0[y0(2𝑥−𝐿)2+hL2]2
+ C1}  

(33) 

Substituting x = a into equation (33) to find the rotation Ɵa1: 

Ɵa1 = −
12P(L−a)L5

Eb
{

3

32L4h5/2y0
1/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

12a3y0−18La2y0+L2a(5h+9y0)

16L3h2[y0(2a−L)2+hL2]2
−

3y0
2+5hy0+2h2

32h2y0[y0(2a−L)2+hL2]2
+ C1}  

(34) 

Equation (33) is integrated to obtain the displacements because 

there are no known conditions for the rotations: 

y = −
12P(L−a)L5

Eb
{

6xy0−L(3y0+h)

64L4h5/2y0
3/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

4x2y0−4Lx(2h+y0)+L2(h+y0)

256L3h2y0[y0(2𝑥−𝐿)2+hL2]
+ C1x + C2}  

(35) 

The boundary conditions x = 0 and y = 0 are substituted in equa-

tion (35) to find C2: 

C2 = − {
h+3y0

64L3h5/2y0
3/2

Atan [
y0

1/2

h1/2
] +

1

256L3h2y0
}  (36) 

Equation (36) is substituted into equation (35): 

y = −
12P(L−a)L5

Eb
{

6xy0−L(3y0+h)

64L4h5/2y0
3/2

Atan [
y0

1/2(2x−L)

h1/2L
] −

1

32L2hy0[y0(2𝑥−𝐿)2+hL2]
−

3y0+h

64L3h5/2y0
3/2

Atan [
y0

1/2

h1/2
] + C1x}  

(37) 

Substituting x = a into equation (37) to find the vertical displace-

ment ya1, where the load P is applied: 

ya1 = −
12P(L−a)L5

Eb
{

6ay0−L(3y0+h)

64L4h5/2y0
3/2

Atan [
y0

1/2(2a−L)

h1/2L
] −

1

32L2hy0[y0(2a−L)2+hL2]
−

3y0+h

64L3h5/2y0
3/2

Atan [
y0

1/2

h1/2
] + C1a }  

(38) 

b) For the portion of the beam where a ≤ x ≤ L  

Equations (9) and (31) are substituted into equation (6): 

dy

dx
= −

12PaL5

Eb
∫

L−x

[y0(2𝑥−𝐿)2+hL2]3
dx  (39) 

The integral of equation (39) becomes: 

dy

dx
= −

12PaL5

Eb
{

3

32L4h5/2y0
1/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

12x3y0−18Lx2y0+L2x(5h+9y0)

16L3h2[y0(2𝑥−𝐿)2+hL2]2
−

3y0
2+5hy0−2h2

32h2y0[y0(2𝑥−𝐿)2+hL2]2
+ C3}  

(40) 

Substituting x = a into equation (40) to find the rotation Ɵa2: 

Ɵ𝑎2 = −
12𝑃𝑎𝐿5

𝐸𝑏
{

3

32𝐿4ℎ5/2𝑦0
1/2

𝐴𝑡𝑎𝑛 [
𝑦0

1/2(2𝑎−𝐿)

ℎ1/2𝐿
] +

12𝑎3𝑦0−18𝐿𝑎2𝑦0+𝐿2𝑎(5ℎ+9𝑦0)

16𝐿3ℎ2[𝑦0(2𝑎−𝐿)2+ℎ𝐿2]2
−

3𝑦0
2+5ℎ𝑦0−2ℎ2

32ℎ2𝑦0[𝑦0(2𝑎−𝐿)2+ℎ𝐿2]2
+ 𝐶3}  

(41) 

Equation (40) is integrated to obtain the displacements because 

there are no known conditions for rotations: 

y = −
12PaL5

Eb
{

6xy0−L(3y0−h)

64L4h5/2y0
3/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

4x2y0+4Lx(2h−y0)+L2(y0−7h)

256L3h2y0[y0(2𝑥−𝐿)2+hL2]
+ C3x + C4}  

(42) 

The boundary conditions x = L and y = 0 are substituted into 

equation (42) to find C4 as a function of C3: 

C4 = −
(h+3y0)

64L3h5/2y0
3/2

Atan [
y0

1/2

h1/2
] −

1

256L3h2y0
− C3L  (43) 

Equation (43) is substituted into equation (42) after the boundary 

condition x = a is included to find the vertical displacement ya2: 

ya2 = −
12PaL5

Eb
{

6ay0−L(3y0−h)

64L4h5/2y0
3/2

Atan [
y0

1/2(2a−L)

h1/2L
] −

(L−a)

32L2hy0[y0(2a−L)2+hL2]
−

h+3y0

64L3h5/2y0
3/2

Atan [
y0

1/2

h1/2
] − C3(L − a)}  

(44) 

Equations (34) and (41) are equated, as well as equations (38) and 
(44), because both the rotation and vertical displacement must be 

equal at the point of application of the load P to find constants C1 

and C3. These values are: 
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C1 = −
3y0L−6ay0−hL

64L4h5/2y0
3/2(L−a)

Atan [
y0

1/2(2a−L)

h1/2L
] +

(L−2a)(h+3y0)

64L4h5/2y0
3/2(L−a)

Atan [
y0

1/2

h1/2
] +

3y0(2a−L)2+2hL2

32L4h2y0[y0(2a−L)2+hL2]
  

(45) 

 

C3 = −
6ay0−3y0L−hL

64aL4h5/2y0
3/2

Atan [
y0

1/2(2a−L)

h1/2L
] +

(L−2a)(h+3y0)

64aL4h5/2y0
3/2

Atan [
y0

1/2

h1/2
] −

3y0(2a−L)2+2hL2

32L4h2y0[y0(2a−L)2+hL2]
  

(46) 

Equation (45) is substituted into equation (33) to obtain rotations 

anywhere along the span 0 ≤ x ≤ a: 

dy

dx
= −

12P(L−a)L5

Eb
{

3

32L4h5/2y0
1/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

12x3y0−18Lx2y0+L2x(5h+9y0)

16L3h2[y0(2x−L)2+hL2]2
−

3y0
2+5hy0+2h2

32h2y0[y0(2x−L)2+hL2]2
−

3y0L−6ay0−hL

64L4h5/2y0
3/2(L−a)

Atan [
y0

1/2(2a−L)

h1/2L
] +

(L−2a)(h+3y0)

64L4h5/2y0
3/2(L−a)

Atan [
y0

1/2

h1/2
] +

3y0(2a−L)2+2hL2

32L4h2y0[y0(2a−L)2+hL2]
}  

(47) 

Substituting x = 0 into equation (47) to find the rotation at support 

A: 

ƟA1 =
12PL5

Eb
{

3y0L−hL+2ah

64L4h5/2y0
3/2

Atan [
y0

1/2

h1/2
] +

a(L−a)2

8L4h(h+y0)[y0(2a−L)2+hL2]
+

3y0L−6ay0−hL

64L4h5/2y0
3/2

Atan [
y0

1/2(2a−L)

h1/2L
]}  

(48) 

Equation (46) is substituted into equation (40) to obtain rotations 

anywhere along the span a ≤ x ≤ L: 

dy

dx
= −

12PaL5

Eb
{

3

32L4h5/2y0
1/2

Atan [
y0

1/2(2x−L)

h1/2L
] +

12x3y0−18Lx2y0+L2x(5h+9y0)

32L3h2[y0(2x−L)2+hL2]2
−

3y0
2+5hy0−2h2

32h2y[y0(2x−L)2+hL2]2
−

6ay0−3y0L−hL

64aL4h5/2y0
3/2

Atan [
y0

1/2(2a−L)

h1/2L
] +

(L−2a)(h+3y0)

64aL4h5/2y0
3/2

Atan [
y0

1/2

h1/2
] −

3y0(2a−L)2+2hL2

32L4h2y0[y0(2a−L)2+hL2]
}  

(49) 

Substituting x = L into equation (49) to find the rotation at support 

B: 

ƟB1 = −
12PL5

Eb
{

3y0L+hL−2ah

64L4h5/2y0
3/2

Atan [
y0

1/2

h1/2
] +

a2(L−a)

8L4h(h+y0)[y0(2a−L)2+hL2]
−

6ay0−3y0L−hL

64L4h5/2y0
3/2

Atan [
y0

1/2(2a−L)

h1/2L
]}  

(50) 

The member of Figure 3(c) is analyzed to find ƟA2 and ƟB2 as a 

function of MAB.  These are shown in equations (22) and (23). 

Now the member of Figure 3(d) is analyzed to obtain ƟA3 and ƟB3 

as a function of MBA.  These are presented in equations (26) and 

(27). 

Equations (22), (26) and (48) corresponding to support A are sub-

stituted into equation (4), and equations (23), (27) and (50) corre-

sponding to support B are substituted into equation (5). Subse-

quently, the generated equations are solved to obtain the values 

of “MAB” and “MBA”. These equations are presented in equations 

(51) and (52). 

MAB = P(h + y0) (3a(h + y0)3[y0(2a − L)2 + hL2] Atan [
y0

1 2⁄

h1 2⁄ ]
2

−

{3a(h + y0)3[y0(2a − L)2 + hL2] Atan [
y0

1/2

h1/2
] + h1/2 y0

1/2(h + y0) [y0(2a −

L)2 + hL2](3𝑎𝑦0 − ℎ[3𝑎 − 4𝐿])} Atan [
y0

1/2(2a−L)

h1/2L
] + h1/2 y0

1/2(h +

y0) [3ay0
2(8a2 − 10aL + 3L2) + 4hy0(8a3 − 14a2L + 8aL2 − L3) −

h2L(2a2 − 7aL + 4L2)] Atan [
y0

1/2

h1/2
] − 2ahy0(L − a)[3y0

2(2a − L) +

2hy0(5a − 3L) + h2L]) / (2[y0(2a − L)2 + hL2] {3(h + y0)4Atan [
y0

1/2

h1/2
]

2

+

2 h1/2 y0
1/2(3y0 + h)(h + y0)2 Atan [

y0
1/2

h1/2
] + h y0(3y0

2 + 2hy0 − 5h2)})  

(51) 

MBA = P(h + y0) (3(L − a)(h + y0)3[y0(2a − L)2 + hL2] Atan [
y0

1 2⁄

h1 2⁄ ]
2

+

{3(L − a)(h + y0)3[y0(2a − L)2 + hL2] Atan [
y0

1/2

h1/2
] + h1/2 y0

1/2(h +

y0) [3y0(a − L) − h(3a + L)][y0(2a − L)2 + hL2]} Atan [
y0

1/2(2a−L)

h1/2L
] −

h1/2 y0
1/2 (h + y0)[3y0

2(8a3 − 14a2L + 7aL2 − L3) + 4hy0(8a3 − 10a2L +

4aL2 − L3) + h2L(2a2 + 3aL − L2)] Atan [
y0

1/2

h1/2
] − 2ahy0(a − L)[3y0

2(2a −

L) + 2hy0(5a − 2L) − h2L]) / (2[y0(2a − L)2 + hL2] {3(h +

y0)4Atan [
y0

1/2

h1/2
]

2

+ 2 h1/2 y0
1/2(3y0 + h)(h + y0)2 Atan [

y0
1/2

h1/2
] +

h y0(3y0
2 + 2hy0 − 5h2)})  

(52) 

Results 

Tables 1 and 2 show comparisons of the two models. The pro-

posed model is the mathematical model developed in this paper, 

and the traditional model is presented in the tables on page 516 

(Hibbeler, 2006). Table 1 shows the moments subjected to a uni-

formly distributed load, and Table 2 presents the moments sub-

jected to a concentrated load located anywhere along the length 

of the beam. Such comparisons were determined for a ratio of 

y0/h = 1 because these values are presented in the tables men-

tioned above. The results are virtually identical; therefore the pro-

posed model is valid. 

Table 1. Moments subjected to a uniformly distributed load 

Ratio 

y0/h 

MAB MBA 

Proposed 

Model 

Traditional 

Model 

Proposed 

Model 

Traditional 

Model 

1.0 0.1025wL2 0.1025wL2 0.1025wL2 0.1025wL2 

 

Table 2. Moments subjected to a concentrated load 

Ratio 

y0/h 
a 

MAB MBA 

Proposed 

Model 

Traditional 

Model 

Proposed 

Model 

Traditional 

Model 

1.0 

0.1L 0.0913PL 0.0915PL 0.0059PL 0.0057PL 

0.3L 0.1970PL 0.1970PL 0.0626PL 0.0626PL 

0.5L 0.1639PL 0.1639PL 0.1639PL 0.1639PL 

0.7L 0.0626PL 0.0626PL 0.1970PL 0.1970PL 

0.9L 0.0059PL 0.0057PL 0.0913PL 0.0915PL 

Conclusions  

This paper presents a mathematical model for fixed-end moments 
for two different load types for beams with a parabolic shaped 

variable rectangular cross section. The loads applied on the beam 

are: 1) a uniformly distributed load or 2) a concentrated load lo-

cated at anywhere along the length of the beam. The properties 

of the rectangular cross section of the beam vary along its axis, 

i.e., the width “b” is constant and the height “h” varies along the 

beam in a parabolic form. 

The validation of the proposed model is presented by Tables 1 and 

2, where the results are virtually identical, but these tables present 

only the ratio of y0/h = 1. 

The significant advantage of the proposed model is it works for 

any ratio of y0/h. Another advantage is in Table 2, where the tables 

submitted in the books are limited to certain relationships of a = 

0.1L, 0.3L, 0.5L, 0.7L, 0.9L, but the model developed in this paper 

is for any value of “a”. 

The mathematical technique presented in this research is well 

suited to obtain the fixed-end moments, rotations and displace-

ments for beams of variable rectangular cross section subjected to 
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a uniformly distributed load or concentrated load because the re-

sults are accurate and presented as a mathematical expression.  

The application of fixed-end moments, rotations and displace-

ments is significant in the matrix methods of structural analysis to 

obtain the acting moments and the stiffness of a member. 

In addition to the efficiency and precision of the developed model, 

a significant advantage is that rotations and displacements, as well 

as the moments, are calculated for any cross section of the beam 

using the respective integral representations as mathematical for-

mulas. 
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