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ABSTRACT  

M odel-driven software product lines (MD-SPLs) are created from domain models w hich are transformed, merged and composed 

w ith reusable core assets, until software products are produced. Model transformation chains (MTCs) must be specified to generate 

such M D-SPLs. This paper presents a framew ork for creating platform-independent M D-SPLs; such framew ork includes a domain 

specific language (DSL) for platform-independent MTC specification and facilities platform-specific MTC generation of several of the 

most used model transformation frameworks. The DSL also allows product line architects to compose generation taking the need for 

model transformation strategy and technology interoperability into account and specifying several types of variability involved in 

such generation. 

Keywords: model-driven software product line, platform independent model transformation chain, domain specific language, 

interoperability. 

 

RESUMEN 

Las líneas de producto de software dirigidas por modelos (MD-SPLs) son creadas a partir de modelos de dominio que se transfo r-

man, combinan y componen con artefactos reutilizables hasta que finalmente se generan productos de softw are. Con el fin de 

generar dichas M D-SPLs, es necesario especificar cadenas de transformación de modelos (MTCs). En este artículo presentamos un 

marco de trabajo para la creación de MD-SPLs independientes de plataforma. El marco de trabajo incluye un lenguaje de dominio 

particular (DSL) para la especificación de MTCs independientes de plataforma y facilidades para la generación de MTCs en plat a-

formas específicas a fin de llegar a varios de los frameworks de transformación de modelos más utilizados (en la práctica). El DSL, 

además, permite que los arquitectos de líneas de producto: 1) compongan un proceso de generación teniendo en cuenta la 

necesidad de interoperabilidad de estrategias y tecnologías de transformación de modelos, y 2) especifiquen varios tipos de v aria-

bilidad en dicho proceso de generación. 

Palabras clave: líneas de producto de software dirigidas por modelos, cadenas de transformación de modelos, lenguaje de  

dominio específico, interoperabilidad. 
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Introduction1 2 

Product line engineering has attracted attention recently in what 

are known as software product lines (SPLs) (Linden, Schmid, & 

Rommes, 2007). An SPL focuses on creating a software system 

family through a semi-automatic process that builds individual 

products from reusable software artefacts, shared by all prod-

ucts, and specific software artefacts only for the product being 

constructed in accordance with a client’s wishes. SPL scope ( i.e. 

the range of products a particular SPL may address) is deter-
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mined by variation amongst the individual systems which can be 

derived. One way of capturing such variation is by using a varia-

bility model (Pohl, Bckle, & van der Linden, 2005) (e.g. feature 

models). Variability models describe what can vary (variation 

points) in final systems, the options available (variants) for satisfy-
ing each variation point and the relationships between them. 

Several approaches have been proposed for creating model-

driven engineering (MDE) based SPLs. MDE claims to improve 

software development by using models as first-class artefacts 

during development (Awais Rashid, Jean-Claude Royer, 2011; 

Stahl & Czarnecki, 2006). Model-driven SPL (MD-SPL) approach-

es (e.g. Arboleda, Casallas, & Royer, 2009; Rashid, Royer & 

Rummler, 2011; Santos, Koskimies & Lopes, 2006; Voelter & 

Groher, 2007; Wagelaar, 2005)) are intended to create SPLs 

departing from domain models which are transformed, merged 

and composed with reusable core assets, thereby producing  
software products (Arboleda & Royer, 2012). 
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Model transformation requires several stages during MD-SPL 

construction; each stage involved processing domain models to 

include more implementation details. A model transformation 

chain (MTC) (Yie, Casallas, Deridder & Wagelaar, 2012) is a 

sequence of transformation steps using one of these stages to 

convert a higher-level model rooted closer to the problem do-

main into a lower-level model rooted closer to the solution 

domain (e.g. Java, C#). Transformation steps must be adapted 

throughout each transformation stage to adapt variants chosen 

by product designers for their particular products; this requires 

pre-defining how transformation steps must be adapted accord-
ing to variation points and SPL variants. 

There is a significant gap between variability at a conceptual level 

(variation points and variants) and variability at implementation 

level (concrete software assets, such as model transformation 

rules). MTCs must thus be specified for gathering links between 

variants and transformation steps, including the usual sequence of 

transformation steps involved in producing SPLs and the variabil-

ity involved in derivation. MTCs are currently specified in several 

ways, usually being embedded in model transformation rules, 

coupling commonalities and transformation step variability or 

using domain specific (modelling) languages (DSL). The former 

option is bad practice because of the drawbacks in maintainability 

and reuse of a product line’s core assets whilst DSLs for MTC 

specification separate the concerns of capturing the transfor-

mation logic and capturing their scheduling along with the varia-
tion points involved in a particular product line. 

This paper presents a framework for creating platform-

independent MD-SPLs (platform-independent refers to inde-

pendence from model transformation platforms and tools). The 

framework includes a DSL for platform-independent MTC speci-

fication and facilitates producing and handling platform-specific 

MTCs. Previous work by Arboleda, Casallas & Royer (2009) 

presented tool support for an MD-SPL approach. The MTC 

language at that time lacked constructs for specifying several 

types of variability involved in derivation and did not take the 

need for integrating several model transformation technologies 
into account. This work presents a solution to such drawbacks. 

Illustrative example and DSL key concepts 

Illustrative example 

An MD-SPL of standalone software products for managing data 

collections was created to illustrate the problem and give an 

overview of the aforementioned approach. A detailed description 

of this MD-SPL can be found in Arboleda, Romero, Casallas & 

Royer (2009) and on our research group’s web site3. An example 

of a product line member would be an application for managing a 

music store and information regarding songs, such as their titles, 

artists’ names and genre. Another product may manage students 

from a school and their personal information: name, address, e-

mail, etc. These products are usually structured in a kernel com-

ponent at architecture level (implementing functional require-

ments for adding elements to the collection and sorting them 

using various sorting algorithms) and/or a graphical user interface 

(GUI) component (presenting the information to end-users and 
interacting with them and the kernel component). 

Figure 1 shows an overview of configuring and deriving a collec-

tion manager system. A domain meta-model was created which 

included domain concepts for representing data collection struc-

                                              
3http://www.icesi.edu.co/i2t/driso/mdsplframework 

ture. A product designer created a domain model conforming to 
such meta-model at the start of the derivation process. 

 
Figure 1. Derivation. 

The domain model was automatically transformed at runtime 

during product derivation into architecture models capturing 

concepts from the solution space. The architecture models were 

composed of a kernel model including an aggregation structure 

to represent the entity being managed and its related attributes, 

and the concepts for expressing the ability to sort the entities 

using different algorithms and a GUI model representing GUI 

elements such as panels, lists, labels and images. These architec-

ture models were then transformed to produce product line 
members’ source files. 

Similarly to many other MD-SPL approaches (Santos et al., 2006; 

Tessier, Gérard, Terrier & Geib 2005; Voelter & Groher 2007) , 

feature models were used as core assets for modelling variability 

during each derivation stage. The example consisted of a feature 

model built using concepts introduced by Czarnecki, Helsen & 

Eisenecker (2004). A product designer creates a domain model 

and a configuration model based on such feature model having a 

selection of the features to be included in the desired product. 

This configuration model represents input to the two model 

transformation stages, one transforming the domain model into 

the architecture models and the other transforming the latter 
models into source files. 

Figure 2 shows a domain model for a music store system (bot-

tom left) conforming to the domain meta-model for a collection 

manager system (top left). This paper uses a class diagram-like 

representation to facilitate intuitive understanding of conformity 

between models and meta-models. The Figure shows the domain 

model defining a musicStore conforming to the Domainmetacon-

cept. The musicStore has an entity, song, which has three char-

acteristics, name, artist and genre. The feature model (right) 

represents variants for data sorting using bubble, insertion or 
selection algorithms. 

 

Figure 2. Collection manager example. 

DSL Key concepts 

Several DSL requirements were identified for specifying an MTC 

from practice and related work. Such DSL had to define deriva-

tion transformation stages, schedule such transformation stages 

(i.e. the order in which transformation rules process model 

elements to accomplish desired derivation), capture variation 

points and variants, represent how variation points can modify 
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scheduling and enable support for various transformation plat-
forms, techniques or languages. 

Transformation stages and scheduling 

A meta-model was used for constructing a grammar system 

specifying our DSL’s syntax and semantics. The concepts in this 

meta-model inherited some names from previous work by Arbo-

leda, Casallas & Royer (2009). The left-hand side of Figure 3 

presents a fragment of the meta-model showing the concepts 

Workflow, TransformationProgram and TransformationRule 

which target to satisfy the DSL transformation requirement. The 

second requirement, a sequence of model transformation stages, 

was named Workflow. The TransformationProgram concept 

was used for transforming models, using either the specialised 

Model2Model or Model2Text concept. The sequence of model 

transformation programmes incrementally added design deci-

sions until products were obtained according to end-user choice. 

A TransformationProgram consisted of a set of Transfor-
mationRules, being sets of transformation instructions. 

 

Figure 3. DSL meta-model fragment of the model transformation concepts 
(left) and fragment of the DSL model for the collection manager showing 
transformation stages, their transformation rules and sequence (right) . 

A graphical, tree-like, representation of the models forming our 

DSL meta-model was used in this paper to facilitate understand-

ing. As an illustrative example, the MD-SPL model for the collec-

tion manager at the right-hand side of Figure 3 defines two trans-

formation stages: domain2architeture in line 2 is a model-to-

model transformation stage departing from the collection man-

ager domain model to create two architecture models specified 

for derivation (Kernel and GUI). The transformation rules in this 

stage were domain2kernel in line 3 and domain2gui in line 4. 

The second transformation stage, architecture2text in line 5, 

was a model-to-text transformation stage. The architecture 

models in the previous stage were taken as input and trans-

formed into source code. The transformation rules in this stage 

were kernel2text in line 6 and gui2text in line 7. The example 

was summarised to simplify all the transformation rules required 
in both stages. 

Variation points, variants and scheduling modification 

A sequence of variation points was also needed to satisfy variant 

and scheduling modification since transformation stages may 

include variants conditioning transformation rule execution. 

Figure 4 shows that a TransformationProgram also contained a 

sequence of VariationPoints involved in generation. Concern-

ing the ability to represent the way variation points can modify 

scheduling, variation point applicability was determined by a 

Configuration, which was as a set of Variants. Each Variant 

represented a feature-state pair. The FeatureModel concept 

covered collecting available features to be taken into account in a 

configuration. Our DSL did not consider modelling these fea-

tures and their mutual relationships and constraints; however, 

this is planned for future work. pure::variants4 were used instead, 
one of the many variability management tools available. 

 

Figure 4.DSL meta-model fragment of variability modelling concepts. 

Concepts were also included to represent how scheduling model 

transformations could be modified. According to different con-

figurations, a model transformation may require elements being 

added to source models, removing elements from them, or 

transforming such elements into other elements. Groher & 

Voelter (2007) distinguished what they called positive and nega-

tive variability for describing such types of model operation; the 
present document has been based on such work. 

Positive variability. Positive variability builds products from a 

minimal set of common elements. Additional elements were 

added to this set according to each particular product ’s configu-

ration. Two strategies were distinguished for positive variability: 
model-oriented and programme-oriented. 

Model-oriented positive variability. Model-oriented positive 

variability merges, or weaves, two separate models into a single 

model. One of these models holds the information regarding 

elements to be added and where such elements should be added. 

The other model acts as target. Figure 5 (bottom right) shows 

how model-oriented variability was captured in our DSL. A base 

model was taken as target and an aspect model contained the 

elements to be added and where they had to be placed. Both 
models were woven into a result model. 

 

Figure 5.DSL meta-model fragment of the variation point concepts. 

A source of variation in the collection manager concerned data-

sorting being provided by a bubble, an insertion and/or a selec-

tion algorithm. Figure 6 (left-hand side) presents a model-

oriented positive variability scenario. The sortAlgorithm config-

uration (line 9) with the bubble feature selected (lines 10-11) 

determined the use of the bubble sort algorithm in the collection 

manager. The kernel model was refined according to such con-

figuration with a model-oriented positive variation point, cre-

ateBubble (line 4) weaving the base model named kernel (line 

5) with an aspect model named bubble (line 6). Such weaving 

was performed after the domain2kernel transformation rule 

(line 3) had been executed and, thus, the kernel model (line 5) 
had already been created. 

Programme-oriented positive variability. Programme-oriented 

positive variability relied on the interception of a transformation 

rule, given a particular configuration, and the execution of an 

alternative transformation rule, i.e. specific transformation rules 

                                              
4 http://www.pure-systems.com/pure_variants.49.0.html. Last visit October 2012. 



PAZ AND ARBOLEDA 

  

                         INGENIERÍA E INVESTIGACIÓN VOL. 33 No. 2, AUGUST - 2013 (70-75)    73 

introducing variability. Figure 5 (bottom left) presents the con-

cepts for representing this type of variability. Base transfor-

mation rules are those created for deriving product commonali-

ties. Transformation rules introducing variability were presented 

as Specific transformation rules; base rules which had to be 

intercepted by the joinpoint relationship were mapped as were 

specific rules to be executed instead with the advice relation-
ship. 

 

Figure 6. Fragment of the DSL model for the collection manager with 
model-oriented positive variability (left), Fragment of the DSL model for 
the music store with programme-oriented positive variability (right). 

Figure 6 (right) shows a programme-oriented positive variability 

scenario. The sortAlgorithm configuration in (line 8) with the 

insertion feature selected (lines 9-10) determined the use of 

the insertion sort algorithm. The variation point createInser-

tion (line 4) intercepted (joinpoint) the base rule createOr-

dering (line 5) and executed (advice) the specific rule create-
Insertion (line 6) instead. 

Negative variability. Negative variability is the opposite of 

positive variability; instead of elements being added they were 

eliminated from a target model by the absence of related fea-

tures from the configuration for a particular product. Due to 
space limitation, an example of this case has been omitted.  

Inter-operability 

Regarding inter-operability, product line architect needed facili-

ties for indicating which technology would be used in each prod-

uct derivation transformation step. An attribute was thus added 

to the TransformationProgram concept holding information 

about the particular technology being used. A platform-

independent MTC specified by using our DSL was thus trans-

formed into platform-specific MTCs scheduled by a common 
mediator.  

The MD-SPL framework 

A framework for creating MD- SPLs was used as an eclipse rich 

client platform (RCP)5 application. Eclipse RCP allowed creating a 

feature-rich, stand-alone application built upon a plug-in architec-
ture which could be easily extended with additional components. 

Architecture from a static viewpoint 

Figure 1 presents our framework’s high-level components from a 

static viewpoint. Eclipse modelling framework (EMF) was chosen 

as the modelling framework, meaning that all our meta-models 

were based on the Ecore meta-meta-model. Pure::variants were 
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used as our feature modelling framework because this provided a 

complete variability management solution which has been suc-

cessfully used in SPL engineering practice. Such framework sup-

ported integrating four of the most common model transfor-

mation engines: Xtend, Xpand (oAW), ATL and Acceleo. Ant 

files were used as intermediary between our platform-

independent MTC specifications and the platform-specific MTC 
specifications running on the model transformation engines. 

 

Figure 1. High-level MD-SPL framework architecture. 

DSL and generating platform-specific MTCs 

Our DSL for specifying platform-independent MTCs was at the 

core of our framework. Our DSL was defined from the meta-

model presented in section 2.2. Product line architects can cre-

ate MTC specification scripts using our DSL. A text editor was 

thus provided having syntax colouring, code completion, valida-

tion, quick fixes and several other features. List 1 presents a 

fragment of the MTC specification script built for the collection 

manager example, capturing the domain2architecture model-

to-model transformation stage (line 1). This script was analogous 

to the model fragments shown in Section 2.2. Here, a source 

model, domainModel, was transformed into a kernel model by 

using transformation rule domain2kernel (line 2) and a GUI 

model by using transformation rule domain2gui (line 4). The 

model-oriented variation point, createBubble (line 3), was a 
condition for executing these transformation rules. 

List 1.MTC specification fragment for the collection manager example 

1. Model2Modeldomain2architecture { 

2. firstRule := domain2kernel ( domainModel ) ; 
3. firstVariationPoint := createBubble ; 
4. nextRule := domain2gui ( domainModel ) ; 
5. } 
6. ModelOrientedcreateBubble{...} 

 

 

Figure 8. MTC execution flow. 

Another feature was also included in our framework: facilities for 

generating platform-specific MTCs. Our platform-independent 

MTC specifications were translated into an executable general 

purpose language (GPL) code to create platform-specific MTCs 

able to run on particular model engines, ultimately carrying out 

model transformations. DSL and GPL use was combined for 

reducing GPL implementation complexity by providing an ap-

proach only requiring domain knowledge. MTC specification 

programmes were thus transformed into executable Ant build 

files using a model-to-text transformation. The Ant build file 

contained the required model transformation workflows to 

derive the configured products (Figure 8). This Ant build file, 

(named MTC mediator in the Figure) can call a sequence of 

model transformations through either an oAW workflow, in turn 
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executing Xtend and/or Xpand model transformation, or anoth-

er Ant build file, in turn executing ATL and/or Acceleo model 

transformation. The Ant build file on the Ant engine could thus 

be executed and products derived through an MTC consisting of 
assets corresponding to different technologies. 

Discussion 

A meta-model defining efficient expression of the domain con-

cepts and their mutual relationships had to be carefully prepared 

to build a DSL. A review of the mapping between the modelled 

abstract entities and DSL syntax and semantics was also neces-

sary. Téllez (2011) proposed using a set of DSL properties as an 

evaluation mechanism for validating DSLs: representation, ab-

sorption, standardisation, abstraction, expressiveness, compres-

sion, productivity and quality. It was considered that this mecha-

nism was appropriate for evaluating our DSL; however, more 

experimentation must be conducted for collecting enough data 
for quantitative validation. 

Representation and abstraction properties were concerned with 

the DSL’s concrete and abstract syntaxes; they were also con-

cerned with its ability to enable users to write unambiguous 

sentences depicting domain concepts and their relationships. Our 

DSL was defined using a meta-model representing common 

abstract concepts for an MTC domain, such as transformation 

stage, transformation rule, variation point, variant and mutual 

relationships. These concepts acted as reference for the con-

structs in our DSL’s syntax and semantics. Our DSL included 

common best practices from MDE and SPL. The reference meta-

model restricted our DSL grammar to specific, standard and 
widely-used MD-SPL constructs. 

Our DSL has been used for about a year by our research group 

members. Two application examples have been developed to 

date: a collection manager presented in this paper and a smart 

home. Both examples consist of a set of MD-SPL core assets and 

an MTC specification built with our DSL. The expressiveness of 

the language has been enough to specify the decisions involved in 

them. The smart home example can also be found on the afore-
mentioned website. 

The complexity of building an MTC specification was hidden by 

our DSL. MTC specification programmes written with our DSL 

were easy to edit and our framework provided facilities for 

validation and code completion in them. The complexity of an 

MTC built with our DSL depended on the number of decisions 
involved and derivation complexity. 

Using our framework was successful regarding model transfor-

mation technology interoperability and reusing product lines’ 

core assets. The cost of capturing decisions within platform-

independent MTCs and maintaining and extending them was 

significantly reduced. Regarding productivity metrics, experi-

ments involving real industry projects are still lacking for quanti-
tatively validating the adoption of our approach and framework. 

Related work 

Voelter & Groher(2007) have proposed a similar MD-SPL ap-

proach using domain models and complementary feature models 

to capture variability. Nonetheless, their mechanism for captur-

ing derivation decisions was based on specifying relationships 

between model transformation rules and variants, which must be 

manually written in text files and are not easy to manage, adapt 

and reuse. This approach, unlike ours, was limited to oAWMTC 
generation. 

Similar work by Clafer regarding MD-SPLs has been presented by 

Bak, Czarnecki & Wasowski (2010). Baket et al., have used fea-

ture modelling to capture SPL variability. The variability model 

then related problem space models to solution space models 

from another viewpoint. The approach has the advantage of 

representing both meta-models and feature models using a 

common construct infrastructure but lacking a product deriva-
tion strategy. 

Loughran, Sanchez, Garcia & Fuentes (2008) and Sanchez, 

Loughran, Fuentes & Garcia (2008) have presented VML* and 

shown that VML* is flexible; however, this requires a develop-

ment phase prior to MTC specification, thereby limiting and 

delaying the use of the approach. VML is a platform-specific 

approach since derivation process consists of a suite of model 

transformations implemented only in oAW. Our approach has 

been based on VML’s core principles of assembling architectural 

concerns; however, we propose platform-independent derivation 

process which can consist of a suite of model transformations 

implemented in various technology frameworks and which does 

not require a previous development phase. Heidenreich et al., 

(2010) and Heidenreich, Kopcsek & Wende (2008) have pre-

sented a similar approach to VML* called FeatureMapper. Fea-

tureMapper is intended to map the relationships of an EMF-

based6 domain model with a feature model. FeatureMapper only 

supports negative variability action during one-stage derivation 

thereby limiting the scope of the products the SPLs can derive. 

To our knowledge, FeatureMapper is also a platform-specific 
approach. 

Wagelaar (2005) captured SPL variation by creating variability 

models such as feature models. This approach, unlike ours, only 

facilitated variation binding prior to executing the model trans-

formation stages, i.e. at domain level. This was a limitation on  

SPL scope as variations cannot be configured on following do-

mains. Wagelaar used Ant build files at the top level of his ap-

proach to create MTCs according to the products which had to 

be derived. This makes the approach particularly difficult to use 

and also makes MTC maintenance a complex task. We based our 

framework’s mechanism for creating MTCs on Ant build files. 

However, we added a level on top, which is our DSL, to hide the 

complexity of adapting MTCs at a low level and to cope with the 

maintenance and reuse issues involved in the model transfor-
mation rules. 

Table 1 presents a comparative summary of our approach’s 

characteristics and those of the aforementioned approaches. The 

requirements were presented in Section 3.2; the approach cited 

as 1 was ours, 2 was by Voelter & Groher (2007), 3 Bak et al., 

(2010), 4 Sanchez et al., (2008), 5 by Heidenreich et al., (2008), 
and 6 by Wagelaar (2005). 

Table 1.Comparison with related approaches 
Characteristic / approach 1 2 3 4 5 6 

Provides a derivation mechanism x x  x x x 

Supports transformation stages during derivation  x x     

Schedules transformation rules x x  x x x 

Has a dedicated DSL for building MTCs x x x x   

Manages variability x x x x x  

Captures variation points x x x x x  

Allows scheduling modification through actions or operations x x  x x  

Supports more than one variability strategy (e.g. positive, negative) 
in MTC specifications 

x   x   

Allows technology interoperability x      

Is platform-independent x      

                                              
6 http://www.eclipse.org/modeling/emf/. Last visit October 2012 
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Conclusions 

We have presented a framework for creating platform-

independent MD-SPLs. We have introduced a DSL as part of our 

framework, enabling product line architects to capture the scope 

of product lines by adapting and composing model transfor-

mations with different implementation technologies according to 

configurations. Product line architects can use our framework to 

specify the variability involved in generation. Thus, transfor-

mation and composition logics were decoupled, facilitating the 

traceability management of variants and their related transfor-

mation rules to improve SPL evolution and maintenance. Part of 

our framework involved motivating the integration of model 

transformation technologies for coping with their limitations. We 

have also compared our work with related approaches, conclud-

ing that we have presented a relevant and needed innovation in 

the field of MD-SPL engineering. We have developed tool sup-

port and application examples which are available on our website 
for the MD-SPL community. 

Future work will concentrate on integrating the use of legacy 

generative development techniques into our framework, such as 

templates, filtering and frame processing throughout the product 

derivation process. Legacy generative development techniques 

like these have been broadly adopted by companies which would 

want to reuse their already existing artefacts developed with 

them. This requires integration. Future work will focus on quan-

titative validation of our proposed approach based on the analy-

sis of data collected from further experiments involving real 
industry projects. 
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