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A B S T R A C T
Dated peperites associated with ultrapotassic volcanic centres of the Neogene Volcanic Province of southeast 
Spain are of particular interest within the complex tectonomagmatic context of the Western Mediterranean because 
they show clear volcano-sedimentary interactions making them a valuable tool for correlating between Miocene 
sedimentary basins in the region. Detailed field mapping of two coeval, but geographically separate, ultrapotassic 
volcanic centres (Zeneta and La Aljorra), and comparison of sedimentary facies and radiometric ages with another 
at Fortuna, suggest that these centres apparently formed at approximately the same time, late Tortonian, by the same 
tectonomagmatic process, strike-slip, and in the same, shallow marine, paleogeographical context. Stratigraphic 
indicators in the Miocene basins suggest that basin-closure initiated in the region during the late Tortonian, prior to 
the main Mediterranean Messinian salinity crisis. Notably, many of the ultrapotassic volcanic centres are situated 
close to, and elongated along, the basin margins faults. We suggest, therefore, that movement of basin margin 
faults that closed the Miocene sedimentary basins causing drying out also facilitated the contemporaneous ascent 
of ultrapotassic magma. So, volcano-sedimentary interactions may be used to make inferences about both the 
tectonomagmatic and paleogeographic evolution of a region. In southeast Spain peperites provide evidence that 
the Tortonian ‘salinity crisis’ was geographically more widespread, extending to the southeast, than previously 
recognized.

Tortonian. Peperites. Lamproite. Basin-closure. Salinity crisis .KEYWORDS

INTRODUCTION

Correlation of geochronological and stratigraphic data of 
coexisting volcanic and sedimentary rocks (cf. Roger et al., 
2000) potentially gives insights into both how igneous rocks 
are emplaced and the paleogeographic conditions at the time of 
their formation. In the Neogene Volcanic Province of southeast 
Spain, Miocene sediments are cut by contemporaneous 

volcanic rocks of variable composition (Fig. 1) (López-Ruiz and 
Rodríguez-Badiola, 1980; Venturelli et al., 1984; Cebriá and 
López-Ruiz, 1995; Prelevic et al., 2008; Conticelli et al., 2009). 
Recent publications have focused on the ultrapotassic volcanic 
rocks and, especially, on their geodynamic implications for the 
Mediterranean region (e.g. Turner et al., 1999; Duggen et al., 
2005; 2008; Prelevic and Foley, 2007; Lustrino and Wilson, 
2007; Álvarez-Valero and Kriegsman, 2008; Conticelli et al., 
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2009). These studies do not include descriptions of the different 
facies found in the volcanic outcrops. Detailed field studies, 
such as those for Jumilla, Cancarix and Calasparra (Seghedi 
et al., 2007), are essential to attain a better understanding of 
how and why volcanic rocks erupt and the conditions of syn-
emplacement sedimentation. 

Sedimentological studies identify two regional drying 
out events in southeast Spain. The first one, which was 

less pronounced, was in the Tortonian (Krijgsman et al., 
2000; Playà and Gimeno, 2006; Tent-Manclús et al., 2008) 
and the more pronounced and important second one, in 
the Messinian (Butler et al., 1995; Reinhold, 1995; Riding 
et al., 1998; Krijgsman et al., 2000; Kouwenkoven et 
al., 2003; Rouchy and Caruso, 2006; Braga et al., 2010). 
The ultrapotassic volcanic centres that crop out in the 
Tortonian and Messinian sedimentary basins are potential 
paleogeographic markers. To assess this, two coeval but 
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distinct volcanic centres Zeneta and La Aljorra were 
selected for detailed study from the various scattered 
lamproite outcrops of the southeast Spain Neogene 
Volcanic Province (Fernández and Hernández-Pacheco, 
1972; Pellicer, 1973). These volcanic rocks have a similar 
age (8.08-8.20Ma, Duggen et al., 2005) to the associated 
sedimentary rocks and are well correlated with them.

In the present work we present detailed new maps of 
the Zeneta and La Aljorra volcanic centres. Here we report 
their field relations and petrography which, with X-ray 
diffraction (XRD) data (Cambeses and Scarrow, 2012), 
are used to define various facies in each outcrop. The most 
notable unit identified is that of basal peperites at Zeneta 
that indicate lava-wet sediment interaction. We combine 
these data with published stratigraphic data (Montenat, 
1973; Krijgsman et al., 2000; Playà and Gimeno, 2006; 
Tent-Manclús et al., 2008) to discuss the paleogeographic 
context when the volcanoes formed, the controls on their 
emplacement and their possible role as markers of the 
Mediterranean Tortonian salinity crisis.

GEOLOGICAL SETTING

The Neogene Volcanic Province is located in southeast 
Spain in the Betic Cordillera (Fig. 1), a part of the Betic-
Rif orogeny in western Mediterranean. This fragment 
of collisional mountain belt underwent late orogenic 
extension during the Miocene (Comas et al., 1999; Platt 
et al., 2003; Martínez-Martínez et al., 2006). The Betic 
Cordillera is divided into two main zones: the External 
Zone (South Iberia paleomargin) and the Internal Zone 
(Alboran Domain). The External Zone comprises Triassic 
to Miocene continental margin sedimentary rocks (Vera, 
2004 and references therein). The Internal Zone is made up 
of a stack of tectonic units, from base to top: the Nevado-
Filábride Complex, the Alpujárride Complex and the 
Malágide Complex, it comprises Paleozoic to Mesozoic 
rocks which were affected by Alpine and Pre-Alpine 
metamorphism (Vera, 2004 and references therein). 

Volcanism in the Neogene Volcanic Province consists 
of calc-alkaline, high-K calc-alkaline to shoshonitic, 
ultrapotassic (lamproite) and intraplate alkali rocks (Fig. 
1) (López-Ruiz and Rodríguez-Badiola, 1980; Venturelli et 
al., 1984; Cebriá et al., 1995; Fernández-Soler, 1996). The 
igneous rocks were emplaced in the form of volcanoes, 
in general, plugs and dykes, especially the ultrapotassic 
rocks, cutting the late Tertiary sediment cover and Betic 
External and Internal Zones basement (Venturelli et al., 
1984; Venturelli et al., 1988; Seghedi et al., 2007).

The Zeneta volcanic edifice was emplaced at the contact 
of the post-orogenic Neogene Bajo-Segura and Murcia-

Cartagena basins (Fig. 1, Soria et al., 2008). The sediments 
that filled the basins were deposited after a significant 
paleogeographic change that took place at the middle-
late Miocene boundary (Tent-Manclús et al., 2005). The 
sediments which comprise marls, intercalated sandstones 
and, locally, conglomerates are part of the Torremendo 
unit (Fig. 2) (Montenat and Ott d’Estevou, 1999). These 
strata have been dated by planktonic foraminifera as 
Tortonian, 11.6-7.25Ma (Montenat and Ott d’Estevou 
1999; Lancis, 1998). The paleogeographic situation prior 
to volcanic intrusion was, therefore, a pelagic basin that 
underwent changes in sedimentary conditions that have 
been interpreted to result from variations in sea level, 
recording stages of shallowing in the transition from the 
middle Miocene to the late Miocene (Montenat, 1975, 
Montenat and Ott d’Estevou 1999; Krijgsman et al., 2006; 
Lancis et al., 2010).

The La Aljorra volcanic edifice was emplaced, to the 
south of Zeneta, in the Murcia-Cartagena Basin (Fig. 
1). The sedimentary rocks surrounding La Aljorra are 
somewhat different from the sediments at Zeneta: they 
are transitional in age from Tortonian to early Messinian, 
another difference is that they were deposited in deep 
water (Montenat, 1973, Montenat 1990, Montenat et 
al., 1990; Krisjgsman et al., 2006). They are Canteras 
Formation marls and limestones (Montenat, 1973). Despite 
these differences, in general terms the radiometric age, 
paleogeographical situation and associated sedimentary 
rocks were similar at La Aljorra and Zeneta (Colondrón et 
al., 1993; Duggen et al., 2005; Iribarren et al., 2009).

MATERIALS AND METHODS

Detailed mapping was carried out of the Zeneta and 
La Aljorra volcanic edifices in the Bajo-Segura and 
Murcia-Cartagena basins (Figs. 3; 4; 5; 6). Volcanic rocks 
and associated sediments were sampled systematically 
at each outcrop. Standard thin sections of 20 samples 
were examined using a petrological microscope. X-ray 
diffraction (XRD) study identified the main minerals in 
approximately 90 samples (Cambeses and Scarrow, 2012). 
In addition to our work, we have included information 
from published petrographic descriptions of the Zeneta 
rocks (Fernández and Hernández-Pacheco, 1972; Toscani 
et al., 1995) and the La Aljorra lamproites (Pellicer, 1973).

FIELD RELATIONS

Zeneta

The Cabezo Negro, Zeneta outcrop, (UTM coordinates: 
678600-4207300, Fig. 3), is 1km long and 0.5km wide, 
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with a maximum height of 203m in the central part, 190m 
in the western part and 150m in the eastern part of the 
outcrop (Fig. 3A). Both the dark colour of the volcanic 
rocks and their associated vegetation clearly differentiate 
them from the light-coloured Miocene sedimentary rock of 
the Bajo-Segura Basin through which the volcano erupted. 
The southern and western slopes of the outcrop are very 
steep, rising vertically from the sedimentary substrate and, 
locally show columnar joints. However, the morphology of 
the northern and eastern slopes is shallower.

Stratigraphic sequence

The stratigraphic sequence described below is based 
on the observed field and structural relationships. Four 
units have been identified, from bottom to top: volcano-
sedimentary breccias of group Z-1; massive volcanic rocks 

of group Z-2 which, when they have intercalations of 
sedimentary rock, form group Z-3; fault-related breccias 
of group Z-4; and dykes of group Z-2 rocks that cut the 
whole series (Fig. 3B; 4). 

Group Z-1 volcano-sedimentary breccias are the 
most widespread and thickest unit in the outcrop. They 
constitute the lowest unit in the sequence and are always 
overlain by the massive rocks of group Z-2 or by these 
rocks with alternating sedimentary layers of group Z-3 
(Fig. 3B). Group Z-1 is not stratified and the blocks do not 
have a preferential orientation. The thickness of the breccia 
varies from 40m in the west to 15m in the east. The contact 
with the overlying rocks is concordant, in places the latter 
can be seen to drape the pre-existing undulating volcanic 
surface. Locally variations are observed in the abundance 
of the volcanic clasts in these breccias. In the west volcanic 
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blocks are abundant, up to 30-60%, however, in the east 
and in the upper part of the unit there are fewer blocks, 
5-15%, and the sedimentary matrix dominates. The size of 
the group Z-1 breccia clasts is variable, from centimetre-
sized blocks up to large metre-sized blocks (Fig. 4B). The 
volcanic blocks have a particular alteration in their central 
part with a bleaching in the interior that is not observed in 
the exterior (Fig. 4B). They have phenocrysts of phlogopite 

or biotite in a dark coloured, fine grained, groundmass. 
Chilled margins are not observed. In hand specimen the 
matrix sediment is difficult to identify because it is very fine 
grained but Toscani et al. (1995) described it as a marlstone. 
Significantly, we identified planktonic foraminifera that are 
comparable to those defined by Montenat (1973) in marls 
of the Tortonian Torremendo unit in the peperite sediments 
(Pérez-López, 2010, personal communication). Such volcano-
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sedimentary field relations are typical of peperites (cf. White 
et al., 2000; Skilling et al., 2002; Brown and Bell, 2007). 

Group Z-2 comprises structureless massive volcanic 
rocks that form the main part of the volcanic edifice 

(Fig. 4A). These dark grey massive rocks have a compact 
appearance (Fig. 4C), they contain large, up to 0.5mm, 
phenocrysts of phlogopite or biotite and, in places, altered 
olivine and clinopyroxene. This massive group marks the 
highest peaks in the outcrop. It also crops out as a lava 

Types of rocks present at Zeneta. A) Panoramic view of the outcrop. B) Breccias of group Z-1, with a sedimentary matrix, and blocks 
of massive volcanic rocks, classified in this work as peperites. C) Massive volcanic rock of group Z-2. D) Sedimentary rocks, group Z-3, between 
massive volcanic rock. E) Fault breccias, of group Z-4, cutting the massive volcanic rocks of group Z-2.
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flow in which flow lineation is observable marked by 
alternating dark and light layers orientated parallel to the 
slope where it solidified. The lava flow is extensive and 
can be seen on both sides of the volcanic centre although, 
notably, the inclination of the flow varies: in the southern 
sector it is slightly inclined whereas in the northern sector 
it is almost vertical (Fig. 3A). This is the first identification 
of a lava flow at this volcanic centre and constitutes one of 
the few known potassic lava flows in the whole southeast 
Spain Neogene Volcanic Province, the other one being at 
Barqueros to the southwest (Fuster, 1956). 

Group Z-3 is most clearly represented in the eastern 
and central parts of the outcrop (Fig. 3A). It is formed 
of sedimentary marlstone inter-layered in the massive 
volcanic rocks of group Z-2 (Fig. 3B). The marlstone is 
similar to the sediments that form the matrix of the group 
Z-1 volcano-sedimentary breccias, but is found in this 
unit as discrete lenses. These lenses are not very thick, 
reaching a maximum of around half a metre (Fig. 4D). 
There is a gradation in this unit: in some areas, at the base 
of the volcanic edifice, there are thin, up to 15cm, but 
repetitive layers of sediments, higher up, other sectors 
have less repetitive, but thicker, up to 50cm, sediment 
layers. The lenses vary in their orientation from horizontal 
to vertical. 

Group Z-4 fault breccias are much less widespread than 
group Z-1 breccias, (Fig. 3A). The group Z-4 breccias are 
made up of fractured blocks which, in places, preserve 
their original larger block morphology indicating that they 
are preserved in situ. In addition, the fault breccias are cut 
by veins of secondary, fault-related, hydrothermal quartz 
(Fig. 4E). Although not strictly a stratigraphic unit, this 
rock type was considered separately because lithologically 
it is quite distinct from the other groups. Group Z-4 cuts the 
other rock types, usually the group Z-2 massive volcanic 
rocks but also the group Z-3 breccias (Fig. 4E). The fault 
breccias are poorly exposed in the field, only being visible 
along fault zones (Fig. 3A). They are easily confused with 
the group Z-1 block-rich sedimentary breccias, because the 
composition of clasts is igneous in both cases. 

The whole outcrop is cut by a set of repetitive irregularly 
spaced vertical joints with a strike of N170ºE. In addition, 
vertical normal faults, with a strike of N160ºE, cut the 
central part of the outcrop (Fig. 3A). In the east vertical 
dykes of group Z-2 composition have a strike of N135ºE.

La Aljorra

The Cerro Cabezuela La Aljorra outcrop, (UTM 
coordinates 667650-4173280, Fig. 5), is 600m long by 350m 
wide, and has a maximum height of 145m. It has an elliptical 
morphology, with smooth shallow slopes (Fig. 5A; 6). The 

volcanic rocks are in contact with Betic Basement Paleozoic 
shales and Tortonian-Messinian sedimentary marls, clays and 
sandstones from the Campo de Cartagena Basin (Pellicer, 
1973; Montenat, 1975, Fig. 5A). The dark reddish grey colour 
of the volcanic rocks clearly differentiate them from the 
sedimentary rocks through which they erupted. Capping the 

A) Map of La Aljorra volcanic outcrop showing all rock ty-
pes described in the text. B) Stratigraphic sequence of the volcanic 
edifice and cross section showing the distribution of the different rocks 
types. Coordinates are expressed in m and UTM projection.
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outcrop is a soil formed of altered lamproites and Quaternary 
marine sedimentary rocks which cover the dome.

Stratigraphic sequence

The field relations allow a stratigraphic sequence to be 
established. Four units have been identified, from bottom to top: 

massive lamproites of group A-1, in which a raft of metamorphic 
rock is present; vesicular lamproites of group A-2; lamproite 
breccias of group A-3 which shows a lateral transition to group 
A-4 lamproite with sedimentary intercalations (Fig. 5B; 6).

Group A-1 massive lamproites are dark grey to red, 
they contain mafic phenocrysts, olivine and clinopyroxene 

Types of rocks present at La Aljorra. A) Panoramic view of outcrop (modified from Del-Ramo, 2010). B) Massive lamproites, from group 
A-1. C) Massive vesicular-amigdaloydal lamproites, group A-2, in contact with massive lamproites. D) Breccia, from group A-3 located above the 
massive lamproites. E) Sedimentary intercalations, between massive lamproite blocks, group A-4.
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(Fig. 6A, B). Alteration is very marked, indicated by iron 
oxides, showing stains, and secondary minerals such as 
zeolites and carbonates. These massive lamproites are 
the most widespread rock type, they form the core of the 
outcrop and are typically overlain by group A-2 vesicular 
lamproites (Fig. 5A). Contacts with the other units of the 
outcrop indicate lateral changes. A large, 75m by 50m, block 
of Betic basement schist is present in the south of this unit 
(Fig. 5A). Columnar joints are observed in places. In contrast 
to Zeneta, no flow directions are observable, suggesting that 
the volcanic body was emplaced in situ as a dome. 

Group A-2 are vesicular and amygdaloidal lamproites, 
similar to group A-1, they are dark grey to red and contain 
mafic phenocrysts, olivine and clinopyroxene (Fig. 6C). 
This group is well exposed in the western sector of the 
outcrop where it overlies group A-1 massive lamproites. 
These rocks are also recognizable in the eastern sector, 
although there they are less abundant. The contact with 
group A-1 lamproites is diffuse, and the thickness of this 
unit is variable, it increases towards the west (Fig. 5A). 

Group A-3 are breccias of group A-1 lamproites. The 
best exposed section of these breccias is in the northern 
sector (Fig. 5A) where they crop out above group A-1 
massive lamproites (Fig. 6D).

Group A-4 is formed of blocks of group A-1 massive 
and group A-2 vesicular lamproites infilled by marls in 
the upper section of the outcrop (Fig. 5A). The marls are 
principally located in the northern and eastern parts of the 
outcrop, they have a variable thickness but never exceed 
a metre (Fig. 6E). The contact between this unit and the 
underlying lamproites is usually sharp though in some 
sectors of the outcrop it is diffuse because of soil formation 
or thin cover (Fig. 6E). 

PETROLOGY OF THE VOLCANIC ROCKS

Zeneta

The samples selected for detailed petrographic study 
from the Zeneta volcanic centre are representative of 
the main rock units described in the current study. In 
general the rocks are porphyritic with a hypocrystalline 
texture, they are altered by secondary processes. The main 
minerals, both as phenocrysts and in the matrix, are olivine 
(in most cases entirely altered), clinopyroxene, phlogopite 
and biotite (up to 0.5mm) and alkali feldspar. Zircon, 
apatite, magnetite and monazite are accessory minerals 
(Fig. 7A). The rocks also present minerals that are not 
typical in lamproites such as orthopyroxene, sillimanite, 
Al-rich spinel and plagioclase, plus xenocrysts of quartz 
(Cambeses, 2011).

The modal proportions of the main minerals, as 
determined by XRD, are: olivine ~5%, clinopyroxene ~8%, 
phlogopite and biotite ~47%, sanidine ~32% and secondary 
and accessory minerals ~8% (Cambeses, 2011; Martín-
Ramos et al., 2012; Cambeses and Scarrow, 2012).

La Aljorra

The samples selected for detailed petrographic study 
from the La Aljorra volcanic centre are representative 
of the main rock units described in the current study. In 
general, the rocks are holocrystalline with a porphyritic 
texture with typical lamproite phenocrysts of olivine (up 
to 0.25mm), diopside and sanidine (Fig. 7B). The main 
minerals, both as phenocrysts and in the matrix, are olivine 
(most abundant), diopside, sanidine, phlogopite and matrix 
carbonates. Accessory minerals are apatite and opaques. 
Secondary minerals include iron oxides, iddingsite-
serpentine, carbonates and clay minerals.

The modal proportions of the main minerals, as 
determined by XRD, are: olivine ~33%, clinopyroxene 

300 μm

A

Phl

Phl

Xn

Bt

Phl

San

San

Ol

300 μm

B

Cpx
Ol

Ol

Phl

Cpx

Phl

Ol

Fig. 7

Representative photomicrographs from A) Zeneta and B) 
La Aljorra volcanic rocks. The left parts of the figure are in ppl while 
the right parts are in xpl. Ol: olivine, Cpx: clinopyroxene, Phl: phlogopi-
te, Bt: biotite, San: sanidine and Xn: xenolith. Olivine is entirely altered 
in the Zeneta rocks.
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~21%, phlogopite ~11%, sanidine ~30% and secondary and 
accessory minerals ~5% (Cambeses and Scarrow, 2012).

DISCUSSION

Interpretation of the volcanic centres

Zeneta 

Combining the results of previous work (Fernández 
and Hernández-Pacheco, 1972; Toscani, et al., 1995) with 
studies on comparable rocks (Montenat, 1973; Playà and 
Gimeno., 2006; Seghedi, et al., 2007) we use field data, 
stratigraphic relationships and petrographic information to 
develop a model for the generation of this outcrop. The 
starting point for our model is the available age data: the 
Zeneta sedimentary rocks have been dated as middle–late 
Miocene (Montenat and Ott d’Estevou 1990; Montenat, 
1990; Soria, et al., 2001, 2005), and the volcanic rocks 
have been dated by Ar-Ar, on phlogopite, at 8.08 ± 0.03Ma 
(late Miocene, Tortonian) (Duggen et al., 2005).

The model presented here explains three stages in the 
formation of the volcanic centre.

i) First stage – phreatomagmatic episode and formation 
of peperites: The field relations presented above indicate 
that the first intrusive phase formed the group Z-1 volcano-
sedimentary breccias, which are located in the lower part of 
the sequence (Fig. 2). The volcanic blocks in the breccias 
are randomly orientated and their sizes are very variable 
(Fig. 4B), all of which suggest that they were transported 
as a mixture of sediment and volcanic blocks that were 
subsequently cemented.

Peperites are rocks formed, essentially in situ, 
although potentially transported after their formation, 
by fragmentation of lava intruding and mingling with 
unconsolidated or poorly consolidated, typically wet, 
sediments. They are often formed at the margins of 
intrusions and at the base of lavas, as noted by Playà and 
Gimeno (2006). Such lithofacies only form in shallow 
water within poorly lithified sediments. Where they are 
found, peperites are a key indicator of contemporaneity of 
magma extrusion and sediment deposition. They provide 
valuable information about phreato-magmatic processes 
and environments of eruption, thus giving important 
insights into the evolution of volcanic intrusion (White et 
al., 2000; Brown and Bell, 2007). 

The Zeneta volcano-sedimentary breccias are classified 
here, for the first time, as peperites because they show 
distinctive sedimentary and magmatic textures typical of 
such facies: sediment surrounding irregular bodies of lava 

and the presence of lava and/or phenocrysts surrounding 
sediments. They are, in fact, in our opinion, a spectacular 
text book example of such rocks (Fig. 4B, cf. Kokelaar, 
1982; White et al., 2000; Skilling et al., 2002; Brown and 
Bell., 2007). So, the group Z-1 breccias are apparently 
phreatomagmatic, related to interaction between magma and 
water-rich, in some cases marine, sediments, the Tortonian 
marls of the Torremendo unit (Fig. 8A) (cf. Lorenz, 1987). 
According to Skilling et al. (2002), breccias such as those 
of group Z-1 from Zeneta, peperites with irregular volcanic 
clasts, indicate that the sedimentary component was 
dominant. Foraminifera fossils identified in the peperite 
sediments are typical of a shallow, near coast, marine 
environment. The importance of this setting in terms of 
paleogeographic reconstructions is considered below.

ii) Second stage – formation of massive volcanic rocks 
and peperite lenses: After the formation of the group 
Z-1 peperites, group Z-2 massive volcanic rocks show 

Fig. 8
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 Schematic interpretative model explaining the generation 
of the Cabezo Negro, Zeneta, volcanic edifice. A) First intrusive stage: 
phreatomagmatic episode, forming volcano-sedimentary peperites of 
group Z-1. B) Second intrusive stage: submarine intrusive episode, 
forming the initial massive intrusion and peperite lenses of group Z-3. 
C) Third intrusive stage: main subaereal episode, forming the mas-
sive volcanic rock dome with columnar joints group Z-2. D) Finally, 
intrusion of dykes and formation of fault breccias of group Z-4. s.l.: 
sea level. The vertical scale is exaggerated for clarity in all sections. 
Legend explained in Figure 3.
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little evidence of interaction with water-rich sediment. 
Based on the field evidence, this suggests that formation 
of Z-1 peperites produced a conduit or conduits that 
isolated subsequent magma emplacement from significant 
interaction with wet sediment. So, group Z-2 massive 
volcanic rocks passed through the sedimentary formations 
and were deposited on the sea floor. However, during 
this massive episode, the group Z-3 peperite lenses also 
formed. This association of massive volcanic rocks and 
peperite lenses indicates that the volcanic system was more 
established than during the formation of group Z-1 and that 
the phreatomagmatic activity had significantly decreased 
(cf. Skilling et al., 2002). Evidence for interaction between 
sediments and volcanic rocks decreases towards the top of 
the outcrop (Fig. 8B). 

iii) Third stage – main subaereal episode: This episode 
is the most important: it formed the main body of the group 
Z-2 as a large volcanic dome (Fig. 8C). We suggest that 
it was a multiphase intrusion because two large bodies 
are recognized in the field. The dome comprises massive 
rocks, with no interbedded sediments, in which columnar 
jointing and joints are present. Related to this intrusion are 
the aforementioned lava flows that apparently originated in 
the dome and now reach the edge of the outcrop (Fig. 3A). 
When the lava was erupted below sea level it intercalated 
with layers of sediment, forming peperite lenses, the 
absence of such features in the lava flows suggest that when 
they formed the volcanic activity was subaereal (Fig. 8C).  

The field relations presented above indicate that, at the 
end of the magmatic episode, fault movements disrupted 
the original sequence favouring the intrusion of dykes of 
group Z-2 composition, with a strike of N135ºE, along 
lines of weakness during the late stages of the evolution of 
the volcano (Fig. 8D).

La Aljorra

Combining the result of previous work (Pellicer, 1973; 
Duggen et al., 2005; Conticelli et al., 2009) with our field 
results we develop a model for the emplacement evolution 
of these rocks. The starting point, as in the case of Zeneta, is 
the temporal connection between the volcanic activity (8.02 
± 0.04Ma, Ar-Ar, on matrix chips, Duggen, et al., 2005) and 
the associated Tortonian to Messinian sedimentary rocks 
(Martínez Díaz, 1969; Montenat, 1973; Montenat, 1990; 
Montenat et al., 1990; Colondrón et al., 1993).

The model presented here explains two stages in the 
formation of the volcanic centre.

i) First stage – massive intrusion: The first intrusive 
phase formed the group A-1 massive lamproites, which, 
as described above, are located in the lowest part of the 

sequence. There was apparently no peperite formation 
as seen in Zeneta, probably because of the increased 
hydrostatic pressure of the deeper water conditions 
(Montenat, 1973; Montenat, 1990; Montenat et al., 1990; 
Krisjgsman et al., 2006), but then at La Aljorra the base of 
the volcanic centre is not observed (Fig. 9A).

ii) Second stage – emplacement process: During this 
stage the magma body rose to the surface and, as a result of 
rapid ascent, the massive lamproites exolved volatiles and 
vesicles were formed. In these group A-2 rocks stretched 
vesicles can be observed at the border of the massive 
intrusion. We suggest that, as it rose, the massive intrusion 
entrained the block of metamorphic rock that is present in 
the southern part of the outcrop (Fig. 9B).

At a later stage and unrelated to the emplacement of 
the La Aljorra volcanic dome, the Murcia–Cartagena Basin 
Quaternary sediments infilled the blocky lava surface. 

Paleogeographic implications

Age and stratigraphic position: preliminary correlations

Volcanic rocks from southeast Spain have been the 
subject of detailed geochronological study (e.g. Duggen 
et al., 2005) to establish the relationships between the 
different types (e.g. López-Ruiz and Rodríguez-Badiola, 
1980) (Fig. 1). These geochronological data represent an 
excellent source of information to establish stratigraphic 
and paleogeographic relationships in particular when, such 

Fig. 9
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 Schematic interpretative model explaining the generation 
the Cerro La Cabezuela, La Aljorra, volcanic edifice. A) First intrusive 
stage: massive intrusion. B) Second intrusive stage. s.l.: sea level. The 
vertical scale is exaggerated for clarity. Legend explained in Figure 5.
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as at Zeneta, interactions between volcanic and sedimentary 
rocks are identified (e.g. Playà et al., 2000, Playà and 
Gimeno, 2006; Caracuel et al., 2004). Ultrapotassic 
magmas are well suited to such a study because they are 
typically geographically restricted, furthermore, they 
are characterized by fast, fault-related ascent (Mitchell 
and Bergman, 1991), which potentially allow them to 
interact with unconsolidated sedimentary rocks, and, most 
importantly, to preserve this interaction in the stratigraphic 
record, typically as peperites.

The southeast Spain Miocene sedimentary basins, 
specifically those around Murcia and Almeria, have a very 
well defined stratigraphic sequence (Montenat, 1973) in 
which different stages of regression and transgression have 
been identified (Montenat and Ott d’Estevou, 1990; Montenat 
and Ott d’Estevou, 1999; Montenat, 1990). The well-known 
Messinian salinity crisis has been the focus of detailed study 
(e.g. Krijgsman et al., 2000; Duggen et al., 2003; Roveri et 
al., 2008). Nevertheless, other important stages of shallow 
and deep water sediment deposition have been described in 
these basins, although the age of these stages is not always 
clear because of the lack of specific chronological indicators.

Ultrapotassic volcanic rocks from southeast Spain 
have an age interval of 6.7 to 8.6Ma (Ar-Ar on mineral 
separates, Duggen et al., 2005), middle Tortonian to very 
early Messinian. This is significant because the greatest 
regression identified in the region was during this time, 
when the Mediterranean sea dried out (Butler et al., 1995; 
Reinhold, 1995; Riding et al., 1998; Krijgsman et al., 
2000; Rouchy and Caruso, 2006; Braga et al., 2010). Some 
authors suggest that the ultrapotassic volcanic centres 
formed as a result of the same convergence that is proposed 
to have provoked the Messinian regression (Duggen et al., 
2003, 2005).  Sediments within the peperites are typically 
shallow-marine e.g. gypsum or marls (White et al., 2000; 
Playà and Gimeno, 2006; Brown and Bell, 2007; the present 
work), which supports the idea of a convergence-related 
basin-closure and subsequent drying out. Such an event is 
potentially datable by the peperite volcanic component. 

The Tortonian ‘salinity crisis’: ultrapotassic volcanic 
rocks as a record

It is not always possible to identify the initiation of a 
basin drying out stage, to do so it is necessary to understand 
the stratigraphic sequence of the basin and also to make 
lateral correlations between basins in the same region. As 
described above, the middle to late Tortonian volcanic rocks 
from Zeneta were emplaced into the marls from Torremendo 
unit  of the Bajo-Segura Basin (Montenat, 1973; Montenat 
and Ott d’Estevou, 1999; Soria et al., 2008). Notably, the 
sedimentary unit associated with the late Tortonian-early 
Messinian La Aljorra lamproites are also marls, from the 

Canteras unit of the Murcia-Cartagena Basin (Montenat, 
1973; Montenat and Ott d’Estevou, 1999).

A relationship between strike-slip fault movement 
and ultrapotassic magma generation is well established 
worldwide (cf. Mitchell and Bergman, 1991; Vaughan 
and Scarrow, 2003; Scarrow et al., 2011 and references 
therein) and specifically in recent regional studies of 
strike-slip related ultrapotassic bodies, e.g, the Socovos 
fault lamproites dyke, in the Neogene Volcanic Province of 
southeast Spain (Pérez-Valera, 2010; Pérez-Valera et al., 
2010). Consideration of the regional geological map shows 
that many of the ultrapotassic volcanic centres are situated 
close to basin margins (Fig. 1) which are marked by strike-
slip faults (Montenat and Ott d’Estevou, 1990). What is 
more, some centres show evidence of elongation with a 
strike that is comparable to the regional faults (Fig. 3; 5). As 
noted above these rocks are characterized by rapid rise and 
emplacement, allowing correlation of their emplacement 
process with sediments that were being deposited in the 
Neogene basins. So, the precise geochronological age of 
the volcanic rocks can be used to constrain the timing of 
the stratigraphic sedimentary section.

The Zeneta and La Aljorra volcanic rocks can be related 
temporally and compositionally to other ultrapotassic 
volcanic outcrops in the region such as Fortuna (Fuster, 
1967). Lamproites at Fortuna have an age of 8.21 ± 0.17Ma 
(Ar-Ar on mica, Duggen et al., 2005) and 7.71 ± 0.11Ma 
(Ar-Ar on mica, Kuiper et al., 2006). Many authors link 
the Fortuna Basin and the Bajo-Segura and San Miguel de 
Salinas basins, (Fig. 1) by lateral stratigraphic correlations 
relating the gypsums and marls of the Gypsum units in 
the former (Playà and Gimeno, 2006) to the marls of the 
Torremendo unit in the latter (Playà et al., 2000; Soria et 
al., 2005; Tent-Manclús et al., 2008) (Fig. 2). Very few 
works have been published regarding the stratigraphic 
sequence further to the south in the Murcia-Cartagena 
Basin at La Aljorra (Montenat, 1973; Colodrón et al., 
1993) (Fig. 1). Nevertheless, based on the comparable 
radiometric ages of the volcanic rocks between Fortuna, 
Zeneta and La Aljorra (Duggen et al., 2005) a lateral 
correlation may be drawn between the sediments of these 
three localities. These correlations link the compositionally 
similar ultrapotassic volcanic rocks in the three centres as 
being apparently formed at approximately the same time, 
by the same tectonomagmatic process and in the same 
paleogeographical context.

The Fortuna Basin sediments have been interpreted to 
be the result of a regressive episode in the Tortonian based 
on magnetostratigraphy, palaeontology and sedimentary and 
igneous petrology (e.g. Dinarès-Turell et al., 1999; Playà et 
al., 2000; Playà and Gimeno, 2006; Krijgsman et al., 2000; 
Kuiper et al., 2006; Tent-Maclús et al., 2008; Lancis et 
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al., 2010). A Tortonian ‘salinity crisis’ has been defined by 
the above authors as a significant regression stage during 
which the Fortuna Basin evaporite facies were deposited. 
Some of these evaporite units are associated with marls 
that form peperites as a result of interaction with lamproitic 
lavas (Playà and Gimeno, 2006), although these are not as 
spectacular as those described in the present work.

Even though the Tortonian ‘salinity crisis’ was more 
apparent in the Fortuna Basin it was still detectable in the 
Bajo-Segura Basin. The basins located further to the south, 
such as Murcia-Cartagena, although they may have been 
involved in the same closure process, were more submerged 
and so did not dry out (Fig. 10). Evidence of the greater 
marine depth further south is provided in the current study 
by the apparent shallow-marine transitional to subaereal 
situation of the more northerly Zeneta volcanic centre during 
its formation, peperite emplacement, and its emergent, 
subaereal lava flows, and marine sediment-free situation 
since formation. This contrasts with the submarine situation 
of the La Aljorra volcanic centre further south as indicated 
by the volcanic edifice being almost completely covered 
by Miocene marine sediments (Fig. 9B). We suggest that 
detailed consideration of interactions between sedimentary 
and volcanic rocks, for example the pillow lavas observed 
to the south at Vera and subaereal lava flows found at 
Barqueros to the north (Fig. 10C), may be an interesting line 
of investigation for future paleogeographical studies. 

Ultrapotassic volcanic rocks can apparently be used to 
constrain basin margin fault movement that led to the start 
of basin-closure which subsequently resulted in drying 
out leading, eventually, to the Mediterranean salinity 
crisis in southern Spain in the Miocene. Our observations 
support the idea that basin-closure actually started in the 
middle-late Tortonian and became more pronounced as it 
continued through the Messinian (cf. Butler et al., 1995; 
Reinhold, 1995; Riding et al., 1998; Krijgsman et al., 
2000; Kouwenkoven et al., 2003; Rouchy and Caruso, 
2006; Braga et al., 2010). Clearly, the processes leading to 
the Tortonian ‘salinity crisis’ were temporally and spatially 
more widespread than previously thought, as shown 
by ultrapotassic volcanic rocks which, being typically 
geographically restricted and characterized by fast, fault-
related, ascent, are potentially excellent paleogeographic 
indicators that may be applied where clear volcano-
sedimentary interactions are identified.

CONCLUSIONS 

i) In the present work detailed mapping revealed that at 
Zeneta, to the north, at the contact of the Bajo-Segura and Murcia-
Cartagena basins, peperites formed during the early stages of 
volcanic activity when lava interacted with unconsolidated 

shallow-marine sediments, the subsequent activity resulted in 
an emergent volcanic edifice. By contrast, at La Aljorra, some 
20km to the south, in the Murcia-Cartagena Basin, a volcanic 
dome was covered by marine sediments syn- and post-formation.

ii) Emplacement of ultrapotassic volcanic rocks, forming 
peperites, at Fortuna and Zeneta, 8–8.2Ma, allows lateral 
correlation of gypsum and shallow marine marls sediments that 
were deposited during a drying out event in the late Tortonian. 
At this time basin closure initiated in southeast Spain prior to 
the main Messinian salinity crisis. 

iii) The Zeneta and La Aljorra outcrops indicate that 
the processes leading to the Tortonian ‘salinity crisis’ were 
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A) and B) Schematic evolution of the Neogene basins 
during the Tortonian stage in which the Fortuna, Zeneta, La Aljo-
rra, Barqueros, Mazarron, and Vera ultrapotassic volcanic centres 
formed. The figure shows basin-closure that is more marked in the 
north during this stage (modified from Viseras et al., 2004). C) Model, 
this work, of relative positions of ultrapotassic volcanic centres and 
the relationship with the late Tortonian situation. s.l.: sea level. The 
volcanoes are projected onto the line AA’. Basins nomenclature; LB: 
Lorca Basin, FB: Fortuna Basin, BMS: Bajo-Segura and San Miguel 
de Salinas Basins, MCB: Murcia-Cartagena Basin, GB: Guadalentin 
Basin, VB: Vera Basin, SB: Sorbas Basin and NB: Nijar Basin. Volca-
no outcrops are indicated by stars and their nomenclature is; 1: For-
tuna, 2: Zeneta, 3: La Aljorra, 4: Barqueros, 5: Mazarron and 6: Vera.
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temporally and spatially more widespread throughout the area 
of the Neogene Volcanic Province of southeast Spain than 
previously thought.

iv) We propose that the process that resulted in closure 
of the Miocene basins was related to the ultrapotassic rock 
generation, most obviously it may be suggested, by movement 
on basin margin strike-slip faults. 

Knowledge of the field relations and emplacement style 
of the ultrapotassic volcanic centres and their connection with 
associated sediments can be used to constrain paleogeographic 
setting and to make inferences about the tectonic evolution of 
a region. 
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