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Abstract 

In the United States, students‘ learning experiences around proof is generally 

concentrated in the domain of high school geometry with a focus on its verification 

function. Thus, providing students with a limited conception of what proof entails 

and the role that it plays in performing mathematics. Moreover, there is a lack of 

U.S.-based studies addressing how to integrate proof into other mathematical 

domains within the high school curriculum. In this paper, the author reports results 

from an interview at the end of a teaching experiment which was designed to 

integrate algebra and proof into the high school curriculum. Algebraic proof was 

envisioned as the vehicle that would provide high school students the opportunity to 

learn about proof in a context other than geometry. Results indicate that most 

students were able to produce an algebraic proof involving variables and a 

parameter and its multiples. In doing so, students experienced the discovery function 

of proof.  
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Resumen 

En USA las experiencias de aprendizaje de los estudiantes sobre demostración se 

concentran generalmente en el dominio de la geometría de secundaria, con énfasis 

en su función de verificación. Sin embargo, se les da una concepción limitada de lo 

que significa. Es más, existe una falta de estudios en USA sobre cómo integrar el 

uso de las demostraciones en otros dominios de las matemáticas dentro del 

currículum de secundaria. En este artículo se presentan resultados de una entrevista 

realizada al final de un experimento de enseñanza que fue diseñado para integrar el 

álgebra y la demostración en el currículum de secundaria. La demostración 

algebraica se presenta como un vehículo que puede aportar la oportunidad de 

aprender sobre la demostración en otros contextos que no sean la geometría. Los 

resultados indican que la mayoría de los estudiantes son capaces de producir 

demostraciones algebraicas que involucran variables y parámetros. Haciendo esto, 

los estudiantes experimentan el descubrimiento de la función de las demostraciones.  

Palabras clave: demostración, álgebra, descubrimiento, demostración 
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n the U.S., we lack a robust research base focused on students‘ 

experiences around proof in high school in domains other than 

geometry. Hanna (2007) argues that mathematical proof has 

increasingly played a less prominent role in the secondary mathematics 

curriculum in the U.S., thus urging, ―We need to find ways, through 

research and classroom experience, to help students master the skills and 

the understanding they need‖ (p.15).  Indeed, it is surprising the void in the 

U.S. curriculum regarding proof with the exception of high school 

geometry, and its emphasis on the two-column format (Herbst, 2002). 

Despite this past lack of emphasis on proof, however, there currently seems 

to be a shift in how proof is viewed as part of the secondary mathematics 

curriculum. The authors argue that proof should be naturally incorporated 

into all areas of the curriculum. There are currently several other documents 

advocating for the central role of proof in the teaching and learning of 

mathematics across all grades (e.g., Stylianou, Blanton, & Knuth, 2009). 

However, Herbst (2002) argues that a change in how students view proof 

would require more than minor adjustments or calls for reform. Some 

research suggests that integrating proof into domains other than geometry 

holds much promise for students‘ understanding of proof (e.g., Hanna & 

Barbeau, 2008; Healy & Hoyles, 2000; Pedemonte, 2008; Stylianou et al., 

2009). As we are far from having a sound body of research, it remains to 

systematically study how to incorporate proof into areas other than 

geometry in ways that support students‘ learning of these important 

concepts. To do this, the author draws from research in countries that do 

have a tradition of incorporating proof throughout the curriculum both 

across domains within mathematics and across grades (e.g., Arsac et al., 

1992; Balacheff, 1982; Boero, Garuti, & Mariotti, 1996; Pedemonte, 2008). 

In addition, over the past decade, the learning and teaching of algebra has 

increasingly become a central component of the mathematics education 

research agenda (Gutiérrez & Boero, 2006; Stacey, Chick, & Kendal, 

2004). In the U.S., algebra is often considered as a gatekeeper to accessing, 

and ultimately understanding, more advanced mathematics (Kilpatrick, 

Swafford, & Findell, 2001; National Council of Teachers of Mathematics, 

2009; National Mathematics Advisory Panel, 2008). Despite its role as 

gatekeeper, researchers have largely demonstrated the difficulties students 

have encountered in learning algebra. For example, some studies show that 

students do not comprehend the use of letters as generalized numbers or as 

I 
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variables (e.g., Booth, 1984; Kuchemann, 1981) and have difficulty 

operating on unknowns (e.g., Bednarz, 2001; Filloy & Rojano, 1989; Filloy, 

Rojano, & Puig, 2008; Filloy, Rojano, & Solares, 2010). Additionally, 

extant research has focused mostly on elementary algebra (the study of 

patterns, functions, linear equations, etc.); consequently, little is known 

about students' mathematical experiences around more advanced algebraic 

concepts and skills, such as algebraic expressions involving multiple 

variables and parameters, among others, as recommended by the National 

Mathematics Advisory Panel (2008). 

 Taken together, I hypothesize that algebraic proof can serve as a vehicle 

for integrating more advanced algebraic concepts (e.g., problems involving 

multiple variables and parameters) together with mathematical proof in the 

U.S. curriculum, thus supporting students‘ understanding of both important 

mathematical topics. In fact, some researchers have highlighted that proofs 

are more than instruments to establish that a mathematical statement is true. 

Indeed, they embody mathematical knowledge in the form of methods, 

tools, strategies, and concepts (Hanna & Barbeau, 2008; Rav, 1999). Thus, 

the field is in need of U.S.-based studies that develop ways of integrating 

proof in this broader way, across different areas of mathematics and across 

grade levels, and to systematically study the ways in which students engage 

with innovative problems that involve algebraic proof.  

It is in this context that the author presents findings from a teaching 

experiment that focused on an integrated approach to the teaching of 

algebra and proof in high schools in the U.S. Accordingly, the goals of this 

paper are as follows: (1) to state our working hypothesis that an integrated 

approach to algebra and proof has great potential to foster students‘ 

meaningful learning of both algebra and proof; (2) to make explicit the 

underlying theoretical principles used to inform the design of problems; 

and, (3) to describe students‘ mathematical processes as they worked 

through a problem that involves multiple variables, and a parameter and its 

multiples in an individual interview setting at the end of the teaching 

experiment aimed at assessing student learning. In doing this, I will present 

an illustration of students using proof as discovery.  
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Framework 

 

Algebra: A Tool with the Potential to Make Explicit What is Implicit 

 

Regarding algebra, researchers worldwide have proposed varied 

conceptualizations of school algebra in order to foster students‘ meaningful 

learning. Among many, some are the functional approach (e.g., Schwartz & 

Yerushalmy, 1992) and algebra as generalization (Lee, 1996; Mason, 

1996).  

Each approach highlights different and centrally important aspects of 

school algebra. However, from our perspective, what is still missing is an 

emphasis on one of the most important features of algebra: by manipulating 

an expression we can read information that was not visible or explicit in the 

initial expression (Arcavi, 1994). For instance, we can show using algebra 

that if we add three. In addition, we can also see that the sum will always be 

the triple of the second number 3(a+1) by factoring 3 from both terms. This 

aspect of algebra—the use of algebraic notation to make explicit what 

previously was implicit— has great potential to link algebra with proof due 

to its capacity to unveil that a certain property holds for all cases (e.g., the 

sum of any three consecutive integers is (always) a multiple of three). This 

feature of algebra lies at the centre of the teaching experiment described 

herein.  

 

Algebra as a Modelling Tool 

 

Given the project‘s focus on integrating algebra and proof, I employ 

Chevallard‘s (1989) framework in which algebra is envisioned as a tool to 

mathematically model problems. In particular, Chevallard (1989) described 

the modelling process using algebra in the following way: (1) Define the 

system to be studied by identifying the pertinent aspects in relation to the 

study of the systems that are to be carried out … (2) Build a model by 

establishing a certain number of relations R, R‘, R‘‘, etc., among the 

variables chosen in the first stage; the model of the systems to study is the 

set of these relations. (3) ‗Work‘ the model obtained through stages 1-2 

with the goal of producing knowledge of the studied system, knowledge 

that manifests itself by new relations among the variables of the system. (p. 

53)  



 REDIMAT, 3(1) 33 

 

 

Recalling the example presented in the previous section, we can use 

algebra to show (i.e., prove) that the sum of any three consecutive integer 

numbers is always a multiple of three. First, following Chevallard‘s (1989) 

framework, we identified the variables which are the three integers a, b, and 

c (i.e., first stage). Since they are consecutive we can, as outlined in the 

second stage, identify the mathematical relations that are at play. Thus, 

b=a+1, and c=b+1. In addition, since, b=a+1 substituting in c=b+1 gives us 

c=(a+1)+1=a+2. So far, we have expressed the three consecutive numbers 

by using the ―consecutive‖ relation obtaining the following: a, a+1, a+2. 

Now, in the third stage, since we have the same variable, we can work the 

model as follows: a+(a+1)+(a+2)=(a+a+a)+(1+2)=3a+3=3(a+1). This last 

expression shows that, in fact, the sum of three consecutive integers is 

(always) a multiple of three. We can also say with precision that the sum is 

a specific multiple of three; it is also a multiple of the second consecutive 

number.  

This aspect of algebra, namely the potential to reveal or make explicit 

new information through the use of properties, has been underplayed in 

school algebra, yet has great potential for integrating algebra and proof, and 

builds upon the so-called 'discovery' function of proof as mentioned by De 

Villiers (1990). By using algebra, we can generalize patterns and represent 

relations, and thus capture all cases with a general expression. This is 

necessary when in need of proving a statement with a universal quantifier. 

In addition, using algebra, we can manipulate and transform an expression 

into equivalent expressions (e.g., using distributive property); as a 

consequence, we may make explicit in the later expression what we wanted 

to show (i.e., prove). These two aspects of algebra are central to 

constructing algebraic proofs. 

 

Mathematical Proof 

 

The notion of proof in our framework has been conceptualized by 

bringing together a range of prior research. First, I build on Balacheff‘s 

(1982, 1988) notion that proof is an explanation that is accepted by a 

community at a given time. He distinguishes between an explanation (i.e., 

the discourse of an individual who aims to establish for somebody else the 

validity of a statement) and a mathematical proof (i.e., a discourse with a 
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specific structure and follow well-defined rules that have been formalized 

by logicians).  

Second, I draw on the corpus of research that brought to the forefront 

the multiple functions of proof beyond the verification purpose. Among 

them, Hanna‘s (1990) distinction between proofs that (just) prove and 

proofs that (also) explain. The first type just establishes the validity of a 

mathematical statement while the second type, in addition to proving, 

reveals and makes use of the mathematical ideas that motivate it. In a 

similar vein, Arsac et al. (1992) proposed three roles for proofs: to 

understand why and/or to know, to decide the truth-value of a conjecture, 

and to convince oneself or someone else. In a similar vein, De Villiers 

(1990, 2012) gave the following roles that proofs play in mathematics: 

verification (i.e., concerned with the truth of the statement); explanation 

(i.e., providing insight into why it is true); systematization (i.e., the 

organization of various results into a deductive system of axioms, major 

concepts and theorems); discovery (i.e., the discovery or invention of new 

results); and communication (i.e., the transmission of mathematical 

knowledge). De Villiers (1990) suggests that these other functions of proof 

can have pedagogical value in the mathematics classroom. Of special 

interest to us is the function of discovery, namely, when new results are 

discovered/invented in a deductive way. As it will be shown later, this is the 

way proof was embodied in the interview. 

Third, drawing from Boero‘s notion of cognity unity (2007, 1996), it is 

assumed that conjecturing and proving are inter-related and crucial 

mechanisms in generating mathematical knowledge. Therefore, in the 

problems analyzed as part of our teaching experiment, students were not 

provided with the conjecture to prove. Instead, as part of the problem, they 

had to construct or produce their own conjectures, and then prove them.  

In summary, in our teaching experiment, proof was conceived as an 

explanation accepted within the classroom community (Balacheff, 1982, 

1988). Students had the opportunity to engage in problems that required the 

construction of a proof more from a problem-solving approach. That is, 

students were not required to prove up front (Boero et al., 2007), rather they 

had to first investigate a mathematical phenomenon and, as a result, they 

would produce conjectures. Students were challenged to provide evidence 

grounded on mathematical relations and logic. Thus, it was intended that 

students would use examples to explore the problem and, as a result, they 
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would come up with conjectures about aspects of the problem. At this stage, 

students would engage in a ―proving situation‖ framed as coming up with 

evidence beyond particular cases that would show that the conjecture is true 

always, and would also give us insight as to why this was the case. 

Oftentimes, students would set out to prove a conjecture to end up proving 

something else, thus discovering through the proving process.  

 

Theoretical Principles and Mathematical Tasks 

 

Drawing from the theoretical framework, I synthesize the principles that 

guided the design of the Calendar Algebra Problems used in our teaching 

experiment: (1) to foster students‘ production of conjectures (Boero et al., 

2007) and the entailed interplay between examples and counter-examples; 

(2) to focus on algebra as a modelling tool (Chevallard, 1989); (3) to 

promote a broader role of proof (Arsac et al., 1992; De Villiers, 1990, 2012; 

Hanna, 1990); and (4) to showcase algebraic proof by leveraging the link 

between algebra and proof that lies in students‘ production of equivalent 

algebraic expressions to reveal or make explicit information in the 

expression (Arcavi, 1994; Martinez, 2011).  

The design has also been informed by previous reports such as 

Barallobres (2004), Bell (1995) and Friedlander and Hershkowitz (2001). 

The Calendar Algebra Problems share the same context, the calendar, and 

were presented according to an increasing degree of complexity. For 

example, in Problem 1 (Figure 1), students worked on a regular calendar 

with seven days per week and a 2x2-calendar square (see Table 1). In this 

case, the multiple variables (one independent variable and the rest 

dependent variables) correspond to the numbers (i.e., day-number) within 

the 2x2-calendar square. For a more detailed description of the problems, 

see Martinez (2011). In Problem 9, the length of the week changed from 7 

to 9 days (see Table 1). Consequently, the level of difficulty increased 

given that students not only had to define the multiple variables involved in 

the problem, but also the mathematical relations among them changed (i.e., 

a, a+1, a+9, and a+10). This change in the length of the week was intended 

to lay the groundwork for Problem 18 (Table 1), in which the length of the 

week was parameterized to d-days. For a more detailed description of these 

problems, see Martinez (2011). 
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Figure 1. Problem 1 from the Calendar Algebra Sequence. 
 

In Problem 12 (Figure 2), students are asked to analyze the nature of the 

outcome of the described calculation (i.e., subtraction of the cross product). 

In implementing the first design principle (Boero et al., 2007), rather than 

providing the conjecture to be proved, the problem was posed in such a way 

as to offer students an opportunity to come up with their own conjectures. It 

was intended that the problem would provide an opportunity for students to 

analyze the dependence/independence of the outcome in regards to the 

month, year, location of the 4x4-calendar-square, and days in the week. 

Once they reach a conclusion and produce a conjecture, the challenge 

becomes to gather evidence to show why this happens. In doing so, students 

discovered the exact expression for the outcomes, as it will be shown in the 

Results section. 

 

Problem 1 

Part 1. Consider squares of two by two formed by the days of a certain 

month, as shown below. For example, a square of two by two can be 

   

1 2

8 9
. 

These squares will be called 2x2-calendar-squares.  

Calculate: 

1. The product between the number in the upper left corner and the number 

in the lower right corner. 

2. The product between the number in the upper right corner and the 

number in the lower left corner. 

3. To the number obtained in (1) subtract the number obtained in (2). This 

result is your outcome. 

Find the 2x2-calendar-square that gives the biggest outcome. You may use 

any month of any year that you want. 

Part 2. Show and explain why the outcome is always going to be -7. 
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Table 1 

Sequence of problems intended to provide an opportunity to parameterize days in a week. 

Lesson 

Number 
Date Problem 

Number 

Generic square including independent and dependent 

variables 

Dimension of 

the calendar 

square 

Length of the week 

(Parameter) 
Outcome 

1 and 2 Oct. 11 

and 18 

1 

   

a a +1

a + 7 a + 8
 

2x2 7 is specific instance of 

the parameter  

-7 

13 Feb. 7 9 

   

a a +1

a + 9 a +10
 

2x2 9 is a specific instance 

of the parameter 

-9 

13 Feb. 7 18 

   

a a +1

a+ d a+ d +1
 

2x2 d -d 

Interview Feb 28-

Apr. 4 

12 

   

a a +1 a + 2 a + 3

a + d a +1+ d a + 2 + d a + 3+ d

a + 2d a +1+ 2d a + 2 + 2d a + 3+ 2d

a + 3d a +1+ 3d a + 2 + 3d a + 3+ +3d

 

4x4 d -9d 
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Figure 2. Problem 12 from the Calendar Algebra Sequence. 

In line with the second and fourth design principles (Chevallard, 1989; 

Usiskin, 1988), one of the goals of this teaching experiment was to provide 

students the opportunity to use algebra as a modelling tool. As part of this 

process, students would interpret the final expression in terms of their initial 

conjectures and the context. In doing this, students would have the 

opportunity to connect the algebraic proof to the reasons that make the 

outcome a specific value (i.e., -9d), which is the implementation of the third 

design principle. 

 

Previous Reports on the Calendar Algebra Problems 

 

Students had had ample opportunities during the teaching experiment to 

analyze problems and generate their own conjectures, and to use algebra as 

a modelling and proving tool. Specifically, students encountered a variety 

of problems all with the same context (i.e., the calendar) and had 

Problem 12 

In this case you will be working with a month that has d-days in each week. 

The shape to use is a 4x4-calendar-square. 

The set of operations to carry out are the following: 

1. The product between the number in the upper left corner and the 

number in the lower right corner. 

2. The product between the number in the upper right corner and the 

number in the lower left corner. 

3. To the number obtained in (1) subtract the number obtained in (2). 

This result is your outcome. 

 

Your task is to analyze the behavior of the outcome in terms of its dependency 

on the dimensions of the square, length of the week, and position of the 

square. 



REDIMAT, 3(1) 39 

 

 

experimented with different shapes (2x2-calendar-squares, 4x4-calendar-

squares, 5x2-calendar-rectangles, etc.), different operations (subtraction of 

the cross product, addition of the product of the middle numbers, etc.) and 

different outcomes (e.g., constant outcome in Problem 1). During the first 

lessons of the teaching experiment (Problem 1), students faced challenges 

related to: what counts as evidence to prove a universal statement, the 

necessary number of independent variables to model the problem, the 

deductive nature of the task in comparison to what they were accustomed 

(i.e., equation-solving and modelling with linear functions), operations 

involving variables (e.g., a.a=a2 and a+a=2a), and properties (e.g., how to 

distribute -1, how to multiply binomials and trinomials), among others. 

These challenges were addressed when they appeared within the context of 

a problem or, alternatively, sometimes the teacher designed tasks targeting 

specific problematic issues. The latter was in the case, for instance, of how 

to distribute -1 within different kinds of polynomials. For a more detailed 

description of results, see Martinez, Brizuela and Castro Superfine (2011) 

and Martinez (2011).  

By the time students encountered Problems 9 and 18, they had worked 

on identifying relevant variables, parameter and the relations among them, 

and representing them using algebraic notation. Students also used 

properties (e.g., distributive property) to generate a chain of equivalent 

expressions that allowed them to ultimately produce a final expression that 

showed explicitly what they wanted to prove. The students continued 

improving to correctly use mathematical properties (e.g., distributive 

property) throughout the teaching experiment.  

Even though all students ultimately succeeded in completing both 

problems (i.e., 9 and 18), the process was not straightforward. Students 

faced various challenges (e.g., correct use of the distributive property, use 

of parenthesis, etc.) that were overcome through discussion with their peers 

within the small group and/or by scaffolding provided by the teacher. 

Students did not face challenges associated with multiple variables per se. 

This was to be expected given that students had been working with multiple 

variables for twelve classes during which they worked on eight problems 

(Table 1). The new challenge at that point in the teaching experiment was 

the inclusion of a parameter. For a more detailed description, see Martinez 

and Castro Superfine (2012) and Martinez (2011). 
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Regarding the role of the teacher, in Martinez and Li (2010), it was 

reported specifically on the learning environment, and the teacher 

interventions that aimed at fostering students‘ mathematical inquiry, and 

maintaining the cognitive demand of the task (Stein, Smith, Henningsen, & 

Silver, 2009). Among these, we identified: (1) helping students re-focus 

their inquiry, (2) helping students select mathematical tools, (3) accepting 

students‘ provisory ideas, (4) recognizing the potential in students‘ ideas 

and promoting the student to showcase the idea, and (5) reviewing a 

property using an additional example to preserve the original challenge for 

students.  

 
Methodology 

 

Participants 

 

Nine out of fifteen high school students (14 and 15-year olds) 

volunteered to participate in this study after being recruited jointly by their 

mathematics teacher and the researcher from an Integrated Mathematics 

and Science class of about twenty students at a public high school in 

Massachusetts. The students, who varied in terms of their mathematical 

performance in their regular mathematics class, included four females and 

five males. Students worked in the same groups throughout the teaching 

experiment. Abbie, Desiree and Grace were in one group; Chris, Janusz and 

Audrey in a second group; and, Brian, Cory and Tyler were in the third 

group. Pseudonyms are not used. Students were familiar with distributive, 

associative and cancellation properties, and with equation-solving. In their 

regular mathematics class they had just learned about linear functions with 

the entailed concepts of rate, slope, y-intercept, etc.‖ 

 

Data Collection 

 

Students participated in a total of fifteen one-hour lessons per week and 

two individual interviews. Lessons and interviews were video- and audio-

taped, and students‘ written work was collected and scanned for analysis. 

The author was the teacher and interviewer in this teaching experiment. In 

this paper, I report on data collected during Interview #2 (Problem 12), 

which took place at the end of the second part of the teaching experiment. 
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The goal of this interview was to gather data to assess individual student 

performance (i.e., confirmatory not exploratory), and mathematical 

processes after the teaching experiment had concluded. In this interview, 

each student was asked to solve Problem 12 that was new to the students 

but similar to the problems discussed in class.  

 
Data Analysis 

 

Data was analyzed qualitatively taking a grounded theory approach 

(Glaser & Strauss, 1967), which is a bottom-up approach. In other words, 

starting from the data, theoretical relationships and categories are 

constructed. As discussed previously, based on students‘ work on Problem 

12, I identified the mathematical processes and the stages (e.g., conjecturing 

stage) that students went through. In addition, within each stage, I identified 

obstacles that students faced, ways in which they dealt with these obstacles, 

and illustrated how they were overcome. In order to do this, I worked with 

three data sources: video of the interview, students‘ written work and 

transcripts of the interview. Transcripts were parsed into stages and sub-

stages taking into account what students were doing and saying, and taking 

into account the overall goal that oriented the activities. Once these were 

identified, I proceeded to describe students‘ mathematical processes.  

 

Results 

 

Our analysis suggests that overall students were able to use algebra to 

prove in an individual interview context at the end of the teaching 

experiment. In doing so, students worked on identifying relevant variables, 

parameter and the relations among them, and representing them using 

algebraic notation. Students also used properties (e.g., distributive property) 

to generate a chain of equivalent expressions that allowed them to 

ultimately produce a final expression that revealed the outcome. Only one 

student (Audrey) arrived at the conjecture, establishing that the outcome is -

9d before proving; the rest of the students discovered what the outcome was 

at the end of the proving process. It is in this way that the algebraic proof 

functioned as discovery (De Villiers, 2012). In addition, students continued 

to use mathematical properties (e.g., distributive property) during the 

individual interview. These are the methods, concepts, and tools (Hanna, 
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1990; Rav, 1999) involved in the process of proving that students learned 

and/or with which they became more proficient.  

Even though all students, with the exception of one, ultimately 

succeeded in completing the mathematical task, the process was not 

straightforward. Students faced various challenges (e.g., how to express 

some cells using the parameter‘s multiple, etc.) that were ultimately 

overcome through discussion with the interviewer. Examples will be 

provided within the corresponding stage (or sub-stage) when the challenges 

occurred.  

Our analysis suggested that students engaged in varied mathematical 

activities when solving Problem 12, thus the description of students' 

processes is organized around them. Each stage is characterized by the main 

goal that was orienting the set of activities that students engaged with 

during that stage. For example, the first stage involved students producing 

conjectures. Our analysis also suggested that the obstacles that students 

faced were intrinsic to each of the stages. Therefore, the results of our 

analysis are organized into the following stages: (1) Conjecturing, and (2) 

Proving. When students were constructing the proof, I identified distinct 

sub-stages at the interior of the Proving Stage. Each of these sub-stages 

corresponds to a sub-goal within the larger process of proving. 

Consequently, the sub-stages are (2a) Constructing a Generic Square, (2b) 

Setting up an Initial Expression, (2c) Generating a Chain of Equivalent 

Expressions, and (2d) Proof as Discovery. Even though all students went 

through these stages, each student had a unique experience in terms of the 

way it was approached, difficulties they faced, and how they overcame 

them. 

 
(1) Conjecturing 

 

Most of the students (six out of nine) started exploring the problem by 

analyzing numeric examples from a calendar. Some (i.e., Audrey) used 

them to study the behavior of the outcome; some others (i.e., Abbie, 

Desiree, and Grace) used them to express the cells in the 4x4-calendar-

square; and some others (i.e., Brian and Janusz) used examples for both 

purposes. The rest of the students (i.e., Chris, Cory and Tyler) proceeded 

directly to model using algebra. 
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As a result, students produced two types of conjectures: the outcome 

conjecture and the existence of dependency conjecture. Only one student, 

Audrey, was able to conjecture that the outcome is equal to -9d (i.e., the 

outcome conjecture). The rest conjectured the existence of a relationship 

between the outcome and the parameter involved in the problem. 

Regarding the outcome conjecture, Audrey first explained, ―I need to get 

the outcome via multiplication, and it has d days so I know that d is a big 

part of the problem... so, because the outcome is -d times, multiply by 

something else, a number…and with 4x4-calendar-square... that no matter 

what the outcome is always the same, and is always -d multiply by a 

specific number.  So I have to figure out what that one is.‖ Thus, Audrey set 

up in her quest to determine the number that multiplies -d. In order to do so, 

she used examples to determine the exact formula of the outcome. As a 

result, she concluded that the expression of the outcome is -9d.  

As mentioned before, the rest of the students did not arrive at the 

conclusion that the outcome is -9d although they concluded that the 

outcome depends on the number of days in a week (i.e., parameter d). In 

turn, this less specific conjecture opens up the stage for a potential 

discovery proof. Only after proving the nature of that relationship is 

uncovered. The following exchange with Janusz illustrates the existence 

conjecture: 

 
Janusz [J]: I'm trying to find whether there is a correlation between 

the outcome and the days in a week [i.e., parameter d].  

Researcher [R]: Before, you told me it definitely depends on the 

number of days per week, what is your opinion now? Does the 

outcome depend on…? 

Janusz: Yes, because if it didn't, I'll still be getting -63 for both. 

[Referring to the calculation for d=7 and d=50] 

 

Since students were aware that the outcome depends on the parameter 

involved, what remains to be investigated is how does it exactly depend on 

the parameter? In Chris' words:  

 
Chris [C]: For example… uhm, like I need to find some kind of 

equation that says how dependent it is on what variable or another.  
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Researcher [R]: Can you tell me the variables? What variables are 

you going to consider?  

C: There is the dimension of the square, which is set; there is the 

length of the week, which is varying; and, there's the position of the 

square.  

 
In what follows all students, except for Audrey, decided to use algebra 

to answer the aforementioned question. Desiree's words preface the next 

sub-stage:  

 
Researcher [R]: What do you need to figure out? 

Desiree [D]: I guess the outcome and how it relates to the days in 

the week. 

R: How are you going to proceed?  

D: I think I'm just going to start out with some numbers and, then 

see if I get a formula going for each corner.  

R: Why?  

D: Because when I make a formula for each corner, I can make one 

formula, and then, simplify down to get the outcome. 

 
Last, it is worth highlighting the conditions that seem to enable a 

discovery proof: both, the less specific conjecture, and the confidence that 

students seem to have developed throughout the teaching experiment with 

algebraic symbols as it will be shown in the next sections.  

 

(2) Proving 

 

(2a) Constructing a generic 4x4-calendar-square. 

 

At this stage in solving the problem, eight out of nine students created a 

generic 4x4-calendar-square. Audrey was the only student that did not, and 

was also the only student that did not produce a proof for the conjecture, 

even though she conjectured that the outcome equals -9d.  

Regarding the rest of the group, several of them (i.e., Abbie, Grace, 

Janusz, Brian, and Tyler) struggled with the construction of the generic 

4x4-calendar-square. These students made mistakes when representing the 

expressions in some of the cells (Table 2). 
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Table 2 

Students' mistakes when creating a 4x4-calendar-square 

 Abbie Grace Janusz Brian Tyler 

Incorrect 

cells in 

4x4-

generic-

square 

- Bottom 

right corner 

- Bottom 

left corner 

-Top right 

corner 

- Bottom 

right corner 

- Bottom 

left corner 

-Top right 

corner 

- Bottom 

right corner 

- Bottom 

left corner 

-Top right 

corner 

- Bottom 

left corner 

- Bottom 

right corner 

- Bottom 

left corner 

 

Type of 

mistake 

- Incorrect 

parameter 

multiple 

- Incorrect 

additive 

term 

- Incorrect 

parameter 

multiple 

 

-Incorrect 

additive 

term 

- Incorrect 

parameter 

multiple 

- Incorrect 

additive 

term 

 - Incorrect 

parameter 

multiple 

- Incorrect 

parameter 

multiple 

  

The other three students (i.e., Desiree, Chris, and Cory) constructed the 

generic 4x4-calendar-square in the first attempt. Ultimately, all students 

that created a generic 4x4-calendar-square (8 out of 9) used correctly a 

parameter and its multiples to represent the pertinent cells. 

 From our analysis, four types of generic diagrams emerged 

depending on how it was constructed, namely the mathematical 

relationships used to generate the cells components (Table 3). The 

differences among the 4x4-calendar-squares are relevant since they 

correspond to the different ways in which students conceptualized the 

mathematical relations in the problem. When expressing relations among 

cells within the same column, students need to consider the days-in-a-week 

relation, while among cells within the same row students need to consider 

the days relation.  

Types I and II generalizations differ on how the bottom right cell is 

generated. In the case of Type I, the bottom right cell is generated using the 

days relation in contrast to using the days-in-a-week relation as in Type II. 

In both Types I and II generalizations, students use the days relation to 

generate the top right cell and the days-in-a-week relation to generate the 

bottom left cell. In sum, in Type I students use the days relation twice and 

the days-in-a-week relation once; while, in Type II students use the days 

relation once and the days-in-a-week relation twice. In other words, Type II 
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generalization is grounded by two underlying conceptualizations that rely 

on the parameter—this translates in adding the parameter iteratively or its 

multiple/s—and one on days—translates in adding 1 iteratively or 3 once-; 

while the opposite happens in Type I. The distinction among I.a., I.b., and 

I.c. sub-types is based on the presence/absence of unit-composition on the 

parameter d and on 1.  

Lastly, the generic squares constructed and used by students played a 

fundamental role in laying the groundwork in students‘ proving process. 

Indeed, it worked as a placeholder of the multiple variables, parameter and 

the mathematical relationships among them. Students kept referring to it 

when writing the expression representing the outcome. It was the first stage 

within the proving process. What students did in producing this generic 

4x4-calendar-square corresponds to the first and second stages in the 

algebraic modelling process as described by Chevallard (1985, 1989), 

respectively, which are identifying variables and parameters, and setting up 

mathematical relationships among them. The generic square worked as a 

stepping-stone in helping students produce the initial expression to 

represent the outcome. 

 

(2b) Setting up an Initial Expression. 

 

By the end of this stage, eight out of nine students expressed the initial 

expression correctly. Audrey was the only student that did not write the 

initial expression; she was also the only student who did not use a generic 

4x4-calendar square. In comparison with the previous stage (i.e., 

constructing a generic 4x4-calendar-square), students did not struggle. Two 

students (i.e., Brian and Tyler) went through three trials before arriving at 

their initial expressions. The multiple attempts are related with prior 

mistakes in constructing a generic 4x4-calendar-square. This is encouraging 

in terms of students‘ learning since it has largely been identified as a 

problem in the literature (e.g., A Friedlander & Hershkowitz, 1997; Harel & 

Sowder, 1998; Healy & Hoyles, 2000); thus Calendar Algebra Problems 

seem to provide a fruitful scenario to address this potential problem.   
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Table 3 

Structure of students' generalizations 

 

Type Location 

of the 
independe

nt variable 

Relationship 

used to 
generate top 

right 

Relationship 

used to 
generate 

bottom left 

Relationship 

used to 
generate 

bottom right 

Process 

 I-a Top Left Days relation 

(Three 
iterations of 

+1) 

Week relation 

(Three 
Iterations of 

+d) 

Days relation 

(+3) 

   

xæ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+1

+d

x x +1

x + d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+1

+d

x x +1 x+ 2

x + d

x+ 2d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+1

+d

x x +1 x+ 2 x+ 3

x + d

x+ 2d

x+ 3d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+3

x x +1 x+ 2 x+ 3

x + d

x+ 2d

x+ 3d x+ 3d+ 3

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

 

I-b Top left Days relation 

(+3) 

Week relation 

(Three 

Iterations of 
+d) 

Days relation 

(+3) 

   

xæ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+3

+d

x x+ 3

x + d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+d

x x+ 3

x + d

x+ 2d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+d

x x+ 3

x + d

x+ 2d

x+ 3d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+3

x x+ 3

x + d

x+ 2d

x+ 3d x+ 3d+ 3

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

 

I-c  Top left Days relation 

(+3) 

Week relation 

(addition of 
parameter 

multiple, 3d) 

Days relation 

(+3) 

   

xæ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+3

+3d

x x+ 3

x + 3d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+3

x x+ 3

x+ 3d x+ 3d+ 3

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

 

II Top left Days relation 
(+3) 

Week relation 
(addition of 

parameter 

multiple, 3d) 

Week relation 
(addition of 

parameter 

multiple, 3d) 

   

xæ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+3

+3d

x x+ 3

x + 3d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

+3d

x x+ 3

x+ 3d x+ 3+ 3d

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 
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 (2c) Generating a Chain of Equivalent Expressions. 

 

After setting up the initial expression, students needed to operate on it as 

well as on its subsequent equivalent expressions in order to produce a 

proof. Eight students (out of nine) used a derivation strategy when proving. 

Four students did not make any mistakes when transforming the initial 

expression into its subsequent equivalent expressions. The rest of the 

students (4 out of 9) made errors that were corrected while working on the 

problem. In generating equivalent expressions, students used several 

properties (e.g., distributive, cancellation, etc.) as tools; in this way 

properties became furnished with an instrumental utility. Students rarely 

encounter this aspect of properties in more prevailing school practices and 

problems.  

As mentioned earlier, one student (Audrey) did not use algebra at all to 

prove her conjecture; she was also the only student that did not use a 

generic diagram and write an initial expression.  This, together with the 

success of students who used a generic square, points once again towards 

the importance of the generic square as a tool to structure the relations 

involved in the problem.  

Last, students seemed to have learned, throughout the teaching 

experiment, of profiting from their own errors.  Making mistakes did not 

stop them from continuing to work on the problem; even though many of 

them made many attempts and errors, they continued to problem-solve.  It 

seems that students had confidence that they would eventually be able to 

work their way through the problem, and arrive at an expression for the 

outcome. 

 

(2d) Proof as discovery. 

 

 In this stage, students (all except for Audrey) obtained -9d as the last 

in a chain of equivalent expressions. Abbie's words illustrate this, ―Uhm, so 

the outcome for all of these operations depends only on days of the number 

days in your week and not the size of the box. You multiply the number of 

days in a week times negative 9 and you get your outcome...‖ Or, in the 

following exchange with Cory: 
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Cory [Co]: So then I can cross out a squared, a squared, 3ad, 3ad, 

3a, 3a and so negative 9d that's what I came out with. 

Researcher [R]: And what does it mean? 

Co: Uhm, the answer to this problem is always going to be negative 

9 times how many days in a week; I don't know why it's negative 9 

though. 

  

By finishing writing the text of the proof, students arrived at the 

expression for the outcome, thus discovering the nature of the outcome as 

they proved.  

 

Concluding Remarks 

 

Looking at students‘ mathematical work as a whole, all students but one 

produced a correct proof. This was so even when they did not know what 

exactly needed to be proved, which, in turn, opened the possibility for 

students to experience proof as discovery. In proving, students used algebra 

as a modelling tool. In fact, students selected relevant variables and 

parameters, set-up the relations among them, and worked on obtaining a 

chain of equivalent expressions that ultimately led to the discovery of the 

outcome. It seems that algebraic proof as the vehicle to integrate algebra 

and proof as envisioned by the design principles effectively helped students 

learn to use algebra to prove. These results are encouraging in that all 

students but one were able to construct an algebraic proof at the end of the 

teaching experiment in the context of an individual interview.  

However, as previously mentioned, for many students, this was achieved 

by embarking on different attempts and making and mending errors while 

working continuously on the problems. This suggests that even though 

arriving at a viable proof is not easily achieved, it is still within students‘ 

reach, and therefore desirable to further students‘ algebraic learning and 

production of proofs.  This has largely been identified as a problem in the 
literature (e.g., A Friedlander & Hershkowitz, 1997; Harel & Sowder, 1998; 

Healy & Hoyles, 2000); the Calendar Algebra Problems thus seems to 

provide a fruitful scenario to address this potential problem. The U.S.-based 

study presented here stems from a small teaching experiment, and as such, 

is a first step into thinking about ways of integrating proof and algebra in 

the high school curriculum. The author hopes to elicit a dialogue around 
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this issue, and consequently inspire other researchers to design more 

teaching experiments with the entailed problems, and to conduct studies at a 

larger scale in countries like the U.S. where proof is not integrated 

throughout the curriculum. 
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