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ABSTRACT

Analogous to chemometrics, geochemometrics can be defined as the science resulting from 
the combination of statistics, mathematics and computation with geochemistry. This term in Spanish 
–geoquimiometría– has already been explicitly used in the literature. Here I elaborate on the numerous 
basic subjects or areas that the geochemometrics should cover. These include, but are not limited to, the 
following research topics: data quality, regressions, robust methods, outlier-based methods, significance 
tests, error or uncertainty propagation in diagrams through Monte Carlo simulation, correlation 
coefficient, petrogenetic modeling, and geothermometers. Equations for uncertainty propagation in 
analytical work have also been proposed; similarly, new indications are provided on how to calculate and 
report the sensitivity and limit of detection of analytical experiments. The conventional linear correlation 
coefficient, though useful for non-compositional data, is not recommended to be used for interpreting 
geochemical data. Because compositional data represent a closed unit-sum constrained system and 
ternary diagrams impose a further unit-sum constraint on any experimental data, these diagrams become 
statistically unsuitable to handle experimental data, whether compositional or of continuous variable 
type. Error propagation through Monte Carlo is reported for the first time to illustrate the inconvenience 
in using such ternary diagrams for compositional data, and an alternative log-transformed bivariate 
diagram is proposed to replace (or at least complement) ternary diagrams. Topics of further research 
have been identified, in particular, those applicable to all science and engineering fields.

Kew words: statistics, geochemistry, discrimination diagrams, Monte Carlo simulation, discordancy 
tests, regression, uncertainty, ternary diagrams.

RESUMEN

En forma análoga a la quimiometría, la geoquimiometría se puede definir como la ciencia que 
resulta por la combinación de estadística, matemáticas y computación con la geoquímica. El término 
en español –geoquimiometría– ha sido usado explícitamente con anterioridad en la literatura. En esta 
reseña, presento numerosos conceptos básicos o áreas que la geoquimiometría debe cubrir. Estos incluyen, 
pero no son limitados por, los siguientes tópicos de investigación: calidad de datos, regresiones, métodos 
robustos, métodos basados en valores discordantes, pruebas de significancia, propagación de errores o 
incertidumbres en diagramas mediante simulación Monte Carlo, coeficiente de correlación, modelado 
petrogenético, y geotermómetros. Ecuaciones para la propagación de las incertidumbres en el trabajo 
analítico han sido propuestas; de manera similar, se proveen detalles nuevos sobre cómo calcular y 
reportar la sensibilidad y el límite de detección de los experimentos analíticos. El coeficiente convencional 
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de correlación lineal, aunque útil para datos no-composicionales, no debe ser usado para la interpretación 
de datos geoquímicos. Debido a que los datos composicionales representan un sistema cerrado restringido 
por suma unitaria constante y los diagramas ternarios imponen la restricción adicional de suma unitaria 
a cualquier tipo de datos experimentales, estos diagramas vuelven a ser inapropiados estadísticamente 
para el manejo de los datos experimentales, sean de tipo composición o de cualquier otro tipo de datos 
continuos. La propagación de errores mediante Monte Carlo se reporta, por vez primera, para ilustrar 
la inconveniencia de usar estos diagramas ternarios para datos composicionales. Así mismo, se propone 
un diagrama bivariado alternativo basado en la transformación-log para reemplazar (o al menos, 
complementar) los diagramas ternarios. Los temas adicionales de investigación han sido identificados, 
en particular, aquellos aplicables a todos los campos de las ciencias e ingenierías.

Palabras clave: estadística, geoquímica, diagramas de discriminación, simulación Monte Carlo, pruebas 
de discordancia, regresión, incertidumbre, diagramas ternarios.

INTRODUCTION

According to Wikipedia, the free encyclopedia, the 
term chemometrics can be defined as “the science of ex-
tracting information from chemical systems by data-driven 
means. It is a highly interfacial discipline, using methods 
frequently employed in core data-analytic disciplines such 
as multivariate statistics, applied mathematics, and com-
puter science, but to investigate and address problems in 
chemistry, biochemistry and chemical engineering. In this 
way, it mirrors several other interfacial ‘-metrics’ such as 
psychometrics and econometrics.” 

The term chemometrics was first coined by Wold 
almost 40 years ago in 1972. Several reviews have been 
written on the subject (e.g., Geladi and Esbensen, 1990; 
Esbensen and Geladi 1990; Lavine and Workman, 2008). 
Furthermore, numerous books on chemometrics (e.g., Otto, 
1999; Miller and Miller, 2005; Bruns et al., 2006) and the 
journals “Journal of Chemometrics” and “Chemometrics 
and Intelligent Laboratory Systems” are dedicated to this 
subject. Other journals, such as “Analytica Chimica Acta”, 
have a section on chemometrics.

Analogous to chemometrics, geochemometrics can 
be defined as the science resulting from the combination of 
statistics, mathematics and computation with geochemistry. 
This term in Spanish –geoquimiometría– has already been 
explicitly used in the literature (see Verma, 2005).

In the present paper, my aim was to identify the main 
areas of thrust to illustrate geochemometrics and point 
out future investigations that could lead to improvements 
in Earth sciences. The most important topics are as fol-
lows: Monte Carlo simulation, data quality, instrumental 
calibration, sensitivity and limits of detection, error propa-
gation in ternary diagrams, discrimination diagrams, and 
geothermometers.

MONTE CARLO SIMULATION

The term “Monte Carlo” was first coined in 1940s 
after the Monte Carlo casino in Monaco. Monte Carlo 
methods are a class of computational algorithms that rely 

on repeated random sampling to compute their results. 
According to Hammersley and Handscomb (1964) the name 
and systematic development of Monte Carlo methods date 
back to about 1944. Because of their reliance on repeated 
computation of random or pseudo-random numbers, these 
methods are most suited to calculations by a computer. The 
only quality usually necessary to make good simulations is 
for the pseudo-random sequence to appear “random enough” 
as discussed by Law and Kelton (2000) and exemplified by 
Verma and Quiroz-Ruiz (2006a). Actually, Monte Carlo 
methods began to be investigated only after the availability 
of electronic computers from 1945 onwards. In the 1950s 
the early development took place in relation to the hydrogen 
bomb and soon became incorporated in the areas of phys-
ics, physical chemistry and operational research as well 
as many other scientific and engineering fields. Because 
Monte Carlo methods require very long sequences of ran-
dom numbers, pseudorandom number generators began to 
be developed, which were quicker to use than the tables of 
random numbers previously used for statistical sampling. 
Güell and Holcombe (1990) presented an account of Monte 
Carlo techniques (experiments on random numbers) that 
might be useful for analytical applications. 

In the area of small size sampling (up to 30) from a 
normal distribution, Dixon (1950, 1951, 1953) and Grubbs 
(1950) pioneered the field of Monte Carlo simulation by 
estimating critical values for their respective discordancy 
algorithms (Barnett and Lewis, 1994; Verma, 1997, 2005). 
This initial work (Dixon, 1950, 1951; Grubbs, 1950) was 
carried out in U.S.A. for military purposes. Nevertheless, 
those critical values were obviously approximate and were 
quoted to two to three decimal places. Later, with the 
availability of faster computers Grubbs and Beck (1972) 
extended the earlier critical values of Grubbs test to larger 
sample sizes of up to 147. Other workers (e.g., Rosner, 
1975, 1977; Prescott, 1979; Jain, 1981) also simulated criti-
cal values for single to multiple-outlier discordancy tests.

More recently in Mexico, Monte Carlo simulation has 
provided significant advancement for obtaining new critical 
values of discordancy tests for very large sample sizes up to 
30,000. Thus, in a series of papers (Verma and Quiroz-Ruiz, 
2006a, 2006b, 2008, 2011; Verma et al., 2008a), Verma 
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large number n of measurements are not involved (at least 
n=30 has been recommended – see the following paragraph). 

During the first decade of this century, Verma and 
coworkers, in a series of papers (Verma et al., 2002, 2009a; 
Santoyo and Verma, 2003; Verma and Santoyo, 2003a, 
2003b, 2003c, 2005; Santoyo et al., 2007), demonstrated 
that the LODs for practically the entire Periodic Table, es-
pecially the rare-earth elements, show a systematic behavior 
likely governed by elemental abundance in the universe and 
indirectly by the well known odd-even effect of nuclear 
stability (the Oddo-Harkins rule; see Kaplan, 1963 or Verma 
et al., 2009a), and that the LOD should be determined from 
n=30 or more measurements. Thirty measurements as a 
minimum are justified from the consideration of the Student 
t value (see table A1 in Verma, 2005), which must be taken 
into account for obtaining uncertainty estimates – see the 
section of “Sensitivity and limit of detection (LOD)”.

The odd-even systematic behavior of LODs has been 
independently confirmed by other workers (e.g., Tsakanika 
et al., 2004; Rodríguez-Ríos et al., 2007) and discussed in a 
review article by Bacon et al. (2006). More work on these 
lines particularly that leading to a theoretical explanation of 
such a systematic behavior, is highly desirable. The sugges-
tions on how to calculate LOD are given in the next section.

To obtain accuracy estimates or traceability in the 
analysis of geological materials, it is mandatory to ana-
lyze appropriate, preferably certified, reference materials. 
Unfortunately, in spite of a large number of reference ma-
terials available for geochemical analysis (e.g., see Potts et 
al., 1992; Govindaraju, 1994; Jochum and Bruckner, 2008; 
Jochum and Nohl, 2008), none of them is certified for all 
chemical components, not even for all components of inter-
est in a geochemical study. In fact, this was the objective set 
forth by one of the pioneers ─K. Govindaraju─ during more 
than two decades (1970-1995), but unfortunately, this aim 
was never achieved. The international community should 
pay proper attention to this geochemometrics aspect of 
fundamental research. In my opinion, instead of proposing 
new reference materials, we should first concentrate on a 
few selected reference materials to try to certify them for 
practically the entire Periodic Table, or at least all those 
chemical elements that would be useful in geochemomet-
rics, for example, petrogenetic modeling, geothermics, or 
multi-dimensional discrimination diagrams. 

To start with, if we could count on at least a few well-
certified geochemical reference materials for most elements 
of geochemometric interest, we might be able to make it 
mandatory that the Earth science community report their 
analytical data adjusted to some of these certified refer-
ence materials as is customary in isotope geochemistry for 
reporting, for example, Sr and Nd isotopic compositions. 
At least, we could reach a consensus on a few geochemical 
reference materials, which should always be analyzed and 
reported in geochemical studies for quality control purposes. 
The very diverse matrices to be analyzed in geochemistry 
make this simple proposal less viable. Nevertheless, if, for 

and coworkers reported highly precise and accurate critical 
values for 33 discordancy test variants. 

Monte Carlo methods should be useful for regres-
sions, instrumental calibrations, and other purposes. As 
an example, Espinosa-Paredes et al. (2010) applied this 
approach for the evaluation of functioning of nuclear reac-
tors. Another novel application of Monte Carlo simulation 
is presented below in the section of evaluation of errors in 
“Ternary diagrams”. 

DATA QUALITY

Data quality in Earth sciences in general and geochem-
istry in particular should be an important area of research 
that could be considered an integral part of the science of 
geochemometrics. When we talk of data quality, we are in 
fact considering two main aspects ─precision and accu-
racy─ of results. The first parameter depends on the quality 
of instrumental calibration, for which different regression 
models have been used, as well as of the measurement of 
the “unknown” material. These aspects will be further dis-
cussed in the next section. The second parameter (accuracy), 
on the other hand, requires adequate reference frame for 
its quantification. The other important parameters such as 
uncertainty and traceability are closely related to the preci-
sion and accuracy. The uncertainty of a parameter depends 
on the analytical error expressed in terms of the standard 
deviation, the number of measurements used for computing 
the standard deviation, and the Student t value for the ap-
propriate degrees of freedom of the experiment. The section 
of “REGRESSIONS” below gives more information on this 
topic. The traceability refers to ongoing validations that the 
measurement of the final product conforms to the original 
standard of measurement; therefore, an adequate reference 
material or materials or synthetic standards are required.

Because geological materials, in general, represent 
the most complex matrices to be analyzed (theoretically, for 
example, rocks contain all stable and unstable or long-lived 
radioactive elements of the Periodic Table), inherent in the 
data quality are the analytical aspects such as instrumental 
sensitivities and limits of detection (LODs) for different 
elements. Sensitivities are seldom reported by researchers, 
but LOD reports are more common. Unfortunately, there 
is no consensus regarding how to quantify the LOD values 
(e.g., see IUPAC, 1978; Ferrús and Egea, 1994; Faber and 
Kowalski, 1997; Kump, 1997; Mocak et al., 1997; Zorn 
et al., 1999; del Río Bocio et al., 2003; Miller and Miller, 
2005). According to the Vocabulary of Metrology (VIM), 
LOD can be defined as follows: “Measured quantity value, 
obtained by a given measurement procedure, for which the 
probability of falsely claiming the absence of a component 
in a material is β, given a probability α of falsely claiming 
its presence. IUPAC recommends default values for α and 
β equal to 0.05”. Nevertheless, the estimation of LODs is 
generally not carried out chemometrically, i.e., a sufficiently 
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example, all laboratories analyzing basic and ultrabasic 
magmas were invited to report data (mean, standard devia-
tion, and number of measurements) on just one reference 
material out of BIR-1, BHVO-1, or BHVO-2 from the U.S. 
Geological Survey (U.S.A.), or JB-1a or JB-3 from the 
Geological Survey of Japan (Japan) and if that particular 
material were well characterized (certified) for most, if not 
all, elements of geochemical interest, this would be a very 
important step forward in geochemometrics for minimizing 
systematic errors and adequately handling large databases 
such as those attempted by Agrawal et al. (2004) or Verma 
et al. (2006). Thus, the individual data from different labo-
ratories or publications could be adjusted for possible bias 
before their use in interpretations. 

REGRESSIONS

Geochemometrics could also address the topic of 
regressions related to instrumental calibrations for analysis 
of geological materials such as rock, ash, soil, mineral, 
water, and gas, among others. Traditionally, such calibra-
tions have been achieved through an ordinary least-squares 
linear regression (OLR) model (for more details on regres-
sion techniques see the classic book by Draper and Smith, 
1998). However, weighted least-squares linear regression 
(WLR) models should be considered more appropriate for 
this purpose (e.g., Mahon, 1996; Baumann, 1997; Zorn et 
al., 1997; Asuero and González, 2007). Alternatively, robust 
regressions might be more desirable than OLR models (e.g., 
Hinich and Talwar, 1975; Rousseeuw and Leroy, 1987).

More recently, this adverse situation of calibrating 
instruments through OLR is changing especially for the 
calibration stage of data collection, because WLR models 
are being increasing applied prior to geochemical analyses 
(e.g., Santoyo and Verma, 2003; Guevara et al., 2005).

Instrumental calibrations for chemical concentration 
measurements can generally be expressed as the following 
general linear equation:

 Resp=a(±sea)+[b(±seb)·Conc]  (1)

where a is the intercept term with sea being its standard 
error and b is the slope (or sensitivity term) with seb being 
its standard error. The concentration term (x-axis, Conc) 
will also have standard error of sec, or standard deviation 
of sc associated to its estimation for individual calibrator or 
reference material (RM), which should always be quanti-
fied. Similarly, the response term (y-axis, Resp) will have 
standard error of ser, or standard deviation of sr for each 
calibrator, which can also be estimated. 

I propose that we should try to switch from the er-
ror concept to uncertainty or confidence limits in all such 
considerations although it is difficult to do so, because error 
propagation is a very commonly used term; in reality, we 
are instead dealing with uncertainty propagation. 

Weighted least-squares linear regression (WLR)

Our aim is to present the equations useful for calibra-
tion in the concentration-response (C-R) space, where C and 
R are, respectively, the x (independent) and y (dependent) 
variables of x-y regression line. Let us assume that we have 
a total number n of calibration reference materials (RMs) 
with concentration Ci and standard deviation SCi estimated 
from mi measurements (or replicates). 

I recall that before the calculation of the central ten-
dency (e.g., here Ci) and dispersion (e.g., SCi) parameters, it 
is mandatory to ascertain that all replicate (in this case, mi) 
measurements be free from discordant outliers, which can be 
easily done by computer program DODESSYS (Discordant 
Outlier DEtection and Separation SYStem; Verma and Díaz-
González, 2012). Both normal and log-normal distributions 
can be handled by the present version of DODESSYS that 
can handle data arrays of sizes up to 1000; future version 
of DODESSYS will be able to handle larger sample sizes 
of up to 30,000. This applies to all such situations described 
in this paper.

The uncertainty uCi in the concentration of ith RM can 
be calculated as follows:

 uCi
 = (SCi / √mi) t(mi-1)  (2)

where t(mi-1) is the Student t critical value for (mi-1) degrees 
of freedom for the desired confidence level (generally 99% 
or 95%, two-sided), or significance level of 1% or 5% (α 
of 0.01 or 0.05). If the t value for the required degrees 
of freedom were not tabulated, it can be estimated from 
the interpolation equations put forth by Verma (2009), or 
obtained from other sources such as R Development Core 
Team (2009).

Similarly, let the response Ri for the ith RM have 
standard deviation of SRi estimated from qi measurements. 
Its uncertainty uRi can then be calculated from:

 uRi = 
SRi · t(qi-1)  (3)

 √qi

where t(qi-1) is the Student t critical value for (qi-1) degrees 
of freedom and the chosen confidence or significance level 
(99% or 95%, but this level should be the same as that used 
for equation (2) and other equations below).

In this way, we have n values of RM concentrations 
(Ci) and responses (Ri) with their respective uncertainties 
(uCi and uRi ). First, we obtain the equation using OLR model 
as follows:
 R = a(±ua)+[b(±ub)·C]  (4)

where a and b are the intercept and slope (sensitivity) terms, 
with respective uncertainties ua and ub.

Now, our aim is to estimate the total uncertainty ui 
of each data point Ci-Ri used in the calibration. The basic 
idea is to assign the uncertainty in the x-axis variable to the 
y-axis variable, thus making the x-axis variable as “error-
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free” and y-axis variable as having the total uncertainty 
in the data point under evaluation. Therefore, this can be 
achieved approximately as follows:

 ui = √ (b� uCi)2 + (uRi)2  (5)

Because the OLR (equation 4) is not the statistically 
appropriate model (for the reasons see e.g., Guevara et al., 
2005 or Verma, 2005), the weighing factors for the WLR 
model can be estimated from the following equation:

  (6)

This equation has the following property:
   

 (7)

That is, the sum of all weighing factors is equal to the 
total number of paired data n (Ci-Ri). Thus, the WLR dif-
fers from the OLR in such a way that the weighing factors 
are redistributed as inversely of the total variance of the 
respective paired data, i.e., the data point with the lowest 
uncertainty receives the highest weight and vice versa. 

The WLR equation is:

 R = aw(±uaw)+[bw(±ubw)·C]  (8)

where the slope bw, its uncertainty ubw, intercept aw, and its 
uncertainty uaw can be calculated as follows: 

  (9)

  (10)

 aw = Rw - (bw· Cw)  (11)

  (12)

For using the above equations, the following three 
equations are additionally required.

The weighted centroid Cw of the concentration 
variable,

  (13)
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The weighted centroid Rw of the response variable,

  (14)

The response R̂ iw of the ith concentration data point (Ci-
Ri) used in the calibration, which would actually correspond 
to the WLR equation,

 R̂   iw = aw+[bw·Ci]  (15)

The WLR calibration can then be used for measuring 
the response Rd of an “unknown” sample and its total un-
certainty uRd and calculating its concentration Cd from the 
regression equation as well as its total uncertainty uCd, and 
not just its replication error, as is erroneously customary in 
chemistry or geochemistry. We recall that if we carry out 
r measurements of the response Rd and obtain its standard 
deviation as SRd, the total uncertainty will have to be first 
estimated from equation (16). 

  (16)

where t(r-1) is the Student t critical value for (r-1) degrees 
of freedom and the chosen confidence level, generally two-
sided 99% or 95%. This level should be the same as that 
used for WLR calibration. 

Equation (17) below is postulated for the unknown 
and rearranged as equation (18) to obtain Cd and equation 
(19) or (20) for its total uncertainty uCd.

 Rd (±uRd) = aw(±uaw)+[bw(±ubw)·Cd]  (17)

  (18)

  (19)

Equation (19) can also rewritten as:

  (20)

A better, more appropriate alternative to the uncer-
tainty propagation equation (19) would be to resort to Monte 
Carlo simulation of equation (18). This is due to the fact that 
the covariance terms, difficult to determine, are not included 
in equations (19) or (20) – see the approximate equality sign 
(≈) in these equations. Thus, once the complete experiment 
involving instrumental calibration and measurement of the 
unknown is geochemometrically done, the approximate er-
ror propagation equations (Bevington and Robinson, 2003; 
Verma, 2005) are no longer required in this geochemometric 
proposal based on Monte Carlo approach.
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The statistical significance of the total uncertainty can 
be expressed in the following inequality, i.e., the population 
mean µCd of the unknown sample would lie within the con-
fidence interval of inequality expression (21) at the chosen 
confidence level (99% or 95%), as follows:

 (Cd - ucd) < μcd < (Cd + ucd)  (21)

For interpreting geochemical data mostly OLR has 
been used, except in geochronology, for which WLR mod-
els, with errors on both variables, have been generally ap-
plied (e.g., York, 1966, 1969; McIntyre et al., 1966; Brooks 
et al., 1972; Mahon, 1996) and are in wide use even today 
at the data acquisition and calculation stages. If the above 
equations, for example, equation (8) for WLR calibration 
and equation (18) for the unknown sample, were routinely 
used along with Monte Carlo simulations, we should docu-
ment a significant advancement in geochemometrics, be-
cause then we can use appropriate WLR models for data 
interpretation as well.

On the other hand, in some applications, such as for 
interpolation or extrapolation purposes, more complex 
quadratic to higher-order polynomial models might provide 
better fit to the data. Besides, log-transformation of x-axis 
(independent or explanatory variable) may be useful in some 
applications as has been documented for interpolation and 
extrapolation of Student t critical values, in which the x-
axis was the degrees of freedom (Verma, 2009). This kind 
of transformation could become a more common technique 
to be used in regressions.

Sensitivity and limit of detection (LOD)

If WLR model is appropriately applied for calibra-
tions, the sensitivity bw and its uncertainty ubw can be rou-
tinely reported from the regression equation (8).

The estimation of LOD from WLR can now be 
suggested as the most appropriate geochemometric method, 
modified after Mocak et al. (1997) and Miller and Miller 
(2005). Let us assume that a “blank” sample (containing 
no or “very little amount” of analyte) is used for estimating 
LOD. In most analytical instruments the blank need not 
contain any pre-established amount of the analyte of interest 
(i.e., its concentration can be assumed to be zero, C0=0 ), but 
in some instruments, such as chromatography, the software 
does not generally allow the integration of a background or 
blank signal, therefore, in may be necessary to use a solution 
containing a small amount of analyte (C0>0); nevertheless, 
only the smallest amount or concentration that will give a 
measurable signal should be used. Let the blank be measured 
k times (where k is recommended to be at least 30 by Verma 
and Santoyo, 2005; for more explanation see Student t value 
in table A1 of Verma, 2005 and the uncertainty equations in 
this work, for example, equation 22; the basic idea is that 
the uncertainty should be obtained from a large number k 

of measurements so that the t value approaches to that of 
infinity). The response R0 and standard deviation SR0 are 
estimated in the instrument under the same conditions as the 
calibration experiment (remember that R0 and SR0 should be 
calculated from discordant outlier-free data array). 

The uncertainty uR0 of the blank response R0 can be 
calculated as follows:

   (22)

Then, the uncertainty uC0 of the blank concentration 
C0 can be calculated as follows: 

  (23)

Because we are dealing with the uncertainty concept, 
I propose that the LOD could be defined as follows:

 LOD = C0 + UC0  (24)

As stated earlier, for most instruments, C0 can be as-
sumed as zero, in which case, LOD will be simply estimated 
from the total uncertainty uC0. Once again, instead of using 
the approximate equation (23) Monte Carlo simulation of 
equation (18) can be undertaken to better determine the 
LOD. Finally, a comparison of this newly proposed method 
with the conventional methods already in wide use should 
be undertaken, which will reinforce the new science of 
Geochemometrics.

ROBUST METHODS

Robust methods theoretically provide means of han-
dling experimental data in the presence of discordant outli-
ers, because they are considered robust against them (e.g., 
Barnett and Lewis, 1994; Maronna et al., 2006). Proponents 
of robust methods always claim their superiority over the 
outlier-based methods. For central tendency parameter es-
timates, many different robust statistics have been proposed 
such as median, mode, mean quartile, Gastwirth mean, 
trimean, trimmed mean, and Winsorized mean, among oth-
ers (e.g., Verma, 2005). 

It is not clear which robust parameters should be used 
for a particular application. When these different statistics 
provide “consistent” estimates for the central tendency pa-
rameter, it is immaterial which one is used, but in practice, 
they may differ significantly from each other, in which case 
no simple answer can be given as to which statistic is better 
than the other. Nevertheless, if robust estimators are used 
for central tendency parameter, adequate robust estimators 
such as median deviation (also called MAD–median abso-
lute deviation) or interquartile range should also be used 
for the dispersion parameter as well. The relationship of 
robust dispersion estimates with the respective “population” 
standard deviation should also be established.
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both before and after applying the selected discordancy 
tests, and for this reason alone, it is a highly convenient tool 
for correctly applying outlier-based methods. It also allows 
the user to have statistical estimates of discordant outliers, 
which can therefore be separately interpreted.

Besides masking and swamping effects (Barnett and 
Lewis, 1994), the detection of discordant outliers may de-
pend on a series of factors such as error of type I when the 
null hypothesis is inappropriately rejected (e.g., Gawlowski 
et al., 1998; Efstathiou, 2006) and of type II when the null 
hypothesis is inappropriately retained (e.g., Miller and 
Miller, 2005).

What to do with a discordant outlier? In field studies, 
outliers when detected as discordant can be interpreted 
separately as manifestation of side events. In laboratory 
data, they can also arise from faulty instrumentation, inap-
propriate calibration, systematic errors, and large random 
errors, among other causes. Therefore, it is advisable to look 
for the actual cause of such discordancy. When an outlier is 
evaluated as discordant in a very small sample such as of 
three observations, I propose that one should carry out more 
experiments before fully accepting the outlier as discordant. 
If, by any chance, the new observations are compatible with 
the discordant outlier, the discordancy is once again evalu-
ated, and either the first apparently discordant observation 
should be accepted as legitimate and the other observations 
are consequently declared as suspect values, or the experi-
ment is further repeated to make sure the statistical outcome. 
If, on the other hand, the new observations are consistent 
with the initially dominant two observations, which should 
be more likely, the suspect observation can be definitely 
declared as discordant and excluded from further consid-
erations. Thus, the cause of discordancy may also become 
clear. The discordant outliers should be isolated and not ac-
tually rejected but interpreted separately from the dominant 
distribution of data. The latter are thus used separately from 
the interpretation of the main event under study.

The discordancy procedure includes single as well as 
multiple outlier tests. The first group is called so, because 
the tests evaluate one observation at a time for its discor-
dancy. Multiple-outlier tests for which new critical values 
are available (Verma and Quiroz-Ruiz, 2006a, 2006b, 2008, 
2011; Verma et al., 2008a) are designated as k=2, 3, or 4 
types (they evaluate for discordancy two, three, or four 
observations at a time, respectively). Discordancy tests can 
be used consecutively until no more outliers are detected 
as discordant. Multiple outlier discordancy tests for more 
than four observations (k > 4; Barnett and Lewis, 1994) 
are also known, but new precise critical values have not 
been simulated.

I describe in detail the use of discordancy tests. Let 
us assume that we have an array of n univariate data xi for 
a parameter x, which can be rearranged in ascending order 
as an ordered array x(i) where (i) varies from 1 (lowest 
value) to n (highest value). The observation being tested 
by a single-outlier test is either x(n) (upper outlier test – the 

Thus, what is really required is an objective evaluation 
of the performance of robust and outlier-based methods, 
so that the user can independently decide which method 
or statistic to rely upon and under what circumstances. In 
other words, is it immaterial or does it matter to use robust 
or outlier-based methods for handling experimental data 
of truly or apparently continuous variable type? Not only 
geochemometrics but also all other scientific and engi-
neering areas will benefit from this proposal. Unpublished 
preliminary Monte Carlo simulation results by Verma and 
coworkers point to serious problems in indiscriminately us-
ing the median as an unbiased estimate of central tendency 
of asymmetrically contaminated small-sized statistical 
samples; these findings will be documented elsewhere. 

OUTLIER-BASED METHODS

Such methods have been proposed to handle ex-
perimental data as alternative means to robust methods 
(Barnett and Lewis, 1994). For their statistically correct 
application, discordancy tests provide an important tool, 
such as the multiple-test method (MTM) proposed and 
practiced by Verma (1997). Unfortunately, most people are 
not even aware of the fact that the most popular statistical 
parameters of mean and standard deviation belong to this 
outlier-based category. Therefore, the common practice of 
calculating these two parameters, without ascertaining that 
the statistical sample be drawn from a normal population, 
should be discouraged, and the readers should be made 
acquainted with the advantages of MTM of Verma (1997) 
and convenience of a suitable computer program (Verma et 
al., 1998; Verma and Díaz-González, 2012). 

Discordancy tests with new critical values

A large number of statistical tests have been proposed 
in the literature to detect discordant outliers in univariate 
data (Barnett and Lewis, 1994). An outlier is an observation 
that is extreme in an ordered array of a set of univariate 
observations. For structured data, an outlier is similarly 
defined as a structure-breaking observation. Nevertheless, 
an outlier can be a legitimate observation pertaining to the 
distribution of the rest of the data in the array, or it could 
be evaluated as discordant from certain statistical criterion. 
This is the reason why Verma and Díaz-González (2012) 
have called their computer program as Discordant Outlier 
DEtection and Separation SYStem (DODESSYS), which 
permits the application of 33 discordancy test variants at 
the strict confidence level of 99%. They also emphasized 
that DODESSYS should prove an important tool for ap-
plying outlier-based methods to experimental data, viz., 
DODESSYS must always be applied to the experimental 
data arrays before estimating the mean and standard devia-
tion values. In fact, DODESSYS provides these estimates 
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highest observation or datum is being tested for discordancy) 
or x(1) (lower outlier test –the lowest observation is being 
tested for discordancy), or any one of the two extreme ob-
servations, x(1) or x(n) depending on which one is considered 
more distant from the central tendency parameter (extreme 
outlier test –the extreme observation is being tested for 
discordancy). The upper or lower outlier tests were also 
called by Barnett and Lewis (1994) as one-sided and the 
extreme outlier types as two-sided. These authors, contrary 
to the current practice in chemistry, also opined that it is the 
type of test (one-sided or two-sided) that is more important 
rather than the one-sided or two-sided critical values. For 
multiple-outlier types, the observations being tested can 
be on one or both ends of the ordered array, for example, 
for k=2 type, we can test both x(1) and x(2), or x(n) and x(n-1), 
or even x(1) and x(n). In the case of geochemistry, however, 
distinction should be maintained concerning the type of 
analytical method used, and it is not a good idea to test for 
x(1) and x(n) together as a group when these two observations 
were obtained by different analytical methods. I further 
suggest that in most geochemical applications, it would be 
safer to use single-outlier tests instead of multiple-outlier 
types if one wishes to be conservative in declaring outliers 
as discordant.

For any statistical test, generally two hypotheses are 
set – null hypothesis H0 that means that the value(s) being 
tested was(were) derived from a single normal distribution 
as the remaining observations in the ordered array and al-
ternate hypothesis H1 that the observation(s) being tested 
is(are) discordant, derived from a distribution different 
from that of the remaining, dominant or more numerous 
observations. The statistic corresponding to the given test 
is calculated and compared with the critical value at the 
chosen confidence level, being 99% according to my sugges-
tion (see also Verma, 1997, 2005; Verma and Quiroz-Ruiz, 
2006a, 2006b) or 95% according to most books in chem-
istry such as Miller and Miller (2005). Most discordancy 
tests are considered significant for “greater than”, i.e., if 
the calculated statistic is greater than the critical value, 
H0 is rejected and, consequently, H1 is accepted; in other 
words, the observation(s) being tested is (are) discordant 
outlier(s). But when the calculated statistic is smaller than 
the critical value, H0 is accepted and H1 is rejected, i.e., 
the observation(s) tested is (are) declared as legitimate. 
Unfortunately, “inverse” tests also exist because they are 
considered significant for “smaller than” (see Barnett and 
Lewis, 1994; Verma, 2005). The user must therefore be 
careful in using discordancy tests.

Critical values are required to apply any discordancy 
test (Barnett and Lewis, 1994; Verma, 1997, 2005; Verma 
et al., 1998). I recommend the use of new highly precise 
and accurate values published by Verma and Quiroz-Ruiz 
(2006a, 2006b, 2008, 2011) and Verma et al. (2008a) for 
33 discordancy test variants. As an innovation, these new 
critical values were reported along with individual standard 
error estimates. These authors also proposed new regression 

equations for computing critical values for those sample 
sizes that were not tabulated, thus permitting the application 
of these discordancy tests for all sample sizes up to 30,000. 
Artificial neural network (ANN) was used by Verma et al. 
(2008a) for arriving at best-fitted regression equations. Soon 
afterwards, Verma and Quiroz-Ruiz (2008) used Statistica 
software to investigate alternative polynomial fitting in 
conjunction with natural logarithm transformation of sample 
sizes. Best-fitted polynomial equations were thus reported 
and favorably compared with the equations obtained by 
ANN. More recently, Verma and Quiroz-Ruiz (2011) clari-
fied that the critical values for skewness test N14 published 
earlier by them were of one-sided type and reported more 
precise and accurate two-sided critical values for this test. 

I present the variation of critical values with sample 
size for one-sided Grubbs type test N1 and Dixon test N7 in 
Figure 1 and for powerful two-sided skewness and kurtosis 
tests N14 and N15 in Figure 2. The dependence of critical 
value on the sample size for all tests is so high (Figures 1a, 
1c, 2a, and 2c) that polynomial regression in these diagrams 
does not provide any satisfactory fit to the data (see Verma 
and Quiroz-Ruiz, 2008). Natural logarithm-transformation 
of the x-axis (sample size) results in significant “smoothing” 
of the curves (compare the earlier diagrams with Figures 
1b, 1d, 2b, and 2d, respectively), which enabled Verma and 
Quiroz-Ruiz (2008) to propose best-fit polynomial equations 
for interpolation and extrapolation of critical values from 
100 up to 30,000. For all smaller sample sizes up to 100, 
precise critical values have been simulated, so there is no 
need for interpolation equations. Note, however, that the 
complex nature of curves (Figures 2b and 2d) even after log-
transformation will not allow best-fit polynomial equations 
to be proposed for the entire range of sample sizes from 5 to 
30,000. These are the reasons why Verma and Quiroz-Ruiz 
(2008) proposed equations for sample sizes of 100 to 30,000 
(and not for 5 to 30,000). Nevertheless, it is now possible 
to apply any of the 33 discordancy tests to practically any 
kind of experimental data without having any limitation on 
the sample sizes.

Another important point to note concerns the hori-
zontal dotted lines denominated as 2s and 3s in Figure 1a. 
They represent, respectively, the two- and three-standard 
deviation (2s and 3s) methods also used in the literature as 
discordancy methods based on “population” criteria, ac-
cording to which all observations lying outside the range 
of mean±2s or mean±3s (2s and 3s methods, respectively) 
are simply rejected as discordant. The correct statistical 
procedure for small size sampling as carried out in most 
experiments would be equivalently the Grubbs test (N1) 
applied, respectively, at 95% and 99% confidence levels. 
Unfortunately, such statistically erroneous methods (see 
Barnett and Lewis, 1994), for example, 2s, have been ap-
plied in the literature (e.g., Gladney et al., 1992; Imai et al. 
1995). Their use should, however, be abandoned in favor 
of Grubbs test N1 as has already been suggested by Verma 
(1998a), Verma and Quiroz-Ruiz (2006b), and Verma et al. 
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(2008a). Hayes et al. (2007) have also independently criti-
cized and discarded such standard deviation methods based 
on population criteria. The 1s method sometimes practiced 
for handling experimental data should be considered worse 
and statistically erroneous than the 2s or 3s methods.

Discordancy tests without new critical values

A few more discordancy tests, viz., Tietjen and 
Moore´s statistic (Tietjen and Moore, 1972), Shapiro and 
Wilk´s statistic (Shapiro and Wilk, 1965; Shapiro et al., 
1968), two-sided test for extreme outlier using a robust es-
timator of standard deviation (Iglewicz and Martinez, 1982; 
no tabulated critical values are available), and consecutive 
or recursive test of multiple outliers (Rosner, 1975, 1977; 
Jain, 1981), have also been proposed, but only old less 
precise critical values (generally accurate to two decimal 
places only) are available for their application. 

In fact, Tietjen and Moore´s procedure (Tietjen and 
Moore, 1972) is similar to the Grubbs tests of S2

(n)/S2 to 

S2
(n), (n-1), (n-2), (n-3)/S2 types (test N4 k=1 to k=4 types; see 

Verma, 2005 for more details on test N4 statistics), and the 
new critical values simulated by Verma and Quiroz-Ruiz 
(2006b, 2008, 2011) and Verma et al. (2008a) are applicable 
when the outlying observations being tested are on either 
end of the ordered data array. For k=5-10, only approximate 
critical values are at present available (Tietjen and Moore, 
1972). The multiple or many outlier test RST of Rosner 
(1975, 1977) is also similar to the Grubbs statistics N2 and 
N3 (see Verma, 2005), with the difference that RST should 
be computed from trimmed mean and trimmed standard 
deviation values.

Therefore, new more precise and accurate critical 
values are required for completing the MTM of Verma 
(1997) and significantly improving this line of geochemo-
metric research.

Use of discordancy tests

The currently available precise critical values of 33 

Figure 1. New critical values for tests N1 (Grubbs) and N7 (Dixon) for significance level (α) of 0.30, 0.20, 0.10, 0.05, 0.02, 0.01, and 0.005, plotted against 
sample size of up to 1000, or log-transformed sample size of up to 30,000. Note that the most commonly used α of 0.05 (Miller and Miller, 2005) and 
0.01 (Verma, 1997, 2005) are highlighted. All symbols are explained as inset in diagrams (a) and (c). (a) Test N1 with sample size up to 1000 as x-axis, 
horizontal dotted lines named 2s and 3s represent, respectively, the two- and three-standard deviation methods also used in the literature as discordancy 
methods based on population criteria; (b) Test N1 with natural logarithm-transformed sample size up to 30,000 as x-axis, note significant reduction in 
the curvature of the critical value trends in this diagram as compared to (a);  (c) Test N7 with sample size as x-axis; (d) Test N7 with natural logarithm-
transformed sample size as x-axis, note significant reduction in the curvature of the critical value trends in this diagram as compared to (c).
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discordancy tests have been used, in conjunction with the 
MTM (Verma, 1997), by numerous researchers in their 
respective applications. Just to cite a few recent ones, these 
are: Armstrong-Altrin (2009); Gómez-Arias et al. (2009); 
Marroquín-Guerra et al. (2009); Pandarinath (2009a, 2009b, 
2011); Viner et al. (2009); Álvarez del Castillo et al. (2010); 
Madhavaraju et al. (2010); Najafzadeh et al. (2010); Torres-
Alvarado et al. (2011); Verma et al. (2011a); and Zeyrek 
et al. (2010).

It is not clear if we should apply the concept of discor-
dant outliers to raw compositional data without any transfor-
mation as done by Verma and coworkers (e.g., Verma, 1997, 
1998a, 2005; Velasco and Verma, 1998; Velasco et al., 2000; 
Guevara et al., 2001; Velasco-Tapia et al., 2001, Verma and 
Quiroz-Ruiz, 2008; Marroquín-Guerra et al., 2009; Verma 
et al., 2009a). Verma and Agrawal (2011) and Verma S.K. 
et al. (2012), on the other hand, used discordancy tests to 
evaluate natural logarithm of element ratios for discordant 
outliers, prior to the application of linear discriminant 
analysis to their compiled data. 

For evaluation of compositional data, it is possible 
that some kind of transformation is required prior to the 

application of discordancy tests. Although this should be 
the subject of future research in geochemometrics, for now 
may I suggest that the log-transformed ratio data, rather 
than the element concentrations, should be evaluated for 
discordancy. 

Finally, discordancy tests can also be applied 
during the data acquisition stage of mass spectrometric 
determinations. Such an application of Dixon tests was 
reported by Dougherty-Page and Bartlett (1999), although 
unfortunately it is not a widespread practice explicitly 
reported in the literature. As an example of unpublished 
cases, mass spectrometric software in the Geochemistry 
department of the Max-Planck-Institut für Chemie in 
Mainz, Germany, allows the application of Dixon tests 
before the data are printed out from the instrument. More 
importantly, for correcting inter-laboratory bias in isotopic 
determinations, all laboratories are supposed to report 
results of isotopic measurements on established reference 
materials, such as Eimer & Amend Sr carbonate and more 
recently, National Bureau of Standards NBS 987 for 87Sr/86Sr 
(Faure, 2001). Similarly, for Nd isotopic measurements it 
is customary to report 143Nd/144Nd values obtained on the 

Figure 2. New critical values for tests N14 (skewness) and N15 (kurtosis) for significance level (α) of 0.30, 0.20, 0.10, 0.05, 0.02, 0.01, and 0.005, plotted 
against sample size of up to 1000, or log-transformed sample size of up to 30,000. Note that the most commonly used α of 0.05 (Miller and Miller, 2005) 
and 0.01 (Verma, 1997, 2005) are highlighted. All symbols are explained as inset in diagrams (a) and (c). (a) Test N14 with sample size up to 1000 as 
x-axis; (b) Test N14 with natural logarithm-transformed sample size up to 30,000 as x-axis, note significant reduction in the curvature of the critical value 
trends in this diagram as compared to (a); (c) Test N15 with sample size as x-axis; (d) Test N15 with natural logarithm-transformed sample size as x-axis, 
note significant reduction in the curvature of the critical value trends in this diagram as compared to (c).
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La Jolla standard (e.g., Verma, 1992). This practice helps 
eliminate the systematic errors (inter-laboratory bias) in Sr 
and Nd isotopic determinations, especially when using data 
from different laboratories for interpretation of geological 
processes.

It is also customary in isotopic studies that the ana-
lytical errors on isotopic data be individually reported (see, 
e.g., Verma, 1992). Nevertheless, from the geochemometrics 
point of view, the shortcoming seems to reside in the fact 
that the individual analytical errors are reported as two times 
the standard error of the mean (2σE; note the wrong notation 
based on population, it should actually be 2sE) and not as 
total within-run uncertainty based on the Student t value. 
Reporting of simply the standard deviation value without 
mentioning the total number of measurements is even a 
more severe mistake. The statistically correct report cannot 
be easily prepared for the literature data, because the total 
number of measurements, from which the standard error 
was calculated, is seldom reported in published literature. 

I propose that the geochemometrically correct way to 
report these individual within-run errors as the uncertainty 
usamp would be as follows:

 usamp = 
Ssamp · t(p-1)  (25)

 √p
where ssamp is the standard deviation based on p determina-
tions of isotopic ratio in that particular sample and t(p-1) is 
the two-sided Student t value at 95% or 99% confidence 
limits. It is needless to say that the isotopic mean ratio and 
its standard deviation should be calculated only after as-
certaining the absence of discordant outliers in the original 
data array. Only then, this branch of geochemistry will be 
fully consistent with geochemometrics.

SIGNIFICANCE TESTS

Significance tests (Student t, Fisher F, one-way 
ANOVA, and two-way ANOVA) are not routinely ap-
plied for the interpretation of geochemical data, although 
some books on geosciences do recommend their use (e.g., 
Jensen et al., 1997; Verma, 2005). If we were to accept 
geochemometrics as the emerging science, significance tests 
should become an integral part of data evaluation in Earth 
sciences. However, note that these tests require that indi-
vidual statistical samples be normally distributed. Therefore, 
DODESSYS (Verma and Díaz-González, 2012) should 
prove an important tool for the application of significance 
tests, i.e., for assuring that the basic assumption of normal 
distribution is complied. 

We are attempting to make geochemometrics a re-
ality by reinterpreting some of the published data (e.g., 
Hernández-Martínez and Verma, 2009) so that the Earth 
science community could compare and contrast these new 
geochemometric interpretations with those put forth in the 
respective original papers. Precise critical values are helpful 

in this respect. These can be obtained from freely available 
software R after proper programming, or can be consulted 
directly in Verma (2009) for interpolation equations.

Once again, it is not clear if significance tests should 
be applied to crude compositional data or log-transformed 
ratios, although it might be desirable to do so to transformed 
variables.

 

DIAGRAMS IN GEOCHEMISTRY

Numerous bivariate, ternary or multi-element dia-
grams are used in geochemistry. However, they should be 
evaluated from geochemometrics point of view.

Bivariate diagrams

First, I discuss problems with conventional bivariate 
diagrams (diagrams with two axes) in geochemistry and 
point out statistical solution to these problems. Such dia-
grams have been widely used in geochemistry. However, 
for compositional variables there may be problems when 
these diagrams are used for geochemical concentrations of 
chemical elements to draw statistical conclusions. Long ago, 
Chayes (1960, with more than 210 cites in international jour-
nals as judged from the Institute for Scientific Information 
database) had pointed out difficulties in the use of crude 
compositional variables. These problems of compositional 
variables (closure problem and constant sum effect) were 
later stressed by Aitchison (1982, 1984; these papers with 
more than 280 cites in international journals). Aitchison, 
in his pioneering work (Aitchison, 1986; cited more than 
940 times in international journals), also proposed solutions 
to overcome the difficulties of constant sum and closed 
compositional space of crude variables. He noted that, in-
stead of using crude compositions, one must think in terms 
of a multivariate approach by calculating compositional 
ratios having a common denominator and then working 
in logarithms of these ratios. The division eliminates the 
compositional units, which may be wt% or %m/m, or μg/g, 
and renders the compositions as simple numbers opening up 
the space, i.e., absolute magnitudes are converted in relative 
magnitudes. The log-transformation of ratios opens up the 
space theoretically to infinity, in the positive or negative 
direction, or both, depending on the nature of the common 
denominator used. The natural logarithm or other kind of 
logarithm can be used for log-transformation.

More recently, many researchers (e.g., Egozcue et al., 
2003; Aitchison and Egozcue, 2005; Buccianti et al., 2006; 
Verma, 2010; Verma et al., 2010) have stressed the need of 
abandoning simple bivariate diagrams and using Aitchison’s 
approach in geosciences. 

Unfortunately, the most well known among the bivari-
ate diagrams are the so called Harker diagrams based on 
silica as the x-variable and other major- and trace-elements 
as the y-axis variables, or Harker type diagrams, in which 
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a compositional variable other than SiO2, e.g., MgO, might 
be used as the x-variable. The geochemical literature is 
full of such diagrams, which are used to draw statistical 
inferences. The basic problem with these diagrams is that 
there is an inherent negative correlation of other chemical 
variables with SiO2 because of the constant or unit sum 
constraints (e.g., Chayes, 1978). In fact, this author ad-
ditionally showed that even a positive correlation of some 
variables with SiO2 is also possible. The existence of nega-
tive or positive correlation in these diagrams is routinely 
used to infer about geological processes, and the inherent 
statistical correlation from closed sum concept pointed out 
above is not even mentioned, nor is it taken into account. 
The reader can, therefore, readily see from the above discus-
sion that the Harker or Harker-type diagrams should not be 
used any more to draw statistical inferences, or should be 
used with caution. 

Other diagrams obviously unfit for the purpose of 
drawing statistical inferences are those in which a common 
variable in both axes is used (see Reyment and Savazzi, 
1999, for more discussion), such as A–A/B or A–B/A type 
diagrams where A and B are two chemical elements. 

The new science of geochemometrics should empha-
size on this shortcoming of diagrams and popularize the 
statistically correct solutions.

Correlation coefficient in bivariate diagrams

The simple concept of Pearson´s linear correlation 
coefficient (r) for compositional data again seems to be ir-
relevant for interpretation in geochemistry, and should be 
replaced by the proportionality concept (Aitchison, 1986; 
Reyment and Savazzi, 1999). For normal, i.e., full-space 
data there is no problem in using the conventional r. The 
concept of log-ratio variance is of use in this respect. If we 
estimate the variance of log-transformed ratios of two ele-
ments i and j for a set of samples, we can use this “relative 
variance” value (var{log(xi/xj)}) as an indicator of correla-
tion. If the relative variance value approaches zero, there 
is a perfect relationship between A and B. Remember here 
the sizes of the samples or specimens is probably irrelevant. 
In other words, we can replace the concept of perfect cor-
relation by that of perfect proportionality. Greater values of 
relative variance express greater departure from the perfect 
proportionality between parts or components under study 
(A and B). When the relative variance approaches ∞, the 
concept of a complete lack of proportionality becomes 
applicable.

To make this new concept amenable to everyone, 
Aitchison (1997 cited in Reyment and Savazzi, 1999) 
introduced a finite scaling transformation as a measure of 
the relationship between two parts. This scale runs from 0, 
which signifies a lack of proportional relationship, to 1 that 
corresponds to a perfect proportional relationship. It requires 
at least three parts for the computation of the proportionality 

measure, but has the disadvantage that association cannot be 
identified as negative or positive. These concepts have yet to 
be incorporated in geoscientific research. In the mean time, 
I suggest that the conventional r can be used for evaluating 
log-ratio transformed compositional data, and not crude 
compositions. 

Ternary diagrams

Ternary diagrams representing three variables on a 
plane (two-dimensions, triangular space) are invariably used 
in many fields of Earth sciences; to cite a few, these are: 
analytical petrology (Ragland, 1989), environmental chem-
istry (Andrews et al., 2004), gas geochemistry (Ottonello, 
1997), geothermometry of geothermal fluids (Nicholson, 
1993; Arnórsson, 2000), granite petrogenesis (Rollinson, 
1993; Hall, 1996), groundwater chemistry and classifica-
tion (Freeze and Cherry, 1979; Appelo and Postma, 1993), 
igneous rock classification (Rollinson, 1993; Le Maitre et 
al., 2002), igneous and metamorphic petrology (Spear, 1995; 
Hall, 1996; Young, 1998), phase diagrams and thermody-
namics (Nicholls and Russell, 1990; Tatsumi and Eggins, 
1995; Young, 1998; Gasparik, 2003), sedimentary petrog-
raphy, petrology and provenance (Taylor and McLennan, 
1985), tectonomagmatic discrimination (Rollinson, 1993), 
and even chemometrics (Bruns et al., 2006). 

Some workers such as Chayes (1960) and Aitchison 
(1986) discouraged the use of simple geochemical compo-
sitions in bivariate diagrams, but ironically recommended 
the use of ternary diagrams (Chayes, 1965, 1985; see also 
Aitchison, 1986). If the proposed ternary diagrams are 
constructed by the way they are, i.e., by recalculating pro-
portions to 100% sum of the three variables, they are likely 
to be bound by the problems point out in the present work 
even if they are based on log-transformed variables. The 
only application in which these adverse effects are not of 
much significance will be when the experimental errors or 
uncertainties in the three ternary variables are exceedingly 
small or negligible, which is not likely for the compositional 
variables generally used in such diagrams, particularly trace-
elements. Even with the modern analytical techniques, the 
total propagated uncertainties (combined calibration and 
measurement uncertainties for the “unknown” samples) 
for these elements in geological materials are likely to be 
large enough for serious consequences in ternary diagrams. 
Effects of analytical errors or uncertainties on individual 
samples in a ternary diagram are not known. This may be 
the reason why some workers (e.g., Presnall, 1969; Chayes, 
1985) have proposed the use of ternary diagrams as the 
only choice to visualize and interpret certain kinds of data.

Ternary diagrams are so frequently used that there are 
tens of thousands of references in published literature. This 
generalised use is disappointing in view of some existing 
studies (Butler, 1979; Philip et al., 1987; Howard, 1994), 
which point out problems with such diagrams. Statistical 
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summary in ternary diagrams is modified, and genetic in-
ferences may be biased from interactions of other factors 
that cannot be easily separated from petrogenetic controls 
(Butler, 1979), for which they are frequently used, for 
example, the well known AFM (alkalis-iron-magnesium) 
diagram (Rollinson, 1993) in geochemistry and igneous 
petrology. The use of ternary diagrams for the comparison 
of sample sets must also be viewed with caution (Philip et 
al., 1987). It has also been suggested that instead of error 
polygons, confidence intervals representing total uncertainty 
estimates should be used to visualize statistically significant 
differences between means (Howard, 1994). 

To the best of my knowledge, however, no study has 
yet been reported on correctly propagated errors (or uncer-
tainties) from three individual errors (or uncertainties) of 
the variables or components used to construct such ternary 
diagrams. Existing studies (Howard, 1994) on error propa-
gation have been even incorrect because of the unaccounted 
covariance terms that result from the basic mathematics to 
construct these ternary diagrams (Bevington and Robinson, 
2003; Verma, 2005). Using Monte Carlo simulation, involv-
ing very large repetitions of 100,000, I demonstrate, for the 
first time, the inherent problem of error distortion and visual 
amplification or reduction in these very frequently-used 
ternary diagrams.

I report as examples the results of two case studies or 
error models involving a total of 25 data points with het-
eroscedastic errors (unequal standard deviations) character-
ized by an equal relative standard deviation (RSD) simple 
model and a more realistic, unequal RSD, complex model 
(see models 1 and 2, respectively, in Table 1). Cases of ho-
moscedastic errors (equal standard deviations independent 
of the mean values), being unrealistic in Earth sciences and 
chemistry, are not considered. 

Construction of a ternary diagram A-B-C from three 
measured variables Am, Bm and Cm, with their respective 
standard deviation estimates of SAm, SBm and SCm, involves 
three analogous equations. I present only one such equation 
(equation 26). The first ternary variable A can be calculated 
from:

  (26)

Even when the initial variables (Am, Bm and Cm) are 
not correlated, i.e., their covariance can be neglected, the 
recalculated ternary variables A, B and C will necessarily 
be correlated (Bevington and Robinson, 2003), i.e., their 
covariance terms must be taken into account to estimate 
final uncertainties of the transformed variables that are 
constrained within the closed triangular space of ternary 
diagrams. Unfortunately, the equations to handle the propa-
gated errors are strictly valid only for population standard 
deviation (σ), provided all terms (quadratic, cubic, etc.) are 
taken into consideration. For the sample standard deviation 
(s) being an estimate of σ, the equations are even more ap-
proximate (Verma, 2005). One such highly approximate 
equation for calculating the variance (sA

2 ) of the ternary 
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  (27)

Use of such complex approximations is not recom-
mended (Verma, 2005).

Therefore, to achieve the objective of correctly and 
efficiently evaluating ternary diagrams and proposing a 
statistically viable alternative, I resorted to Monte Carlo 
simulation, in which, as a first step, a series of independent 
and identically distributed (IID) random variates –U(0, 1)– 
uniformly distributed in the space (0, 1), were generated 
(Law and Kelton, 2000). These were tested for randomness, 
transformed to normal random variates N(0, 1) (Verma and 
Quiroz-Ruiz, 2006a), and used for simulation of total propa-
gated errors during the construction of a ternary diagram. 

As examples, model 1 (equal RSD) assumes initial 
errors in the measured variables Am, Bm and Cm as 5% RSD. 
Model 2 (unequal RSD) is based on a more realistic case 
of 1%, 3% and 5% RSD, respectively and additionally, on 
equation 28 (Thompson, 1988) for the first variable Am as 
follows:

 
  (28)

where the limit of detection (LODA) is three times the 
standard deviation at zero concentration (IUPAC, 1978) 
of the variable Am and cvA is taken to be a constant (being 
the coefficient of variation for relatively large values of 
Am as compared to LODA). I note that the use of the new 
equations for LOD proposed in this work will not change 
the inferences.

For model 2, the following values (arbitrary units) 
were set: LODA = 0.015, LODB = 0.025, LODC = 0.030, 
cvA = 0.01, cvB = 0.03, cvC = 0.05 and These LOD values 
were assumed so that the quantification limits, being ap-
proximately three times the LODs, could be less than the 
smallest experimentally measured values of Am, Bm and 
Cm, used to illustrate these findings. The cvA, cvB, cvC 
values correspond to the RSD values of 1%, 3%, and 5%, 
respectively. This allowed me to reasonably model the low 
concentration values of the variables corresponding to the 
25 data, especially those involving 0.1 unit of a measured 
variable (the last three rows in Table 1). 

Values of sAm (equation 28) and sBm and sCm 
(analogous 

equations) for each of the 25 data were then calculated and 
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used in the simulations for model 2. For model 1, however, 
these calculations were straight forward. Further, to facilitate 
a visual comparison of the initial data, the three measured 
variable mean values for all 25 data were assumed to sum 
up to 100 (see the first three columns in Table 1). The results 
would not change even if these measured data summed up 
to values significantly different from 100, because they will 
necessarily sum up to 100 after the ternary transformations 
(equation 26 and analogous ones not presented).

The results (Table 1 and Figures 3a and 3b) show 
significant error distortion in ternary diagrams. The size 
of the symbols would correspond approximately to 99% 
confidence limits (total uncertainty estimates) provided each 
variable were measured about 10 times. If the individual 
data (mean values of the 25 data under consideration; Table 
1) were obtained from a smaller number of measurements 
(<10), the uncertainty estimates would be greater than 
those represented in Figures 3a and 3b, depending on the 
corresponding Student t critical values. 

Very large repetitions of 100,000 were used to best 
represent the size and shape of the data symbols, which 
would remain practically the same for any smaller or larger 
repetitions, such as 10,000 or 1,000,000. Only the density 
of the simulated data symbols will accordingly change.

For model 1 with equal RSD of 5%, the recalculations 
essential for constructing ternary diagrams (equation 26 and 
analogous ones not presented) result in totally different RSD 
values (0.01% to 7.11% in Table 1; see the three columns 
listed under “Model 1 (Figure 3a)”, in which none of the 
calculated RSD values is equal to the initial 5% RSD), with 
considerable distortion of symbol shapes (Figure 3a). When 
two of the three measured variables (Am, Bm and Cm ) are 
equal for a given ternary datum, the new propagated RSD 
for these two variables would also be the same, but different 
from the initial RSD values (e.g., see the rows identified by 
* and ** and the first 9 rows of results in Table 1, the latter 
correspond to the data plotted in the vertical direction in 
Figure 3a). Only for the exceptional case of equal Am, Bm 

Experimental data
(assumed cases)

Propagated relative standard deviation (%) 
in ternary plot

Transformed experimental 
data for assumed cases

Propagated standard deviation in
bivariate plot

Model 1 (Figure 3a)  Model 2 (Figure 3b) Model 1 (Figure 3c) Model 2 (Figure 3d)
Am Bm Cm A B C A B C
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47.5 47.5 5 3.56 3.56 5.84 1.54 1.67 4.99 2.2513 2.2513 0.0711 0.0711 0.0511 0.0585
45 45 10 3.60 3.60 5.53 1.54 1.79 4.72 1.5041 1.5041 0.0711 0.0711 0.0515 0.0589
40 40 20 3.76 3.76 4.91 1.67 2.10 4.20 0.6931 0.6931 0.0711 0.0711 0.0512 0.0586
33.33 33.33 33.33 4.10 4.10 4.10 2.05 2.63 3.50 0.0000 0.0000 0.0711 0.0711 0.0511 0.0586
27.5 27.5 45 4.50 4.50 3.38 2.50 3.15 2.89 -0.4925 -0.4925 0.0711 0.0711 0.0511 0.0586
20 20 60 5.12 5.12 2.46 3.17 3.86 2.11 -1.0986 -1.0986 0.0711 0.0711 0.0511 0.0586
12.5 12.5 75 5.82 5.82 1.54 3.88 4.60 1.32 -1.7918 -1.7918 0.0711 0.0711 0.0511 0.0586
7.5 7.5 85 6.32 6.32 0.93 4.37 5.11 0.79 -2.4277 -2.4277 0.0711 0.0711 0.0511 0.0586
2.5 2.5 95 6.85 6.85 0.31 4.88 5.63 0.26 -3.6376 -3.6376 0.0711 0.0711 0.0515 0.0594

75 20 5 1.63 5.51 6.16 0.70 2.53 4.85 2.7081 1.3863 0.0711 0.0711 0.0515 0.0589
70 10 20 * 1.88 5.81 5.36 1.08 2.97 4.07 1.2528 -0.6931 0.0711 0.0711 0.0511 0.0586
20 70 10 * 5.36 1.88 5.81 2.31 1.05 4.98 0.6931 1.9459 0.0711 0.0711 0.0512 0.0586
5 60 35 ** 5.90 2.68 4.45 2.69 2.13 3.73 -1.9459 0.5390 0.0711 0.0711 0.0512 0.0586
5 35 60 ** 5.90 4.45 2.68 3.32 3.59 2.27 -2.4849 -0.5390 0.0711 0.0711 0.0512 0.0586
5 85 10 6.42 0.94 6.23 2.78 0.68 5.18 -0.6931 2.1401 0.0711 0.0711 0.0513 0.0586

25 10 65 5.00 5.71 2.22 3.36 4.25 1.80 -0.9555 -1.8718 0.0711 0.0711 0.0511 0.0586
50 15 35 3.15 5.25 4.18 1.87 3.14 3.32 0.3567 -0.8473 0.0711 0.0711 0.0511 0.0586
20 55 25 5.03 2.78 4.77 2.22 1.86 4.11 -0.2231 0.7885 0.0711 0.0711 0.0511 0.0586
41 9 50 3.91 5.60 3.28 2.58 3.74 2.55 -0.1985 -1.7148 0.0711 0.0711 0.0511 0.0586
16 42 42 5.16 3.68 3.68 2.59 2.74 3.17 -0.9651 0.0000 0.0711 0.0711 0.0511 0.0586
60 25 15 2.49 4.88 5.37 1.13 2.45 4.36 1.3863 0.5108 0.0711 0.0711 0.0511 0.0586
97 1 2 0.19 6.98 6.93 0.11 3.24 5.01 3.8816 -0.6931 0.0711 0.0711 0.0533 0.0655
12.9 87 0.1 6.19 0.92 6.69 2.76 0.41 11.47 4.8598 6.7685 0.0711 0.0711 0.3607 0.3619
99.8 0.1 0.1 0.01 7.11 7.10 0.01 5.20 8.89 6.9058 0.0000 0.0711 0.0711 0.3607 0.4579
0.1 0.2 99.7 7.10 7.10 0.02 7.17 7.20 0.02 -6.9048 -6.2116 0.0711 0.0711 0.1636 0.1411

Table 1. Twenty-five data involving three variables and the synthesis of statistical information for ternary and bivariate natural log ratio-transformed 
plots.

The selection of these 25 data was aimed to cover the entire ternary diagram, keeping in mind that these diagrams show certain symmetrical features.
Model 1: simple model with 5% RSD assumed for the experimental data; Model 2: more realistic, complex model with 1%, 3%, and 5% RSD assumed 
for experimental variables Am, Bm, and Cm, respectively, along with equation (28) for the error dependence on concentration. The data points identified 
by * and ** confirm the reproducibility of the simulation procedure (see exactly the same results for these pairs of simulations for model 1; note 
because model 2 simulates more complicated unequal error structure, the results are not expected to be the same).
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and Cm (each about 33.33% – the fourth row of data in Table 
1; the centroid of a ternary diagram – Figure 3a), all three 
new RSD values are equal (about 4.10%). For all other cases, 
the new RSD values are totally different from each other and 
also from the initial RSD of 5%. For data lying close to the 
apexes or to the boundaries, the shapes of the symbols are 
even more distorted and their sizes become much smaller 
(Figure 3a; see the last three data rows in Table 1) than for 
those lying in the central region of ternary diagrams. 

For model 2 with unequal RSD of 1%, 3% and 5% 
and a realistic error structure (Thompson, 1988), the recal-
culations inherent in ternary diagrams result in even greater 
modification of RSD values (0.02% to 11.47% in Table 1; 
see the three columns listed under “Model 2 (Figure 3b)”) 
and consequent greater distortion of symbol shapes (Figure 
3b). For all cases, the new RSD values are totally different 
from the initial RSD values (Table 1), symbol shapes are 

distorted and their sizes become smaller for data lying close 
to the apexes or to the boundaries. 

In ternary diagrams, for a given datum the relative 
mean value determines the region where it will actually 
plot, whether central or near the apexes or boundaries, and 
its total uncertainty estimates containing covariance terms 
indicate its final shape. Traditionally, small symbols are used 
to represent the data. However, the symbols occupy a much 
smaller area near the apexes or boundaries to such an extent 
that the two data plotting very close to the apexes A and C 
and one close to the A-B boundary are hardly even visible, 
whereas the symbols are much larger in the central region 
(Figures 3a and 3b). Analytical errors of the order of 1% to 
5% are reasonable estimates for many applications, but may 
even be underestimates of total analytical uncertainties in 
some areas of Earth sciences, such as igneous or sedimentary 
petrography and trace element geochemistry.

Figure 3. Frequently used ternary (a, model 1; b, model 2) and statistically-correct proposed bivariate (c, model 1; d, model 2) diagrams as illustrated by 
the use of 25 data involving three variables (initial mean values given in the first three columns of Table 1) and large simulations of 100,000 repetitions. 
In all diagrams, the symbol sizes would correspond to total uncertainty estimates of 99% confidence limits for sample sizes of about 10. Symbol shapes 
result from the covariance terms during the construction of ternary diagrams. For more details, see Table 1.
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In numerous ternary diagrams proposed in the litera-
ture for data interpretation (Rollinson, 1993; Verma, 2010), 
the variables are generally modified by “suitable” multipli-
cation or dividing factors, e.g., Ti/100–Zr–3Y, so that the 
“useful” region would lie in the central part of the diagrams, 
away from the apexes and boundaries. The present Monte 
Carlo simulation procedure shows that this is precisely the 
“unwanted” area where the data symbols, when plotted with 
their respective total uncertainty estimates, would occupy 
the largest part of the diagram, thus rendering all such pro-
posals of ternary diagrams in Earth sciences and chemistry 
statistically less powerful and probably even meaningless 
for the interpretation of experimental data, especially those 
characterized by large analytical errors. 

Furthermore, the existence of constant or unit-sum 
constraint or closure problem in handling compositional 
data has long been recognized (Chayes, 1960, 1978). Even 
if the initial data in ternary diagrams are of truly “continu-
ous” variables (and not of compositions), the methodology 
to construct such diagrams would result in the closure 
problem that is very similar to the problem of compositional 
data in most bivariate diagrams, such as the well known 
Harker type diagrams frequently used in geochemistry 
(Rollinson, 1993). 

One statistically-correct solution to resolve this prob-
lem and open the sample space (theoretically from -∞ to +∞) 
is the natural logarithm transformation of ratios (“log-ratio”) 
using a common denominator (Aitchison, 1986; Buccianti 
et al., 2006), although it is not clear to me why Aitchison 
(1986) used ternary diagrams to illustrate his innovated 
procedure for compositional data handling. Aitchison and 
Egozcue (2005) commented that ternary diagrams, comple-
mented with centring and scaling techniques (von Eynatten 
et al., 2003) are one of the most important and practical 
tools to represent compositional data. Error propagation 
in such diagrams was, however, not attempted by any of 
these authors.

I propose and show that the best statistically-correct 
alternative to statistically erroneous ternary diagrams is to 
use bivariate diagrams based on the two log-ratios of the 
three measured variables Am, Bm and Cm (Figures 3c and 
3d). The equal 5% RSD values (model 1) are projected as 
a constant standard deviation value (Figure 3c; Table 1). 
Because the transformed log-ratio variables ln (Am/Cm) 
and ln (Bm/Cm), can take any value from -∞ to +∞ (see the 
two columns of “Transformed experimental data” in Table 
1 where both negative and positive mean values result 
from the 25 data), it would be meaningless to use RSD as 
a parameter to express the dispersion estimate; instead, 
standard deviation or total uncertainty estimates (confidence 
intervals) should directly be used. The standard deviation 
values for unequal RSD and complex error structure (model 
2) are also similarly small (Figure 3d). They increase, as 
expected from the statistical and chemical principles, when 
one or two variables in a three-component datum approach 
the respective LOD values (see the data in the final two 

columns corresponding to three rows in Table 1; these data 
plot in Figure 3d as extreme values).

In the present work, although only two models were 
used to illustrate these critical findings, the use of any 
other uncertainty values or error structure, or actual error 
or uncertainty estimates when available, would provide 
essentially the same conclusion that ternary diagrams are 
statistically erroneous, because they are characterized by 
distortion of initial errors and unusually large errors visible 
in the central region of the closed triangular space, away 
from the apexes and boundaries. I conclude that ternary 
diagrams should better be abandoned (Figures 3a and 3b) 
or, at least, their use minimized. Log-ratio transformed 
bivariate diagrams (Figures 3c and 3d) could henceforth be 
adopted to handle three variables in two dimensions. This 
would not only facilitate correct statistical treatment, but 
also provide new ways of interpreting data in Earth sciences 
and chemistry.

DISCRIMINATION DIAGRAMS

Ever since the advent of plate tectonics, this graphic 
technique came into existence for deciphering the tectonic 
setting of igneous and sedimentary rocks (Rollinson 1993). 
A recent comprehensive review by Verma (2010) focused 
first on the statistical evaluation of traditional bivariate and 
ternary diagrams, and then presented the advantages of using 
the more recent (2004-2011) multi-dimensional diagrams. In 
the section of “Ternary Diagrams” I have provided further 
evidence against the indiscriminate use of ternary diagrams.

Multi-dimensional linear discriminant function based 
discrimination diagrams

Aitchison (1986) proposed log-ratio transformation 
as the solution for correct handling of compositional data. 
Reyment and Savazzi (1999) presented detailed account 
of multivariate techniques, including some computer pro-
grams, to take Aitchison´s recommendation into account. 

As a more recent example, Verma et al. (2006) used 
major-elements in their diagrams by log-ratio transformation 
with (SiO2)adj as a common denominator (thus, obtaining 
ten ratios from eleven major-elements). Because a more 
abundant component was used as the denominator, all 
major-element ratios are likely to result in numbers smaller 
than 1, and therefore their log-ratio transformation will 
result in negative numbers, thus having opened the space 
from zero to -∞. Had they chosen a less abundant major-
element such as (MgO)adj or (P2O5)adj, the log-transformed 
space might have opened in both positive and negative 
directions. 

Agrawal et al. (2008), on the other hand, for proposing 
their diagrams based on immobile trace-elements (La, Sm, 
Yb, Nb, and Th), chose Th as the common denominator. 
After log-ratio transformation, they worked in the four-
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dimensional space of ln(La/Th), ln(Sm/Th), ln(Yb/Th), 
and ln(Nb/Th). Here both positive and negative values in 
the transformed space are likely to occur, opening, thus, the 
space theoretically in both -∞ and +∞ directions. 

Similarly, Verma and Agrawal (2011), in their attempt 
to propose new discrimination diagrams based on immobile 
elements (TiO2)adj, Nb, V, Y, and Zr opted for the more abun-
dant (TiO2)adj as the common denominator. They, therefore, 
also worked in an open space of log-transformed variables 
from zero to -∞. They further assured through DODESSYS 
that the log-transformed ratios be normally distributed. 

Finally, Verma S.K. et al. (2012) used major-elements 
after log-ratio transformation with (SiO2)adj as a common 
denominator and proposed new multi-dimensional diagrams 
for acid magmas. They also followed the same methodology 
of Verma and Agrawal (2011) for ascertaining discordant 
outlier-free samples. Verma and Díaz-González (2012) 
have documented additional application cases to confirm 
the usefulness of DODESSYS and new multi-dimensional 
discrimination diagrams.

In all of these papers, the authors proposed new dis-
criminant function based diagrams after linear discriminant 
analysis (LDA) of log-transformed data. Strictly speaking, 
however, the variables used in LDA should be drawn from 
a multivariate normal distribution rather than a number of 
univariate normal distributions. New critical values are 
required to test for the former, which if achieved will be a 
significant progress not only for geochemometrics but also 
for other science and engineering fields.

With the exception of Verma et al. (2011b) diagrams 
for acid magmas, all other multi-dimensional diagrams are 
meant for tectonic discrimination of basic and ultrabasic 
magmas. This clearly demonstrates that new multi-dimen-
sional discrimination diagrams are very much needed for 
intermediate magmas as well as additional diagrams based 
on immobile elements for acid magmas. The available dia-
grams were extensively evaluated by the original authors. 
Four tectonic settings have been successfully discrimi-
nated, which are island arc, continental rift, ocean-island, 
and mid-ocean ridge. More recently, Verma et al. (2011b) 
have evaluated these diagrams from independent datasets 
and documented high success rates not only for these four 
tectonic settings, but also for the continental arc of the 
Andes and the Central American Volcanic Arc interpreted 
as similar to the island arc setting. Verma et al. (2011b) also 
applied these diagrams to evaluate the dominant tectonic 
setting of the Mexican Volcanic Belt, which was inferred 
as continental rift. 

PETROGENETIC MODELING

The knowledge of chemical equilibrium constants 
was incorporated in geochemistry in terms of solid-liquid 
partition coefficients, and a long history of development 
exists for modeling magmatic processes of partial melting, 
fractional crystallization, magma mixing, and assimilation 

with or without fractional crystallization. Rollinson (1993) 
is a good source for more detailed information on this topic.

Partial melting of a source region is governed by 
equations presented by several researchers (e.g., Schilling 
and Winchester, 1967; Shaw, 1970, 1978; Consolmagno 
and Drake, 1976; Hertogen and Gijbels, 1976; Langmuir 
et al., 1977; Wood, 1979). Inversion of partial melting 
equations was also proposed (Minster and Allègre, 1978; 
Albarède, 1983; Hofmann and Feigenson, 1983) and used 
more recently in Mexico by Velasco-Tapia and Verma 
(2001, in press) for Sierra Chichinautzin, by Verma (2004) 
for eastern Mexican Volcanic Belt, and by Verma (2006) 
for Los Tuxtlas volcanic field. For modeling of fractional 
crystallization, one can resort to the details presented by 
Schilling and Winchester (1967), Allègre et al. (1977), 
Yanagi and Ishizaka (1978), Villemant et al. (1981), and 
Le Roex and Erlank (1982), among others. Combined or 
decoupled processes of assimilation and fractional crystal-
lization have been invoked to explain magmatic evolution 
(DePaolo, 1981; Powell, 1984; Cribb and Barton, 1996).

Other more complex petrogenetic models were pre-
sented by O´Hara (1977, 1980, 1993, 1995). Similarly, more 
complex energy-constrained models have been advocated 
by Spera and Bohrson (2001, 2002, 2004) and Bohrson and 
Spera (2001, 2003). “In situ” three-dimensional combined 
thermal and chemical modeling of magma chambers has also 
been initiated (e.g., Verma and Andaverde, 2007; Verma et 
al., 2011c, 2011d), but it is still at its infancy stage. 

Uncertainty propagation in these petrogenetic models 
has not been extensively covered. Verma (1998b, 2000) 
presented approximate error propagation equations for use 
in geochemical modeling. There is ample room to carry 
out Monte Carlo simulation for uncertainty propagation 
in petrogenetic modeling, because most variables, 
including solid-liquid partition coefficients (e.g., Torres-
Alvarado et al., 2003), in the petrogenetic equations have 
uncertainties associated to them. Finally, Aitchison´s 
recommendations (Aitchison, 1986) should be incorporated 
in this field of geochemistry to reinforce the new science 
of geochemometrics. 

GEOTHERMOMETERS

Solute geothermometers have been widely used in 
geothermal exploration and exploitation. They have been in 
use now for nearly forty years. A recent review by Verma et 
al. (2008b) summarized all available equations and reported 
a new computer program SolGeo for use in such studies. 
Among solute geothermometers, the use of more recent 
proposal of silica geothermometers (M.P. Verma, 2008) 
requires special care. The geothermometers based on Na/K 
are more commonly used, for which statistically improved 
equations have been reported by Verma and Santoyo (1997), 
Díaz-González et al. (2008), and Verma and Díaz-González 
(2012). All these regression equations for the Na/K geother-
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mometer report standard errors in the regression coefficients. 
Therefore, error propagation in such equations can also be 
correctly handled by Monte Carlo simulations. 

Although gas geothermometry has been proposed in 
geothermics (D´Amore and Panichi, 1980; Giggenbach, 
1980; Arnórsson and Gunnalugsson, 1985; Henley et al., 
1985), these geothermometers have been less used than 
solute geothermometers. 

In this area of geochemistry, correct statistical han-
dling of compositional data recognizing multivariate nature 
of fluid composition is yet to take place. Incidentally, most 
Na/K geothermometers seem to comply with Aitchison´s 
procedure of log-ratio transformation (see Verma et al., 
2008b for review on geothermometers) but only as a bi-
variate procedure for Na and K (and not a multivariate 
transformation involving other chemical elements as well). 
I suggest that additional work should be carried out in the 
field of geothermometry to make this tool more reliable in 
the exploration and exploitation of geothermal resources.

FINAL CONSIDERATIONS

Undoubtedly, there are other important areas of 
research that would reinforce the new science of geoche-
mometrics. Among the currently available fields, I once 
again cite most of the topics covered in this paper, i.e., data 
quality, discordancy and significance tests, regressions, er-
ror propagation in ternary diagrams through Monte Carlo 
simulation, and multivariate techniques for correct compo-
sitional data handling. 

There is some vague notion in the literature that, with 
the availability of more sophisticated instrumental tech-
niques, the data quality has improved over the years. Is it 
really true? Is it the precision or the accuracy that has been 
improved? Or both have been improved? The new science 
of geochemometrics should answer these crucial questions. 
My own impression based on unpublished compilations 
of literature data, without having done yet a systematic 
research and interpretations, is that it is the precision, and 
not the accuracy, that has probably improved.

As an integral part of the data quality research in 
geochemometrics, the systematic behavior of LODs should 
be further investigated, and a clear theoretical explanation 
should be put forth. The instrumental sensitivities should 
always be reported. Total uncertainty estimates would be 
vital for this line of research. Certified geochemical refer-
ence materials for most elements of the Periodic Table are 
also highly desirable for geochemometric purposes.

Overall performance estimates of discordancy tests in 
terms of relative efficiency criterion (Verma et al., 2009b; 
González-Ramírez et al., 2009) should be complemented 
by the five individual probability calculations as suggested 
by Barnett and Lewis (1994) and achieved by Hayes and 
Kinsella (2003) for two discordancy tests. Although new 
precise and accurate critical values have recently been pro-

posed for 33 test variants, precise values are still required 
for several other discordancy tests proposed in the literature. 

Correct statistical treatment prior to the application 
of discordancy tests to compositional data has yet to be 
proposed and its use generalized. Does the application of 
discordancy tests to log-ratios (Verma and Agrawal, 2011) 
represent such a correct statistical treatment? Or should 
we explore discordancy tests for multivariate normal 
distribution?

Significance tests combined with discordancy tests 
should be routinely used for interpreting geochemical data. 
This statistical approach will therefore become an integral 
part of geochemometrics.

Monte Carlo simulations should be used for an objec-
tive comparison of different regression techniques currently 
available. Are these techniques directly applicable to com-
positional data? Or is some kind of transformation required 
to make them suitable for geochemometrics? 

Similar to the ternary diagrams evaluated in this work, 
uncertainty propagation through Monte Carlo simulation in 
other diagrams such as discriminant function-based multi-
element (multi-dimensional bivariate) diagrams should 
prove useful for future proposals of discrimination diagrams.

An objective comparison of robust and outlier-based 
methods is urgently needed. This will provide indications of 
appropriate statistical methods for use in the interpretation 
of geochemical data. And it will solve the controversies that 
are central to this important aspect of geochemometrics.

The new science of geochemometrics should warn 
against the erroneous use of numerous bivariate and ternary 
diagrams in Earth sciences and facilitate the use of statisti-
cally correct methodology for data interpretation. In the 
light of the simulation results documented in this paper, 
ternary diagrams should probably be abandoned or at least 
their use minimized, and bivariate plots involving natural 
logarithm-ratio transformed variables be adopted as the best, 
statistically-correct alternative to handle three variables in 
two dimensions.

Other multivariate techniques, such as principal 
component analysis and cluster analysis, should also be 
explored, although to geochemometrics these techniques 
may not prove more efficient than the linear discriminant 
analysis. Nevertheless, the statistically correct procedures 
should be made available to all those interested in using 
geochemometrics in the interpretation of geological and 
geochemical data.

Are there suitable methods other than the log-ratio 
transformation to handle compositional data? Aitchison 
(1999) seems to have demonstrated that there is none else, 
other than his extensive discussion on log-ratio transforma-
tion using a common denominator (Aitchison, 1986).

Work related to “in situ” thermal and chemical model-
ing of heat sources, if carried out in combination with Monte 
Carlo simulations, is likely to provide an important progress 
in petrogenetic modeling and is therefore highly recom-
mended to reinforce the new science of geochemometrics.
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