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Truth and Probability in Game-Theoretical Semantics 
 

Gabriel Sandu 
 
 
RESUMEN 

En este artículo describiremos brevemente el sistema que en lógica es conocido 
como lógica IF (lógica amigable con la independencia) y que fue introducido por Hin-
tikka y Sandu en 1989. Es conocido que esta lógica tiene enunciados que son indeter-
minados. Tras esto, mostraremos cómo resolver la indeterminación de sus enunciados 
aplicando el teorema Minimax de von Neumann. Este artículo se basa en gran medida 
en [Sevenster y Sandu (2010)], [Mann, Sandu, y Sevenster (2011)], [Sandu (2012)], 
[Sandu (en prensa)], and [Barbero and Sandu (en prensa)]. 
 
PALABRAS CLAVE: semántica de teoría de juegos, información imperfecta, equilibrio 
de Nash, teorema minimax. 
 
ABSTRACT 

In this paper we shall shortly describe the system of logic known as IF logic 
(Independence friendly logic) introduced in Hintikka and Sandu (1989). It is known 
that this logic has indeterminate sentences. After that we will show how we can re-
solve the indeterminacy of its sentences by applying von Neumann’s Minimax theo-
rem. This paper draws heavily on [Sevenster and Sandu (2010)], [Mann, Sandu, and 
Sevenster (2011)], [Sandu (2012)], [Sandu (forthcoming)], and [Barbero and Sandu 
(forthcoming)]. 
 
KEYWORDS: Game-Theoretical Semantics, Imperfect Information, Nash Equilibrium, 
Minimax Theorem. 
 
 

I. SHORT HISTORICAL BACKGROUND 
 

Goldfarb (1979) shows how sinuous the development of logic in the 
XXth. century was. Modern quantification theory arose at the crosswords of 
different conceptions of the nature of the quantifier: 
 

• The algebraic view: Peirce, Schröder, and Löwenheim 
 

• Quantifiers as second-order properties: Frege, Montague 
 

• Quantifier-dependence and choice functions: Skolem and Hilbert. 
 



152                                                                                                       G. Sandu 

 

The algebraic school assimilates quantifiers to (possibly infinite) sums and 
products whose contributions to the relevant formal system are given through 
algebraic manipulations. Even if Löwenheim made a distinction between 
quantification over individuals and quantification over relations which 
opened the door to the separation of first-order from second-order logic, his 
interest in the first-order fragment of the calculus seems motivated by purely 
algebraic, rather than foundational considerations [Goldfarb (1979)]. By 
viewing quantifiers as (higher-order) relations over the universe, Frege intro-
duced content into logic and broke with the algebraic tradition. 

Skolem and Hilbert broke both with the algebraic tradition and with 
Frege’s conception of quantifiers as higher-order relations. Both of them rec-
ognized something special about the nature of quantification: the phenomenon 
of quantifier dependence, that is, the idea of a quantifier depending on others. 
Both expressed quantifier-dependence through the use of choice functions. 
Skolem used quantifier-dependence to give an alternative proof of Löwen-
heim’s theorem. Hilbert, unlike Skolem, was concerned with the role of quan-
tifiers informal proofs, and his use of the choice functions encoded in the ε-
terms is subordinated entirely to this purpose: 
 

I am suggesting that behind Hilbert’s interest in proving by finitistic hook or 
crook, the consistency of formal systems, lies a deeper point: that of using the 
proxy choice-functions to provide in some measure an explication of the mean-
ing of the quantification used in formal proofs [Goldfarb (1979), p.361]. 

 
Given that any formal proof is finite, it contains only a finite number of ε-
axioms. The idea is now to assign successively, during the proof, effective val-
ues to ε -terms with the hope of transforming the whole proof in a manipulation 
of quantifier-free formulas. To this purpose Hilbert did not need the full power 
of the choice functions; it sufficed, instead “to obtain finitely-based functions 
(functions that are zero everywhere but on a finite number of arguments) that 
approximate the “real” choice functions” [Goldfarb (1979), p. 361]. 

All in all, Goldfarb shows convincingly how the connection between 
quantifier dependence and choice functions, is at the heart of how classical 
logicians in the twenties viewed the nature of quantification. 
 
 

II. DEPENDENCE AND INDEPENDENCE OF QUANTIFIERS 
 

Hintikka’s game-theoretical semantics (GTS) with its main interest on 
the phenomenon of quantifier dependence and independence for the founda-
tions of mathematics continues the Skolem-Hilbert tradition. The connection 
between the satisfiability of a sentence and the existence of strategies (Skolem 
functions) is a natural byproduct of this analysis. In this paper I will focus on 
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the extension of the patterns of dependence and independence of quantifiers 
beyond those which may be expressed in ordinary first-order logic. I will 
start with few examples (inspired by [Tao (2007)]). 

If B(x,y) is a binary relation, then we can express in ordinary first-order 
logic the statement 
 

1. For every x, there exists a y depending on x such that B(x, y) is true 
 
by 
 

�x�yB(x, y). 
 

Similarly, we can express the statement 
 

2. For every x, there exists a y independent of x such that B(x, y) is true 
 
by 
 

�y�xB(x, y). 
 
If C(x, y, z) is a ternary relation, then we can express the statement 
 

3. For every x, and y, there exists a z independent from x and y such that 
C(x, y, z) is true 

 
by 
 

�z�x�yC(x, y, z). 
 

An example from mathematics which exemplifies such a pattern is the 
definition of a Lipchitz-continuous function. A function f: R → R is said to be 
Lipchitz-continuous if 
 

�z�x�y (| f(x) - f(y)| ≤ z· | x - y| ). 
 
When D(x, y, z, w) is a quaternary relation, we can express the statement 

 
4. For every x, y, and z there exists a w depending on x and y but inde-

pendent from z such that D(x, y, z, w) is true 
 

by 
 

�x�y�w�z D(x, y, z, w). 
 
A typical example of this quantifier dependence and independence in 

mathematics is the delta-epsilon definition of the continuity of a function. A 
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function f is said to be continuous at a point x0 if given any ε > 0 one can 
choose δ > 0 so that for all y, when x0 is within distance δ from y, then f(x0) is 
within distance ε from f(y), i.e., 
 

|x0 - y| < δ → |f(x0) - f(y)| < ε. 
 

The general form of this definition is 
 

�x0�ε�δ�yD(x0,ε ,δ, y). 
 

Notice that the choice of δ depends on both x0 and ε. 
One can similarly express the statement 

 
5. For every x, y, and z there exists a w depending on y but independent 

from x and z such that D(x, y, z, w) is true 
 
by rearranging the quantifiers in (4) to obtain 
 

�y�w�x�zD(x, y, z, w). 
 

The difference between (4) and (5) is exemplified by the difference be-
tween a function being continuous and it being uniformly continuous: f is said 
to be uniformly continuous if in the general definition above the choice of δ 
depends only on ε (and not on the point x0). That is, uniform continuity is ex-
pressed by 
 

�ε�δ�x0�yD(x0, ε, δ, y). 
 
The dependencies and independencies within a group of four quantifiers, two 
universal and two existentials becomes more complex. We can still express in 
first-order logic the statement 
 

6. For every x and z, there exists a y depending on x and z and a w de-
pending only on z such that D(x, z, y, w) is true 

 
by 
 

�z�w�x�yD(x, z, y, w) 
 
but we cannot always express the statement 
 

7. For every x and z, there exists a y depending only on x and a w de-
pending only on z such that D(x, z, y, w) is true 
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neither the statement 
 

8. There exists a w such that for every x, there exists a y which depends 
only on x, and a z which depends only on y such that D(x, z, y, w) is 
true. 

 
Examples will be given in the next section. 
 
 

III. INDEPENDENCE-FRIENDLY LOGIC 
 

IF logic (Independence-Friendly logic) is an extension of first-order 
logic which contains quantifiers and connectives of the form 
 

(�x/W), (�x/W), (
/W), (˄ /W) 
 
where the interpretation of e.g. (�x/W) is: “the choice of x is independent of 
the values of the variables in W”. When W = ., we recover the standard 
quantifiers and connectives. One can express in this logic patterns of depend-
ence and independence of quantifiers which are not expressible in ordinary 
first-order logic. For instance (7) above can be expressed by 
 

�x�z(�y/{z})(�w/{x, y})D(x, z, y, w) 
 
and (8) by 
 

�w�x(�y/{w})(�z/{w, x})D(w, x, y, z). 
 

There are three equivalents semantic interpretations for IF formulas: 
 

• Semantical games of imperfect information [Hintikka and Sandu 
(1989); (1997)] 

 

• Compositional semantics (trump semantics, [Hodges(1997)]) 
 

• Skolem functions and Kreisel counter-examples [Sevenster and Sandu 
(2010)] 

 
The equivalence of the three interpretations is shown in [Mann, Sandu, and 
Sevenster (2011)]. 
 
III.1 Semantical Games of Imperfect Information 
 

Very briefly, a semantical (extensive) game of imperfect information, 
G(M,s,φ), is associated with an IF formula (in negation normal form), a mod-
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el M and an assignment s which includes the free variables of φ. The game is 
played by two players, � (Eloise) and �(Abelard). Eloise’s moves are 
prompted by existential quantifiers ((�x/W)) and disjunctions: she chooses an 
individual from the domain to be the value of the existentially quantified var-
iable; for a disjunction, she chooses one of the disjuncts. The moves of Abe-
lard are the duals of those of Eloise. Any play of the game stops with an 
“atomic position” (A, r), where A is an atomic formula or its negation and r is 
an assignment which includes the free variables of A. If r satisfies A in M, 
then � wins the play. Otherwise � wins it. 

A strategy for player p, is, intuitively, a (deterministic) method σ which 
gives p a choice for every position where p is to move. Leaving things at an 
informal level, σ is required to be uniform, which, making a long story short, 
amounts to its arguments being only those positions in a play which p “sees”. 
σ is a winning strategy if p wins every possible play where she follows σ. 

Truth and falsity (with respect to an assignment) are then defined by: 
 

• M, s⊨ GTS Ψ iff there is a winning strategy for � in G(M, s, Ψ) 
• M, s⊨ GTS Ψ iff there is a winning strategy for � in G(M, s, Ψ). 

 
When ψ is an ordinary (slash-free) first order formula, one can use Zermelo’s 
Theorem to show that every game G(M, s, Ψ) is determinate: either Eloise has 
a winning strategy or Abelard has a winning strategy. For ψ an IF formula, 
this theorem may fail, as we will see below. Let us give a couple of examples 
which illustrate the notion of strategy in the context of imperfect information. 
Both are taken from Janssen and Duchesne (2006). 

We show that the IF sentence 
 

�x�z(x ≠ z 
 (�y/{x})x = y) 
 
is a logical truth (true in every model with at least two elements). So let M be 
a set with at least two elements. Here is a winning strategy for Eloise: 
 

• Let � choose x, z 	 M. If x ≠ z, then � chooses Left. If x = z, then � 
chooses Right after which she chooses z (that she “sees”.) 

 
Next we show that the IF sentence 
 

�x�y�z[x = y ˄�v(�u/{x})(u ≠ x 
 v ≠ z)] 
 
is a logical falsity. Let M be a set with two elements. Here is a winning strat-
egy for Abelard: 



Truth and Probability in Game Theoretical Semantics                                157 

 

• Let � choose x, y, z. If x ≠ y then chooses Left. If x = y then � chooses 
Right, and then he chooses v = z (that she sees) and u = y that he also 
sees. Given that y = x, it follows that u = x. 

 
III.2 Skolem Functions and Kreisel Counter-examples 
 

We describe an alternative interpretation that will be useful later on. It 
consists in decomposing Eloise’s strategies into Skolem functions and Abe-
lard’s strategies into Kreisel counterexamples. 

When φ is an IF formula, the skolemized form or skolemization of φ 
with free variables in U, SkU(φ), is defined by induction on the subformulas 
of φ: 
 

1. SkU(ψ) = ψ, for ψ a literal 
 

2. SkU(ψ ◦ θ) = SkU(ψ) ◦ SkU(θ), for ◦ 	{
, ˄} 
 

3. SkU((�x/W)ψ) = �xSkU � {x}(ψ) 
 

4. SkU((�x/W)ψ) = Sub(SkU � {x}(ψ), x, f(y1, ..., yn)) 
 
where y1, ..., yn are all the variables in U - W and f is a new function symbol 
of appropriate arity. We abbreviate Sk .(φ) by Sk(φ). 

Truth in a model M, with respect to the assignment s which includes the 
free variables of φ is then defined by: 
 

• M, ⊨ SK φ if and only if there exist functions g1, ..., gn of appropriate 
arity in the universe M of M to be the interpretations of the new func-
tion symbols in SkU(φ) such that 
 

M, g1, ..., gn, s ⊨ SkU (φ)  
 

where U is the domain of s. The functions g1, ..., gn are called skolem 
functions. 

 
Recall one of our earlier examples 
 

�x�z(x ≠z 
 (�y/{x})x = y). 
 
Its Skolemized form is 
 

�x�z(x ≠z 
x = f(z)) 
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where f is a new function symbol. Note that the earlier informal idiom “� sees 
z” is now given a precise formulation in the strategy function f taking z as its 
argument. It is straightforward to see that for every model M there is an ex-
pansion M, g (g is the interpretation in M of the new function symbol f) such 
that 
 

M, g ⊨ �x�z(x ≠ z 
 x = f(z)). 
 
We let g be defined by: g(a) = a for every a 	 M. Applying the definition 
M, s⊨ SK  φ we conclude that 
 

M, s ⊨ SK  �x�z(x ≠ z 
 (�y/{x})x = y). 
 
We now define the dual procedure of Skolemization. The Kreisel form 
KrU(φ) of the IF formula φ in negation normal form with free variables in U 
is defined by: 
 

1. KrU(ψ) = ψ, for ψ a literal 
 

2. KrU(ψ 
 θ)=KrU(ψ) ˄ KrU(θ) 
 

3. KrU(ψ ˄ θ) = KrU(ψ) 
 KrU(θ) 
 

4. KrU((�x/W)ψ) = �xKrU �{x}(ψ) 
 

5. KrU((�x/W)ψ) = Sub(KrU �{x}(ψ), x, g(y1, ..., ym)) 
 

where y1, ..., ym are all the variables in U - W. 
Falsity in a model M with respect to the assignment s which includes 

the free variables of φ is then defined by: 
 

• M, s⊨ SK φ if and only if there exist h1, ..., hm in M to be the interpreta-
tions of the new function symbols in Kr(φ) such that 

 
M, h1, ..., hm, s ⊨ KrU (φ) 

 
where U is the domain of s. We call h1, ..., hm Kreisel counterexamples. 

 
We illustrate it with the second of our earlier examples: 
 

�x�y�z[x = y ˄�v(�u/{x})(u ≠ x 
 v ≠ z)]. 
 
Its Kreisel form is 
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�x�y�z[x = y 
 (f(y, z, g(x, y, z)) = x ˄ v = z)] 
 
where f and g are new function symbols. Let M be a model with at least two 
elements. In order to show that our initial sentence is false in M, we show that 
we can find the Kreisel counter-examples h1 (the interpretation of g) and h2 
(the interpretation of f) such that 
 

M, h1, h2 ⊨�x�y�z[x ≠y 
 (f(y, z, g(x, y, z)) = x ˄ g(x, y, z) = z)]. 
 

We let: h1(a, b, c) = c and h2(a, b, c) = b. 
 
 

IV. INDETERMINACY 
 

Imperfect information introduces indeterminacy into the games. We 
consider two examples: 
 

φMP = �x(�y/{x})x = y 
 
and 
 

φIMP = �x(�y/{x})x ≠ y. 
 
The first one “expresses” the Matching Pennies game in IF logic: two players 
turn a coin to Head or Tail independently of each other. If their choices 
match, the second player wins. Otherwise the first player wins. We take the 
second sentence to express the Inverted Matching Pennies. 

Using the Skolem-Kreisel interpretation mentioned earlier, we can 
show that both sentences are indeterminate on every structure which contains 
at least two elements. In order to see this, notice that the Skolem and Kreisel 
forms of φMP  are �xx = c and �yd ≠ y, respectively, where c and d are new 
constants. Similarly, the Skolem and Kreisel forms of φIMP are �yd ≠ y and 
�xx = c, respectively. 

The first claim is straightforward. Let M be a set which contains at least 
two elements. Obviously there is no extension M, a of M such that M, a ⊨ �xx 
= c. And by analogy, there is no extension M, b of M such that M, b ⊨ �yd ≠ y. 
Thus by the definitions above, φMP is neither true nor false in M. A similar ar-
gument establishes that φIMP is neither true nor false in M. 
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V. EQUILIBRIUM SEMANTICS 
 

To resolve the indeterminacy of IF sentences, we move to strategic 
games. This technique, well known to game theorists, has been described for 
the first time in [Sevenster (2006)] developed in [Sevenster and Sandu 
(2010)], [Mann, Sandu, and Sevenster (2011)], [Sandu (2012)], [Sandu 
(forthcoming)], and [Barbero and Sandu (forthcoming)]. We first sketch the 
intuitive idea for the two sentences above and a model (which is a set) M= {1, 
2, 3, 4}. Given the equivalence of the three semantic interpretations listed 
earlier, we can take a strategy for Eloise in the semantical game G(M), φMP) 
to be a sequence of functions to be the interpretations in M of the new func-
tion symbols in the Skolem form of φMP. In the case of φMP there is only one 
new function symbol: the constant c. Whence a strategy for Eloise is any in-
dividual n 	 M. By a similar argument, a strategy for Abelard reduces to any 
individual m 	 M. Now when Eloise plays n and Abelard plays m, a play of 
the semantical game G(M, φMP) is generated. This play is a win for Eloise if n 
= m, and a win for Abelard if n ≠ m. 

We are now ready for the general definition of strategic IF games. 
A strategic IF game � has the form �(M,�) = (S

�
, S

�
, u�, u�) where: 

 
• S

�
 is the set of strategies of Eloise in the semantical game G(M,�)  

• S
�
 is the set of strategies of Abelard in the semantical game G(M,�)  

• u� the payoff function of Eloise: u�(s, t) =1 if playing s 	 S
�
 against t 

	 S
�
 yields a win for � in G(M,�); and u� (s, t) = 0, otherwise. 

• u
�
 is defined analoguously. 

 
It is customary to present a strategic game in a matrix form. When φ is φMP 
and M = {1, 2, 3, 4}, the corresponding strategic IF game is represented by 
the matrix: 
 

 1 2 3 4 
1 (1,0) (0,1) (0,1) (0,1) 
2 (0,1) (1,0) (0,1) (0,1) 
3 (0,1) (0,1) (1,0) (0,1) 
4 (0,1) (0,1) (0,1) (1,0) 

 
Notice that strategic IF games are 2 player, win-loss games: For every s 	 S

�
 

and t 	 S
�
 we have: u�(s, t) + u

�
(s, t) = 1. 
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The advantage of turning semantical games into strategic games is that 
we can now use solution concepts from classical strategic game theory. One 
such notion is that of two strategies being in equilibrium. For a strategic IF 
game �(M,�) = (S

�
, S

�
, u�, u�), the pair (σ*, 2*) 	 S

�
 3 S

�
 is an equilibrium 

(in pure strategies) if the following two conditions are both satisfied: 
 

1. u� (σ*, 2*) 4 u� (σ*, 2*) for every σ 	 S
�
 

2. u
�
 (σ*, 2*) 4 u

�
 (σ*, 2*) for every 2 	 S

�
. 

 
It may be checked that in our two examples there is no equilibrium. This is, 
obviously, nothing else than the counterpart of the indeterminacy of sentence 
φMP on any model which contains at least two elements. 

To resolve the indeterminacy of games, we follow a strategy well 
known to game theorists: we move to mixed strategies. 

Let �(M, �) = (S
�
, S

�
, u�, u�), be a finite strategic IF game. A mixed 

strategy v for player p is a probability distribution over Sp, that is, a function 
v: Sp �[0, 1] such that �σ	Sp v (2) = 1. v is uniform over S’i " Si if it assigns 
equal probability to all strategies in S’i and zero probability to all the strate-
gies in Si - S’i. 

Let 5(Sp) be the set of mixed strategies over Sp. If   	 5(S
�
) and v 	 

5(S
�
), the expected utility for player p is given by: 

 
Up( , v) = �σ	S��σ	S� (σ) 
 (2) up(σ,2).  

 
We can identify a pure strategy σ 	 S� with a “degenerate” mixed strat-

egy which assigns to σ probability 1 and 0 to all the other strategies in S�. 
That is, when σ 	 S�  and v 	 5 (S

�
), we let 

 
Up(σ, v) = �2	S�v(2)up(σ,2). 

 
Similarly, when 2 	 S

�
 and   	 5( S�), we let 

 
Up( , 2) = �σ	S� (σ) up(σ,2). 

 
Let � = (S

�
, S

�
, u�, u�), be a two-player finite strategic game which is also a 

win-lose game (the only payoffs are 0 and 1). For μ* 	 5( S
�
) and v * (S

�
), 

the definition of (μ*, v*) being a mixed strategy equilibrium in � is com-
pletely analogue to the earlier one. 
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The following results are well known. 
 
Theorem (von Neuman’s Minimax Theorem) Every finite, two-person, win-

lose game has an equilibrium in mixed strategies. 
 
Corollary Let (μ,v) and (μ�,v�) be two mixed strategy equilibria in a win-

lose game. Then Up(μ,v) = Up(μ�,v�). 
 
The above results tell us that for two-player finite win-lose games an equilib-
rium always exists (von Neumann’s theorem), and in addition, any two 
mixed strategy equilibria deliver the same expected utility. We shall take the 
value of the strategic game to be the expected utility delivered by any of the 
mixed strategy equilibria in the game. 

Mann et al (2011) develop a toolkit for identifying mixed strategy equi-
libria in strategic IF games. Here we give one such result. 
 
Proposition Let �(M, �) = (S

�
, S

�
, u�, u�) be a 2-player, finite strategic game. 

Let μ* �� (S
�
) and v* � �( S

�
). The pair (μ*,v*) is an 

equilibrium in � if and only if the following conditions hold: 
 

1 U�(μ*, v*) = U� (�, v*) for every � � S
�
 in the support of μ* 

 

2. U
�
(μ*,v*) = U

�
 (μ*, 	) for every 	 � S

�
 in the support of v* 

 

3. U�(μ*, v*) 
 U� (�, v*) for every � � S
�
 outside the support of μ* 

 

4. U
�
(μ*, v*) 
 U

�
 (μ*,	) for every 	 � S

�
outside the support of v* 

 
(The support of a mixed strategy is the set of pure strategies which are as-
signed non-zero probability). We illustrate the notions introduced so far by 
returning to the two examples of indeterminate IF sentences considered so 
far. Recall the IF strategic game �(M, �MP) when M = {1, 2, 3, 4}: 
 

 1 2 3 4 
1 (1,0) (0,1) (0,1) (0,1) 
2 (0,1) (1,0) (0,1) (0,1) 
3 (0,1) (0,1) (1,0) (0,1) 
4 (0,1) (0,1) (0,1) (1,0) 

 
Let μ be a uniform strategy for � over M and v be a uniform strategy 

for � over the same set. Eloise’s expected utility for the pair (μ, v) is 
 

U�(μ,v) = 4 �(¼ � ¼ � 1) = ¼ 
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and Abelard’s expected utility for the same pair is  
 
U
�
(μ, v) = 4 3(¼ 3 ¼ 3 3) = ¾ 

 
It is straightforward to show, using the last Proposition, that the pair of mixed 
strategies (μ, v) is an equilibrium. We conclude that the value of the game is 
U�(μ,v) = ¼. In the general case in which M has n elements, it may be 
checked that the pair (μ, v) of uniform strategies over M is an equilibrium in 
the game and the value of the game is 1/n. 

Let φ be an IF sentence and M a finite model. We shall take the value of 
the sentence φ in M to be the value of the strategic game �(M, φ). Thus the 
value of φMP in M = {1, ..., n} is 1/n. 

When M = {1, 2, 3, 4}, the strategic IF game � (M, φMP) is represented 
below: 
 

 1 2 3 4 
1 (0,1) (1,0) (1,0) (1,0) 
2 (1,0) (0,1) (1,0) (1,0) 
3 (1,0) (1,0) (0,1) (1,0) 
4 (1,0) (1,0) (1,0) (0,1) 

 
It may be checked that the pair (μ, v) of uniform probability distributions 
over M is also an equilibrium in this case. Thus the value of φMP in M is ¾. 
 
 

VI. GAME-THEORETICAL PROBABILITIES 
 

We shall internalize the probabilistic interpretation of IF logic by ex-
tending the object language to include identities of the form NE(φ) = r. Their 
interpretation is straightforward (the idea is due to Galliani and appears in 
Sandu, forthcoming): 
 

M ⊨ NE(φ) = r if and only if the value of φ in M is r. 
 
It follows, from results in [Mann et al. (2011), chapter 7] that the prob-

abilistic interpretation of IF logic is a conservative extension of the game-
theoretical interpretation in the following sense: 
 

(i) M s ⊨ GTS ψ iff M ⊨ NE(ψ) = 1 
(ii) M s ⊨ GTS ψ iff M ⊨NE(ψ) = 0 
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Mann et al. (Chapter 7) also show the following: 
 

P1. NE(φ 
 ψ) = max(NE(φ), NE(ψ)) 
 

P2. NE(φ � ψ) = min(NE(φ), NE(ψ)) 
 

P3. NE(¬φ) = 1 - NE(φ). 
 
From these facts, it is easy to establish the validity of the following principles: 
 

Ax1. NE(φ) 4 0 
 

Ax2. NE(φ) + NE(¬φ) = 1 
 

Ax3. NE(φ) + NE(ψ) 4 NE(φ 
 ψ) 
 

Ax4. NE(φ � ψ) = 0 � NE(φ) + NE(ψ) = NE(φ 
 ψ) 
 
(Ax1) follows automatically from the probabilistic interpretation. Ax2 is the 
counterpart of (P3). (Ax3) follows from (Ax1) and (P2). As for (Ax4), let M be 
an arbitrary model and suppose that M ⊨ NE(φ � ψ) = 0. Then by (ii), M 
s⊨ GTS (φ � ψ). From the way strategies are defined in semantical games: M 
s⊨ GTS

GTS
φ or M s⊨ GTS ψ. Suppose that M s⊨ GTS φ. Then by (ii) M ⊨ NE(φ) = 0 

and it also follows that M ⊨ GTS NE(φ) + NE(ψ) = NE(ψ). From P1 we also 
know that M ⊨ GTS NE(φ 
 ψ) = max(NE(φ), NE(ψ)), i.e., M ⊨ GTS NE(φ 
 ψ) = 
NE(ψ). The other case is similar. 
 
 

VII. TWO CONCEPTIONS OF PROBABILITY: STATISTICAL KNOWLEDGE  
VS. DEGREE OF BELIEF 

 
It is common knowledge that there are, roughly, two interpretations of proba-
bilities: 
 

• Probabilities as proportions or relative frequencies 
 

• Probabilities as degrees of belief 
 
Both of them obey the so-called Kolmogorov axioms (Here S is a sample 
space and Π is a field of subsets): 
 

1. pr(A) 4 0 for all A 	 Π 
 

2. pr(S) = 1 
 

3. If pr(A 0 B) = 0 then pr(A � B) = pr(A) + pr(B) 
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Bacchus (1990) gives a nice overview of the two conceptions and illustrates 
them by the following statements: 
 

1. The probability that a randomly chosen bird flies is greater than 0.9 
 

2. The probability that Tweety (a particular bird) flies is greater than 0.9 
 
(1) seems to assume one world (the real world) and in this world some prob-
ability distribution over the set of birds. It says that if we consider a bird cho-
sen at random, it will fly with probability greater than 0.9. Halpern (1990) 
endorses the same distinction and takes (1) to be about a chance set up: the 
result of performing an experiment or trial in some situation. Given some sta-
tistical information (that 90% of the individuals in a population have property 
P), then we may imagine a chance set up in which a randomly chosen indi-
vidual has probability 0.9 of having property P. 

For both Bacchus and Halpern (2) is about the degree of belief of the 
agent and thus seems to implicitly assume a number of possibilities (possible 
worlds), in some of which Tweety flies, while in others it does not fly, and a 
probability distribution over them. Thus the contrast between statistical prob-
ability and degree of belief is spelled out in terms of two kinds of probability 
distributions: one over the individuals of the (one world) universe, and the 
other over the set of relevant possible worlds. Corresponding to them, two 
logical formalisms have been developed, both containing an empirical com-
ponent in the semantics. 
 
VII.1 Statistical Probabilities 
 

Probability distributions of the first kind are represented in a logical 
formalism which extends first-order languages with expressions of the form 
wx(φ). Here wx(φ) is a term and wx is a binding expression which binds the 
free occurrences of the variable x in the first-order formula φ. In this setting, 
sentences like (1) have the logical form wx(φ) > 0.9. The syntax actually al-
lows arbitrary sequences of distinct variables in the subscript. To fix intui-
tions, we give an example (taken from Halpern). 

We let S(x, y) say that x is the son of y. The three terms below have the 
following interpretations: 

 
• wx(S(x, y)) : the probability that a randomly chosen x is the son of y 
 

• wy(S(x, y)) : the probability that x is the son of a randomly chosen y 
 

• w(x, y)(S(x, y)) : the probability that a randomly chosen pair (x, y) has 
the property that x is the son of y 
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The syntax is two sorted, with the variables x, y... being object variables. I 
will skip over the details. 

Formulas of the object language are interpreted on probability models. 
These are tuples M = (D, I, μ) where (D, I) is an ordinary first-order model 
and   is a discrete probability function on D. That is,   is a mapping from D 
to the real interval [0, 1] such that �d	A (d) = 1. For any A " D we define: 
 

 (A) = �d	A (d) 
 
Given such a probability function we can define a discrete probability func-
tion  n on Dn by taking  
 

 n(d1, ..., dn) =  (d1) 3... 3  (dn). 
 
The evaluation of formulas in probability structures follows the standard 
lines. The clause which interests us is (here s is an assignment) 
 

• [w(x1 , ..., xn)(φ)]M,s = μn({(d1, ..., dn) : (M,s[x1 /d1, ..., xn /dn]) ⊨ φ}). 
 
We return to the last example and consider a model M = ({a, b, c}, I,  ) such 
that I(S) = {(a, b)} and  (a) = 1/3,  (b) = ½ and  (c) = 1/6. Let s be an as-
signment such that s(x) = a and s(y) = c. Then  
 

[wx(Son(x, y)](M, s) = 0 
 

[wy(Son(x, y)](M, s) = ½  
 

[wx, y(Son(x, y)](M, vs) = 1/6  
 

VII.2 Degrees of Belief 
 

Corresponding to probability distributions over possible worlds, we 
have extensions of propositional or first-order languages with terms of the 
form t(φ).The intended interpretation is: the degree of belief that φ. In this 
new setting sentences like (2) are represented by 
 

t(Flies(Tweety)) > 0.9. 
 
Let us mention right away the syntactical distinction between wx(φ) and t(φ): 
in the former an occurrence of a free variable x in φ is bound by wx whereas 
in the later t is not a binding expression. That will be seen to have important 
consequences (cf. the Lemma below). 

The formulas of a given object language are interpreted on probability 
models which now have the form (D, W, π, μ): D is a domain, W is a set of pos-
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sible worlds, and for each w 	 W, π(w) assigns to the predicate and function 
symbols of the language predicates and functions of the right arity over D. μ is 
a discrete probability function on W. Here are few clauses which interest us: 
 

• (M, w, s) ⊨ P(x) iff s(x) 	 π (w)(P) 
• (M, w, s) ⊨ t1 = t2 iff [t1](M, w, s) = [t2](M, w, s) 
• (M, w, s) ⊨ �xφ iff (M, w, s(x/d)) ⊨ φ for each d 	 D 
• [t(φ)](M, w, s) = μ({w’ 	 W : (M, w, s) ⊨ φ}) 

 
That is, the predicate Flies receives an extension in every possible world. As 
a result Flies(Tweety) is true in some possible worlds but not in others. A 
probability distribution μ is then assigned to the set of possible worlds. Final-
ly we check whether the set of possible worlds where Flies(Tweety) has 
probability greater that 0.9. 

We note that when the probabilities are all 0 and 1, this variant of the 
probability logic reduces to ordinary logic.  

The following Lemma (proved in [Halpern (1990)]) shows the main 
difference between the two approaches: 
 
Lemma If φ is a closed formula, then for any vector xx  of distinct object var-

iables we have 
 

⊨ W xx (φ) = 0 
 W xx (φ) = 1 
 
This Lemma holds for the first approach and not for the second. It tells us 
that closed sentences behave classically in the first approach. It follows that a 
sentence like Flies(Tweety) cannot take intermediate values between 0 and 1, 
if represented in the first approach. It is thus inconsistent to claim that the 
probability of Flies(Tweety) is, say, less than 0.95 and greater than 0.9 in the 
first approach. But this is not any longer so in the current approach where 
Flies(Tweety) is prefixed with the operator t. 
 
 

VIII. GAME-THEORETICAL PROBABILITIES RECONSIDERED 
 

We have analyzed three logical frameworks which correspond to three 
probability distributions: 
 

• w xx (φ) arises out of probability distributions over the individuals in a 
single universe 
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• t(φ) arises out of probability distributions over possible worlds 
 

• NE(φ) arises out of the equilibria of probability distributions over 
strategies (functions) over a single universe 

 
All of them obey Kolmogorov probability axioms. Syntactically NE(φ) oper-
ates in the same way as t(φ): neither NE nor t has a binding role. This is an 
interesting fact in itself given that there is a general agreement in the game-
theoretical literature that the notion of (Nash) equilibrium cannot be properly 
understood without reference to the players’ beliefs. The connection between 
Nash equilibria and belief deserves much more space than we have here. We 
prefer instead to work out an example which illustrates the reduction of 
game-theoretical probabilities to probability distributions of the first kind. 

Recall our earlier example 
 

φMP = �x(�y/{x})x = y 
 
and the model M = {1, 2, 3, 4}. 

Recall also that Sk(φMP) = �xx = c, Kr(φMP) = �yd (y and the strategic 
game � (M, φMP) has the matrix form: 
 

 1 2 3 4 
1 (1,0) (0,1) (0,1) (0,1) 
2 (      

(0,1) 
(1,0) (0,1) (0,1) 

3 (0,1) (0,1) (1,0) (0,1) 
4 (0,1) (0,1) (0,1) (1,0) 

 
We pointed out that the pair ( , v) of two uniform probability distributions 
over M constitute an equilibrium in the game. 

We now convert Sk(φMP) into the “statistical” sentence 
 

wx(x = c) 
 
Next we enlarge the model M to a probability model in two steps: 
 

1. We expand M to the model (M, a) where a is the interpretation of the 
new constant symbol c: given the uniform probability distribution 
 , we take a to be any of the four elements of M, say a = 1. 
 

2. We expand the model (M, a) to the probability model M* = (M, 1, v). 
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We can check that in the Halpern-Bacchus semantics we have: 
 

[wx(x = c)]M* = 
 

v ({a : (M*, a) ⊨ x = c}) = 
 

v ({1}) = ¼ 
 
We have “reduced” the value of the game given by the expected utility returned 
to Eloise by the mixed strategy equilibrium ( , v) to a statistical, relative fre-
quency value, as modeled in the Bacchus-Halpern approach. Notice that 
 

v({1}) = �n=1, ..., 4 v (n) 
 

= U�(1, v) 
 

= U�(μ, v) 
 
holds in virtue of the last proposition of section V. 

This example has a philosophical significance: it shows how in some 
simple cases, a statistical value ([wx(x = c)]M*) which is based on an empiri-
cal component in the semantics is obtained from a non-empirical, mathemati-
cal concept: the value U�(μ, v) of the game. 
 
 
Department of Philosophy 
University of Helsinki 
Unioninkatu 38 A,  
FI-00014, Helsinki, Finland 
E-mail: sandu@mappi.helsinki.fi 
 
 
REFERENCES 
 
BACCHUS, F. (1990), ‘Lp, A Logic for Representing and Reasoning with Statistical 

Knowledge’, Computational Intelligence, 6, pp. 209-231. 
BARBERO, F. AND G. SANDU (FORTHCOMING), ‘Signalling in Independence-Friendly 

logic’, Logic Jnl IGPL (2014) doi: 10.1093/jigpal/jzu004. 
GOLDFARB, W. (1979), ‘Logic in the Twenties: The Nature of the Quantifier’, Journal 

of Symbolic Logic, 44, pp 351-68. 
HALPERN, J. (1990), ‘An Analysis of First-Order Logics with Probability’, Artificial 

Intelligence, 46, pp. 311-350. 
HINTIKKA, J. and SANDU, G. (1989), ‘Informational Independence as a Semantic Phe-

nomenon’, in J.E. Fenstad et al. (ed.) Logic, Methodology and Philosophy of 
Science, vol. 8, Amsterdam, Elsevier, pp. 571-589. 



170                                                                                                       G. Sandu 

 

–– (1997), ‘Game-Theoretical Semantics’, in J. van Benthem and A. ter Meulen 
(eds.), Handbook of Logic and Language, Amsterdam, Elsevier, pp. 361-410. 

HODGES, W. (1997) ‘Compositional Semantics for a Language of Imperfect Infor-
mation’, Logic Journal of the IPGL, 5, pp. 539-563. 

JANSSEN, T.M.V, and DECHESNE, F. (2006), ‘Signalling in IF Games: a Tricky Busi-
ness’, in J. van Benthem, G. Heinzmann, M. Rebuschi, and H. Visser (eds.) The 
Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics To-
day, Berlin, Springer, pp. 221-241. 

MANN, A., SANDU, G. and SEVENSTER, M. (2011), Independence-Friendly Logic: A 
Game-Theoretic Approach, Cambridge, UK, Cambridge University Press. 

SANDU, G.  (2012), Independendly-Friendly Logic: Dependence and Independence of 
Quantifiers in Logic, Philosophy Compass, 7, 691-711.  
SANDU, G. (forthcoming), ‘Languages for Games of Imperfect Information’, in J. van 

Benthem, S. Gosh, and R. Verbrukke, Handbook of Strategic Reasoning, Texts 
in Logic, Springer 

SEVENSTER, M. (2006), Branches of Imperfect Information: Logic, Games, and Com-
putation, PhD Thesis, Amsterdam, University of Amsterdam. 

SEVENSTER, M and SANDU, G. (2010), ‘Equilibrium Semantics of Languages of Im-
perfect Information’, Annals of Pure and Applied Logic, 161, pp. 618-631. 

TAO, T. (2007), ‘Printer-friendly CSS, 2007 and Non-firstoderisability’, in T. Tao 
(ed.), What’s New: Updates on My Research and Expository Papers, Discus-
sion of Open Problems, and Other Maths Related Topics. 


