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The book being reviewed here combines two subjects which, for related 
reasons, are no longer viewed by the majority of logicians as being central to 
the logical enterprise: syllogisms and visualisation. Before commenting in 
detail on the contents of the book in any detail, it is appropriate to indicate 
why these subjects have lost their places in the logical and scientific canon. 

Syllogistic logic concerns the validity of inferences from two premisses 
(called the major and minor premiss) to a conclusion. Both premisses and 
conclusions are of the forms “all As are B”, “some As are B”, “no As are B” 
and “some A is not B”. Traditionally these forms are known by the abbrevia-
tions A, I, E, O respectively. To use examples from the book “all apple trees 
are fruit trees”, “no fruit trees are conifers” therefore “no conifers are apple 
trees” is a valid syllogism, while “some broad leafed trees are not apple trees”, 
“all apple trees are fruit trees”, therefore “some fruit trees are not broad leafed 
trees” is invalid. In a syllogistic inference, a common term in both premisses is 
eliminated, e.g. “fruit tree” in the valid syllogism above. There are four ways in 
which this can happen depending on whether the eliminated term, known as the 
middle term, is subject or predicate in the premisses. These four combinations 
give rise to the four figures of the syllogism. For each figure some of the forms 
will be valid. For example in the fourth figure, where the middle term is a 
predicate of the major premiss and a subject of the minor premiss, AEE, EIO, 
IAI, AAI, AEO and EAO are traditionally taken to be generally valid syllogis-
tic forms or moods. The syllogism “all apple trees are fruit trees”, “no fruit 
trees are conifers” therefore “no conifers are apple trees” is a valid AEE syl-
logism of the fourth figure.  

The origin of syllogistic logic was due to Aristotle in the Prior Analytics. 
The subject was developed throughout the middle ages and was commonly 
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taught in universities until the early 20th century. Bernhard notes that the re-
search programme into syllogistic logic continues to the present day, citing 
the New Syllogistic of Fred Sommers and George Englebretsen (p. 14) [New 
York, Peter Lang, 1987]. 

The reason why syllogistic logic is generally no longer taught at universi-
ties is that the symbolic logic developed by Frege, Hilbert, Peano and Russell 
amongst others has been seen to have a far broader scope than syllogistic logic 
(dealing with complex relations such as “for all B and C there is an A such 
that A is between B and C” as well as simple relations between A and B) and 
to be applicable to mathematics and science as well as arguments in general 
discourse. In fact, syllogisms can be represented in monadic first-order predi-
cate logic, i.e. in predicate logic with only one place predicates. For example, 
“no fruit trees are conifers” can be represented symbolically by (¬∃x)(Fx & 
Cx), where Fx represents “x is a fruit tree” and Cx represents “x is a conifer”: 
in words “there is no x such that x is a fruit tree and x is a conifer”. 

The power of modern logic has led to syllogistic logic being replaced 
by symbolic logic in most logic courses, although those courses that are his-
torically aware may introduce the concepts of the syllogistic logic by way of 
background. Since its beginnings symbolic logic has become an extremely 
well researched area with a large number of well known results. The true sen-
tences of first order predicate logic, for example, can be completely described 
by a finite set of axiom schemas and a finite set of deductive rules, while there 
is no recursive function that provides a generally applicable decision process 
for the truth of sentences of first order predicate logic [see, e.g., David Hilbert 
& Willhelm Ackermann Principles of Mathematics, New York, Chelsea, 1950; 
first published as Grundzüge der theoretischen Logik, Berlin, Springer, 1938]. 
(Coincidentally, Hilbert and Ackermann’s book also contains a proof of the va-
lidity of 15 of the traditional 19 distinct moods of syllogism.)  

Whilst the power and scope of symbolic logic is hard to deny, one might 
think that symbolic logic is too powerful for deciding the validity of argu-
ments in general discourse. The appropriateness of applying symbolic reason-
ing to argument in natural languages is also open to question given the focus 
of the development of symbolic logic was initially on mathematics and later 
on science [see Bernhard p. 14 and for the use of symbolic logic as a founda-
tion of science see, e.g., Rudolf Carnap The Logical Structure of the World, 
Chicago, Open Court; originally published as Der Logische Aufbau der Welt, 
Berlin, 1928]. A related concern is that the rules of logic are not rich enough 
to express the complex inferential patterns in natural language. Usage of 
natural language often has inferential rules for handling uncertainty and ex-
pectation, necessity and contingency, beliefs and desires, modes of address 
(such as imperatives) and counterfactual conditionals that are not obviously 
expressible in symbolic terms. It has been a major research programme in 
analytic philosophy and artificial intelligence to try to capture the usage of 
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natural language in symbolic terms. This research programme has generated 
a great deal of important results, but a serious charge against it is that in some 
cases (e. g. modal logic) the models of the formal systems used to provide 
semantical frameworks for those systems have been more philosophically 
questionable than the inferential rules that the systems are formalising [see, e. 
g., David Lewis’s views on modal realism in On the Plurality of Worlds, Ox-
ford, Blackwell, 1986]. With these concerns in mind, there may be room for a 
study of syllogistic logic. How far this can be achieved will be discussed later 
in this review. 

Visualisation had for a long time also been neglected as a technique in 
symbolic logic and consequently overlooked as a subject for debate in the 
philosophy of logic. Until recently the main techniques in logic were alge-
braic and set-theoretical: the nearest that modern logic came to using visual 
techniques was in the treatment of proofs as structures (graphs/tableaux of) 
syntactic objects constructed according to rules of inference and subject to 
transformations while preserving the validity of the conclusion. The most 
well known examples relate to the work of Gentzen in developing sequent 
and natural deduction formulations of logic systems [see “Investigations into 
logical deduction” in The Collected Papers of Gerhard Gentzen ed. M. E. 
Szabo, Amsterdam, North-Holland, 1969, pp. 68-131] and the work of Beth 
in developing the tableaux formulation [see, e. g., the development of first-
order predicate logic in John Bell and Moshé Machover A Course in Mathe-
matical Logic, Amsterdam, North-Holland, 1977]. However, an original aim 
of proof theory as a subject was to make use of intuitive, visualisable meth-
ods in studying formal axiomatic systems. Both of Gentzen’s proofs of the 
consistency of first order arithmetic [translated by M.E. Szabo as “The con-
sistency of elementary number theory” and “New version of the consistency 
proof for elementary number theory” in The Collected Papers of Gerhard 
Gentzen] are examples of this, as they can be visualised by means of explicit 
operations on tree structures (although the visualisability of mathematical in-
duction to the first fixed-point ordinal, ε0, used to establish the consistency of 
number theory has been the subject of much debate ever since). 

As Bernhard notes [p. 12], the recent work of Jon Barwise and John 
Etchmendy has helped to stimulate interest in the value of visual reasoning 
[see, eg, Logical Reasoning with Diagrams, New York, Oxford University 
Press, 1996]. Based on experience of producing computer packages to help 
students learn logic, their view was that visual reasoning using diagrams and 
graphical representations can provide a richer and more natural way to reason 
in certain situations because the amount of information carried by a diagram 
may be greater than the amount carried by a sentence or a collection of sen-
tences. As they say in [“Computers, Visualization and the Nature of Reason-
ing” in The Digital Phoenix: How Computers are Changing Philosophy, T. 
W. Bynum and James H. Moor (eds.), London, Blackwell, 1998, pp. 93-116]: 
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Diagrams, like sentences, carry information: they carve up the same space of 
possibilities, though perhaps in very different ways. A good diagram, for exam-
ple, may represent information in a form that is particularly appropriate for the 
subject matter at hand, one that allows you to visualize and manipulate the in-
formation more readily than would a collection of sentences or even a different 
sort of diagram. 
 
The antipathy to the use of visualisation derived in part from the trend 

that originated in nineteenth century mathematical thought to remove appeals 
to “intuition” from mathematical proof and thence to rigorise mathematics, 
that subsequently became a norm in the teaching of mathematics generally 
and mathematical logic in particular. For more details of this trend see, for 
example, the chapter on geometry in Friedman’s [Kant and the Exact Sci-
ences, Cambridge Massachusetts, Harvard University Press, 1992]. Another, 
related reason is that historically images were used in mathematics predomi-
nantly in Euclidean geometry: the discovery of other geometries and broader 
classes of spatial forms (such as projectivities and topologies) led to a distrust 
of spatial reasoning in general. In mathematics it is not too much of an exag-
geration to say that formalisation took the place of visualisation from the 
early 20th Century onwards. 

The formalisation of Euclidean geometry as an axiomatic formal system 
was accomplished by David Hilbert in 1899 [see Foundations of Geometry, 
Chicago, Open Court, 1971; originally published as Grundlagen der Ge-
ometrie, Leipzig, Teubner, 1899], which may be supposed to have removed the 
need for intuitions in Euclidean geometry. However, much later in his 1932 
preface to Geometry and the Imagination [trans. P. Nemenyi, New York, Chel-
sea, p. iii; originally published as Anschauliche Geometrie, Berlin, Springer, 
1932] Hilbert says: 

 
As to geometry, in particular, the abstract tendency has here led to the magnifi-
cent systematic theories of Algebraic Geometry, of Riemannian Geometry, and 
of Topology; these theories make extensive use of abstract reasoning and sym-
bolic calculation in the sense of algebra. Notwithstanding this, it is still as true 
today as it ever was that intuitive understanding plays a major role in geometry. 
[… ] With the aid of visual imagination we can illuminate the manifold facts 
and problems of geometry, and beyond this, it is possible in many cases to de-
pict the geometric outline of the methods of investigation and proof without 
necessarily entering into the details connected with the strict definitions of con-
cepts and with the actual calculations. 
 
In this quotation Hilbert captures one essential advantage of visual rea-

soning that also seems to underlie Barwise and Etchmendy’s view: whether it 
is in geometry or in logic, visual reasoning can provide the realisation of a 
truth in a speedy and concise way, reducing the amount of symbolic manipu-
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lation. But visualisation is not only a way to shorten the lengths of proofs; it 
may lead to knowledge of new truths that may not be captured by a formal 
system if the subject matter has not been completely formalised or if the truth 
were infeasible to deduce from the axioms. 

Of course the value of visual reasoning depends on whether we can 
trust visualisation to convey information faithfully. After all it is arguable 
that human representation of objects is in terms of conceptual frameworks 
(such as geometries and scientific theories) that enable us to communicate 
sensibly about the things we see. A foundationalist response to this problem 
is to give a general characterisation of the concept of space and time in gen-
eral [see Kant’s metaphysical expositions of space and time in Section I of 
the “Transcendental Aesthetic” of the Critique of Pure Reason, A23/B37] 
and show that a particular conceptual framework is compatible with that 
characterisation. Paul Lorenzen has done this for Euclidean geometry by us-
ing the logical concept of homogeneity (i. e. object X is homogeneous with 
respect to object Y if every part of X has the same properties with respect to 
Y) [see “The Foundation Problem of Geometry” in Constructive Philosophy, 
Amherst, The University of Massachusetts Press, 1987, pp. 257-273]. The 
compatibility of other geometries can be shown by giving relative consis-
tency proofs or by arguing the case for compatibility directly. Those who see 
no value in foundations can ignore this line of argument, but it does lend 
plausibility to the inherent value of visual information. 

Based on the foregoing, it seems reasonable to agree with Bernhard that 
visualisation ought not to be a poor relative of other methods in logic, but 
constitutes a powerful tool for effective understanding complex concepts, 
methods and proofs. 

A case in point is the subject of the book reviewed, viz Euler diagrams. 
Euler diagrams exploit a close analogy between predication, set membership 
(an object satifisfying a predicate being a member of the extension of that 
predicate) and of one space form being part of another. 

The idea behind Euler diagrams is to represent propositions in subject 
predicate form as relationship between the sets of things that satisfy the sub-
ject and the set of things that satisfy the predicate. Thus “all apples trees are 
fruit trees” could be represented by a disc standing for the set of all fruit trees 
with a smaller disc wholly inside it standing for the set of all apple trees. 
Similarly, “some apple trees are fruit trees” and “some apple trees are not 
fruit trees” can be represented by two partially intersecting discs, “no apple 
trees are fruit trees” by two non-intersecting discs. These diagrams may be 
used to verify syllogisms and to suggest counterexamples. For example, “all 
apple trees are fruit trees”, “no fruit trees are conifers” may be represented by 
three discs, one for fruit trees containing another for apple trees and an en-
tirely separate one for conifers. It can be seen that “no apple trees are coni-
fers”. As Bernhard amply illustrates [s2.2, pp. 22-38], Euler’s method is 
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much simpler than the various medieval rules and dicta used to indicate the 
truth of a syllogism. 

A derivation of a syllogism in the first-order predicate calculus (taken 
here in linear form) can also be complicated by comparison to Euler’s 
method. Take the derivations of the AEE syllogism of the fourth figure. This 
has premisses (∀x)(Px → Mx) and (∀x)(Qx → ¬Mx). By universal instantia-
tion, Px → Mx and Qx → ¬Mx. By contraposition and double negation elimi-
nation, Mx → ¬Qx. Consider the general schema, (B → C) → (A → (B → 
C)), which is a logical axiom. Then if A → B and B → C are axioms, A → 
(B → C) by modus ponens, (A → B) → (A → C) by virtue of another standard 
logical axiom, and hence A → C by modus ponens. Substituting Px for A, 
Mx for B and ¬Qx for C, we see that Px → ¬Qx follows from Px → Mx 
and Mx → ¬Qx. But by contraposition and double negation elimination, 
Qx → ¬Px follows. By universal generalisation, (∀x)(Qx → ¬Px), which 
establishes the validity of AEE in the fourth figure. However if double ne-
gation elimination is not taken as an inference rule (and it is usually not in 
linear formulations of first-order logic) but (¬B → ¬C) → (C → B) is, then 
take ¬¬A → (¬¬¬¬A → ¬¬A) as an axiom. (¬¬¬¬A → ¬¬A) → 
(¬¬A → A) follows by two applications of (¬B → ¬C) → (C → B) with 
B=¬¬¬A and C=¬A and then B=A and C=¬¬A. Hence ¬¬A → (¬¬A → 
A) by modus ponens, and (¬¬A → ¬¬A) → (¬¬A → A) by distribution. 
To establish ¬¬A → ¬¬A we can use (B → (C → B)) → ((B → C) → (B 
→ B)), and deduce (B → C) → (B → B) as B → (C → B) is an axiom and 
then substitute C → B for C, to obtain B → B by modus ponens, and finally 
substitute ¬¬A for B. The double elimination inference, ¬¬A → A, then 
follows by modus ponens. 

Although one may argue that the general inference rules used in the 
above proof need only be derived once, derivations in first-order predicate 
logic can be complicated and are not especially intuitive (generally being 
much easier to work out if you start at the conclusion and work backwards), 
even if they do possess a kind of beauty. Some of this awkwardness is re-
moved in natural deduction and tableau proofs, but there is still a sense in 
which the axiomatic system does not help the theorem prover. A standard 
proof by Euler diagrams by contrast requires the consideration of various 
configurations of the diagrams (to exhaust the logical possibilities), but it is 
extremely intuitive. 

Bernhard identifies three stages a proof of the truth of a syllogism by 
Euler diagrams [p. 46]: construction of a diagram representing the first pre-
miss, integration of discs that represent both premisses, and inspection of the 
diagram to derive the conclusion. One theme of the book is the diversity of 
methods and views on determining the validity of syllogisms and which syl-
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logistic forms are valid. Chapter 4 of the book [pp. 55-82] is devoted to differ-
ent visualisations of Euler diagrams in particular comparing the intensional and 
extensional interpretations of syllogism, the extensional view being the one de-
veloped in the book. Chapter 5 [pp. 83-95] is devoted to different views on the 
number and nature of valid syllogisms. The controversy surrounds the extent 
to which the existence of subjects and predicates is assumed. The traditional 
view is that the domains of subjects and predicates are not empty. This gives 
rise to 19 distinct moods. The modern view is that only the subject domain 
needs to be non-empty and then only when existential claims are made (i. e. in 
the I and O forms). On this basis there are 15 valid moods. Consider AAI in the 
fourth figure, i. e. “all Ps are M”, “all Ms are S”, therefore “some Ss are P”. In 
modern logic, both premisses can be true if there are no Ps and no Ms and there 
are Ss. But then no Ps are Ss, invalidating the syllogism. However if there are 
Ps and Ms by assumption, the truth of the syllogism follows. Bernhard pro-
vides a nice illustration of the intermediate views of William of Ockham and 
John Stuart Mill, who dropped the assumption that the predicate domain is 
empty in the general case, although they had different views of the E and O 
cases, Ockham believing that negative judgements do not require the exis-
tence of the subject. 

Bernhard then considers two different ways of determining the truth of 
syllogisms, which he calls the segment semantics and the surface semantics. 
A segment semantics attempts to represent a single syllogistic form, A, I, E 
or O, by a single Euler diagram, while the surface semantics uses multiple 
Euler diagrams that represent distinct logical possibilities. Bernhard draws 
out a number of historical attempts to produce complete segment semantics, 
from Euler through William Thompson and Charles Peirce to John Neville 
Keynes. Bernhard notes that the approach of Richard Purtill [see The Cam-
bridge Dictionary of Philosophy, Cambridge, Cambridge University Press, 
1995, pp. 251-252] is the best currently available that does not use additional 
symbols to indicate existence assumptions. However even this approach is 
not completely satisfactory as it requires an additional rule to be added (p. 
102). If additional symbols are allowed, Bernhard notes that the approach 
taken by Keith Stenning provides a complete semantics if no existence as-
sumptions are made for the predicate domain [p. 103]. Surface semantics is 
less problematic because all logical possibilities are considered separately, 
but this can be time consuming because of the number of combinations in-
volved. Bernhard suggests a falsification method, where the integration of the 
premisses with the contradictory of the conclusion is attempted [pp. 113-
114]. If integration is possible the syllogism is not logically valid; otherwise the 
syllogism is valid. The falsification method can be more efficient than verifying 
all the combinations and can be used as a general method of determining the 
truth of syllogisms, although the reviewer found the flow diagrams that Bern-
hard used to express the falsification process [pp. 118-121] difficult to follow. 
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Although it is an efficient diagrammatic method, the falsification 
method is based on a prior logical principle, namely reductio ad absurdum, 
since if the proposition A∧B∧¬C is not possible, i. e. is logically false, then 
¬A∨¬B∨C is a logical truth, i. e. (A∧B)→C is true (with the material read-
ing of P→Q as ¬P∨Q). For the falsification method to be a truly diagram-
matic method, we would need a diagrammatic derivation of the reductio ad 
absurdum rule. We can use Venn diagrams as a model, interpreting 
<∨,∧,→,¬> by the set–theoretic operations <∪,∩,⊆,–> where set comple-
ment is written as a minus sign and, as you would expect, x⊆y if and only if 
–x∪y covers the plane. For each proposition P, taking P to be P’c for constant 
c, (∃x)(P’x) or (∀x)(P’x), P can be represented by the set of objects for which P 
is true, written {x}(P’x), and usually called the extension of P. Then we can 
verify the axioms of propositional logic using the interpretation that a logical 
truth corresponds to coverage of the plane for an arbitrary non-empty set of ob-
jects. For example, (¬A→¬B) → (B→A) becomes (–{x}A’(x) ∩ {x}B’(x)) 
∪(–{x}B’(x) ∪{x}A’(x)), which covers the whole plane. Modus ponens can be 
written A→((A→B) → B) and shown to be true as a Venn diagram. Given that 
propositional logic is complete (deduces all propositional truths), Venn dia-
grams can represent all propositional truths. Moreover all Venn diagrams can 
be represented as propositional formulae remembering that the empty set is 
equivalent to the false (proposition), e. g. x∩y=∅ maps to ¬(X∧Y), x∩y≠∅ to 
X∧Y. It follows that the set of propositional truths deducible by Venn diagrams 
and propositional logic is the same. Then, to return to reductio ad absurdum, if 
¬(A∧B∧¬C) is logically true, –({x}(A’x) ∩{x}(B’x) ∩–{x}(C’x)) covers the 
plane, hence –{x}(A’x) ∪–{x}(B’x) ∪{x}C’(x) covers the plane, which is true 
if {x}(C’x) covers the intersection of {x}(A’x) and {x}(B’x), ie {x}(A’x)∩ 
{x}(B’x)⊆{x}(C’x), which also deals with the case where {x}(A’x) does not 
intersect {x}(B’x). Hence (A∧B)→C is true. 

Bernhard then moves on to consider how syllogistic logic can cope with 
non-categorical syllogisms. He considers singular syllogisms such as “Vol-
taire is a philosopher; Voltaire is a poet; therefore there is a poet who is also a 
philosopher”, the so-called indirect moods, where the order of the subject and 
predicate in the conclusion is reversed, and contraposition inferences where 
subject and predicate are replaced with their negatives and swapped. Singular 
propositions are best treated as a type of universal propositions, ie “Voltaire 
is a poet” would be treated as “for all x, if x is Voltaire, then x is a poet”, al-
though this is not ideal as a claim about Voltaire does not seem like a univer-
sal claim. Indirect moods can also be accommodated by the standard 
verification method or by the falsification method for Euler diagrams al-
though general symmetry rules for E and I can be used with direct moods. 
Contraposition inferences require the complement of a subject or predicate’s 
extension to be carefully distinguished. For this he uses boxes that fit the entire 
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plane to indicate that subject or predicate extensions are exactly complemen-
tary or overlap. Bernhard then considers the a metric for information content of 
syllogisms suggested by Rudolph Carnap, viz. the ratio of false cases over total 
number of cases [pp. 137-139]. Before his final summary, Bernhard considers 
extensions to Euler diagrams that have more expressive power than standard 
Euler diagrams, such as being able to express “each S is M or P” in a single 
diagram, which can be handled by using boxes rather than discs. 

The content of this book forms a very interesting survey, Bernhard hav-
ing demonstrated a good understanding of the history of syllogistic logic. 
There are however three limitations of the work that the author should con-
sider in future revisions to this work. The first is a detail, viz that various 
types of non-categorical syllogism are not mentioned in the work. Standard 
works on syllogisms distinguish hypothetical and disjunctive syllogisms such 
as modus ponens, modus tollens and argument by dilemma. Although these 
forms have long been superseded by propositional logic, there existence 
should perhaps have been acknowledged. The second limitation is fairly mi-
nor again, but it does point to a problem with diagrammatic methods. Dia-
grammatic methods find it difficult to handle empty sets (see for example 
Bernhard p. 131). Diagrams have to resort to symbolic representations of 
emptiness because diagrams can only represent something rather than noth-
ing. This failure shows that there are elements of human reasoning which 
cannot be adequately expressed through diagrams alone. 

The third limitation is more fundamental. The book is a case study of 
visual methods applied to syllogistic logic. But there did not seem to be a 
strong sense of why visual methods are legitimate and how far the work done 
on syllogistic logic relates to modern logic. Ideally there should be more dis-
cussion in the book on the role of formal analogy in logic and an indication 
of what can be carried over from monadic predicate logic to modern logic. 
Although analogies in the sense of structural embeddings or equivalences 
have placed a significant part in modern logic and mathematics, and there are 
many results on classifications of common structures such as groups and 
topological manifolds, the book does not aim to explain the relationship of 
the diagrammatic theory of parts through the possible mediation of naïve set 
theory to the theory of syllogisms. In a sense it would suffice to give a simple 
structure preserving mapping (e. g. <∨,∧,→,¬> to <∪,∩,⊆,–> as provided 
above in the case of propositional logic), but a treatment of what the struc-
tural equivalence amounts to in the sense of satisfying the axioms of a Boo-
lean algebra would also be useful. As far as what could be carried over to 
modern logic, a discussion of visualisation techniques in more general Boo-
lean algebra would be interesting as would a survey of visual techniques in 
modern predicate logic (some views on which have been sketched in the 
course of this review) with emphasis on those that can be carried across from 
syllogistic logic. In conclusion, Bernhard’s book does provide a good deal of 
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scholarship on Euler diagrams and motivation for further research into visual 
methods, but does not tackle some of the broader issues alluded to above. 
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