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This book provides a wide ranging survey of issues in the philosophy 
of mathematics. It would be an ideal text book to introduce the central 
themes of the philosophy of mathematics to a reader with a basic background 
in philosophy and in mathematics. Since, to my knowledge, this book is the 
only work to provide such a broad introduction to the philosophy of mathe-
matics, it deserves to be successful. 

Thiel’s book provides good technical and historical coverage of stan-
dard material in the philosophy of mathematics: the foundational crisis in 
mathematics (pp. 315-350); the development of the logicist, formalist, and 
intuitionist schools (pp. 330-350); the incompleteness results (pp. 221-237); 
and the structuralism of Bourbaki and Stegmüller (pp. 261-272). It also pro-
vides a good introduction to first-order logic in the Hilbert style (pp. 92-102). 
Rather less standard is the development of logic (pp. 82-85 & pp. 255-258), 
arithmetic (pp. 128-138), analysis (pp. 138-155), and geometry (pp. 273-302) 
in the tradition of Paul Lorenzen, an account of constructive methods (pp. 
238-260), and a detailed discussion of the problem of the applicability of 
mathematics to reality (pp. 30-48). It is to his credit that Thiel does not avoid 
technicalities. The sketches of the proofs that he gives are for the most part 
clear and serve to illuminate the issues he discusses. 

Both the broadness of the range of the book and the use of technicali-
ties are surely signs of the influence of Thiel’s mentor, the sadly late Paul 
Lorenzen, to whom the book is dedicated. Thiel’s book stands in the Loren-
zian tradition. For readers unfamiliar with the work of Lorenzen and in order 
to examine some of the views put forward in this book, I will discuss the 
Lorenzian tradition later in this review. 

As far as general weaknesses are concerned, there are two areas in 
which the book could be improved. 

The first area of weakness is that the bibliographical references are not 
complete, especially for a survey work of this kind. The references are in fact 
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incomplete in two ways: not every text referred to in the book has a reference 
in the bibliography; and, more generally, certain key works are not referred 
to at all. An example of the former type of incompleteness is Thiel’s refer-
ence to Frege’s attempt to escape the inconsistency in his Grundgesetze. Al-
though he refers to the literature on this topic (in English) as “Frege’s Way 
Out” (p. 336), he does not cite the paper of the same name by Quine [Mind 
n.s. 64, pp. 145-159;1955, reprinted in Selected Logic Papers, New York, 
Random House, 1966; and in Essays on Frege, ed. E.D. Klemke, University 
of Illinois Press, 1968]. An example of the latter type of incompleteness, 
again with regard to Frege’s way out, is that Thiel does not refer to the work 
of George Boolos establishing the consistency of the system of Frege’s Die 
Grundlagen der Arithmetik [Foundations of Arithmetic, 1884] relative to a 
formalization of classical analysis [cf. “The Consistency of Frege’s Founda-
tion of Arithmetic”, in Being and Saying: Essays in Honor of Richard Cart-
wright, Cambridge, Mass., M.I.T Press, 1987, pp. 1-20]. 

The second area of weakness relates to the structure of the book. Each 
chapter is written as an essay in its own right. Although the chapters are cross 
referenced and adequately indexed, it is sometimes hard to follow the conti-
nuity of thought on any one topic from one chapter to another. By way of an 
example, consider the topic of David Hilbert’s philosophy of mathematics. 

The axiomatic method was always central to Hilbert’s philosophy of 
mathematics (and to his mathematical practice), providing a means of clarify-
ing, stabilizing, and systematizing mathematical and scientific thought [cf. 
“Axiomatisches Denken”, Mathematische Annalen, vol. 78, 1918, pp. 405-
415; Paul Bernays, “Hilberts Untersuchungen über die Grundlagen der 
Mathematik”, Hilberts gesammelte Werke, Berlin, Springer, 1935]. In his 
Grundlagen der Geometrie [Foundations of Geometry, 1899] Hilbert pro-
vided the first axiomatizations of systems of geometry in terms of modern 
logic. Axiomatic systems also have properties of their own, consistency be-
ing the most essential for mathematical thought. In the Grundlagen der Ge-
ometrie Hilbert provided consistency proofs for those geometrical systems in 
terms of analytical models. Since the work of Georg Cantor and Richard 
Dedekind had shown how to reduce analysis to whole number arithmetic and 
sets, Hilbert became interested in the problem of the consistency of arithme-
tic and of set theory. This interest led him (certainly from 1904 onwards) to 
find properties that a contradiction does not have that the axioms do possess 
and that the rules of inference preserve. In order to provide a secure founda-
tion for the consistency proofs Hilbert required that the properties can be 
effectively decided true or false by manipulating finitely many symbols in 
concrete intuition. Hilbert and his school (most notably Willhelm Acker-
mann, Paul Bernays, and Gerhard Gentzen) produced consistency proofs by 
examining the symbolic (or syntactic) properties of proofs. The most sophis-
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ticated example from Hilbert’s own school is Gentzen’s proof of the consis-
tency of first-order arithmetic. Gentzen showed by transfinite induction (up 
to a countable ordinal number ε0) that every given proof of a contradiction 
could be effectively simplified to a proof with a lower ordinal number [cf. 
“New version of the consistency proof for elementary number theory”, The 
Collected Papers of Gerhard Gentzen, Amsterdam, North-Holland, 1969, pp. 
252-286]. Since Gentzen formulates mathematical induction as an inference 
rule, he can take as his basic mathematical axioms free variable formulae 
which are verifiably true under substitution with symbolic numerals. Hence 
first-order arithmetic can be proved consistent in a finitistic way (if transfi-
nite induction up to ε0 has a finitistic justification). The view that mathemat-
ics is the study of symbolic axiom systems is called formalism; the 
mathematical study of axiom systems is called meta-mathematics; and the re-
striction of the methods of meta-mathematics to effectively decidable func-
tions of finitely many symbols is called finitism. Finitistic meta-mathematics 
is called Hilbertian proof theory (although in the technical sense proof theory 
nowadays uses non finitistic methods). Hilbert’s Programme was to prove 
the consistency of as much of mathematics as possible by formalizing 
mathematical systems and providing finitistic consistency proofs. All these 
terms appear in Thiel’s book, formalism (p. 20 & p. 344), meta-mathematics 
(p. 72), finitism (p. 242), proof theory (Beweistheorie, p. 242), and Hilbert’s 
Programme (p. 241); and Thiel mentions the origin of Hilbert’s Programme 
(p. 241). However it seems difficult to form an integrated view of Hilbert’s 
philosophy of mathematics from the scattered references in the book. This 
criticism seems to apply not only to Hilbert but equally to other philosophers 
of mathematics whose views are discussed in the book. 

These general criticisms do not detract greatly from the book as a 
whole, although they should perhaps be borne in mind in future editions. Be-
fore discussing the Lorenzian tradition there is one specific topic on which 
Thiel’s interpretation does not seem quite correct. He says (p. 28, my trans.): 
“some modern schools of thought (empiricism, logicism, and conventional-
ism) deny however that there are separate objects [of mathematics] and in 
this sense that there is an object of mathematics in general”. Thiel has previ-
ously considered eight modern schools of thought on the nature of mathe-
matical objects: Carl Friedrich Gauss’s view of mathematical objects as 
quantities, Hermann Weyl’s view that mathematics is the science of the infi-
nite, Mill’s empiricism, the view of Nicholai Hartmann and Günther Jacoby 
that mathematical objects are fictional things-in-themselves, conventional-
ism, logicism, formalism, and “structural” formalism. It does not seem cor-
rect to say that conventionalism necessarily denies that there are 
mathematical objects, any more than it is true to say that formalism and 
“structural” formalism necessarily accept that there are distinctively mathe-
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matical objects. (It is unclear whether mathematics as the science of the infi-
nite admits new mathematical objects or not.) 

Conventionalism is the view that there is an element of choice involved 
when we describe an empirical situation in mathematical terms; that there is a 
looseness in the fit of mathematical models of experience. A classic example 
concerns the sum of the angles of a triangle [cf. Hans Reichenbach, The Phi-
losophy of Space and Time, New York, Dover, 1956, p. 33]. If we measure 
the angles in a triangle, we may say that either the sum of the angles of a tri-
angle is 180° and that the geometry of space is Euclidean or that there is a 
force distorting the measuring instruments such that although the sum of the 
angles of the triangle is still 180°, the geometry is of a non-Euclidean type (in 
which the sum of angles of a triangle is not 180°). While it is true that logi-
cism does not involve any ontological commitments because logic concerns 
what is true in all possible circumstances (even when there are no individu-
als), and that empiricism equates mathematical objects with empirical ob-
jects, conventionalism does not seem to say what mathematical objects are. 
The founder of conventionalism, Henri Poincaré, held that mathematics is 
produced from experience by construction and abstraction, but that there are 
some irreducibly synthetic principles, such as the principle of mathematical 
induction, and forms of the understanding, such as that of a group of con-
tinuous transformations of space, at the base of mathematics [cf. Foundations 
of Science, New York, Science Press, 1913, p. 64; “On the Foundations of 
Geometry”, The Monist vol. 9, 1898, p. 41]. Reichenbach, on the other hand, 
held that “the statements of pure geometry hold logically” and that “mathe-
matical geometry ... is analytic” [The Philosophy of Space and Time, p. vi]. 
When he discusses conventionalism Thiel seems to have Reichenbach’s logicism 
(logical empiricism) in mind rather than Poincaré’s own views. 

The question of whether formalism has distinctive ontological com-
mitments is less clear cut. The Hilbertian symbolic kind of formalism allows 
that symbolic axiomatic systems form the ontological commitment of 
mathematics. But it could be argued that from a formalist standpoint we are 
ontologically committed to systems of this kind anyway. We all use lan-
guage, and therefore the grammar or logic of language. If we hold that we 
can axiomatize segments of our grammar, formalism about mathematics does 
not introduce any ontological commitments specific to mathematics. A spe-
cial case is systems of (mathematical) logic. These are axiomatizable, and 
from a symbolic formalist perspective are the same sort of symbolic game as 
axiom systems of mathematics. In my view it is for this reason that formalism 
is inadequate as a philosophy of mathematics; one needs to provide a founda-
tion for the content of the axioms, as explicating the meaning of the logical 
connectives. 
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“Structural” formalism may be regarded as the formalist’s way out. 
“Structural” formalism, structuralism for short, is the view that mathematics 
concerns the structures which are abstractions from models which satisfy the 
axioms and rules of inference of the axiom systems of mathematics. Thiel 
gives an example of the concept of structure by giving a model of the natural 
sequence (pp. 114-121) and in terms of tallies (|) and a model in terms of cir-
cles (in which zero is blank, one is two horizontally adjacent circles, and to 
form the successor of a number one adds a circle in front of the number and 
one above it). The tallies and circles which form a “number” can be put into 
one-to-one correspondence and the successor function for tallies corresponds 
to the successor function for circles. The natural number structure is then the 
equivalence relation between such models of the natural numbers (with the 
stipulation that each model satisfy the principle of mathematical induction for 
all properties in order to exclude non-standard models of arithmetic). Ac-
cording to structuralism mathematics is ontologically committed to mathe-
matical structures. This is a well established view which has been supported 
by the approach of twentieth century mathematics. The ontological commit-
ment of structuralism is well defined: equivalence relations (or classes) of 
models (i.e. sets of objects with relations defined on the objects). But if one 
asks how one has knowledge of structures then one has to think of a particu-
lar spatio-temporal model, unless one is prepared to attribute occult powers 
to the mind. However, if one decides for reason of ontological parsimony to 
hold that a spatio-temporal model represents (or is) the structure in certain re-
spects, then one may have no new ontological commitment if one already has 
an ontology of spatio-temporal objects. 

These criticisms are fairly peripheral to the purpose of Thiel’s book, so let 
us proceed to the tradition behind the book, namely to the Lorenzian tradition. 

Paul Lorenzen (1915-1994) was a mathematical logician and philoso-
pher of mathematics who built a remarkably original and unified philosophi-
cal system. It is a great shame that he is not better known in the Anglo-Saxon 
countries, although his collected essays are available in English as Construc-
tive Philosophy [Amherst, University of Massachusetts Press, 1987]. 

Thiel sums up Lorenzen’s philosophy as the “interplay of construction 
and abstraction” [my trans. p. 69, p. 155, p. 313 quoted from Lorenzen’s 
Diffferential und Integral, Frankfurt am Main, Akademische Verlagsgesell-
schaft, 1965, p. 20]. Lorenzen’s philosophical programme was to show how 
as much of mathematics and the natural sciences as possible could be pro-
duced by the process of construction and abstraction. Differential und Inte-
gral is in fact the fulfillment of Lorenzen’s programme with respect to 
analysis (the theory of real numbers) using the path developed by Hermann 
Weyl in Das Kontinuum [Leipzig, Veit, 1918]. Thiel captures the flavour of 

 



Andrew Powell 102

Lorenzen’s construction and abstraction process in deriving the real numbers 
(pp. 128-155), so that a sketch of the derivation seems called for. 

The scheme of the derivation is the usual one: real numbers are derived 
from rational numbers, and rational numbers are derived from natural num-
bers. The abstraction process itself often makes use of an equivalence rela-
tion, i.e. a binary relation R such that (∀x)R(x,x), (∀x,y)(R(x,y)→R(y,x)), and 
(∀x,y,z)[(R(x,y)∧R(y,z))→R(x,z)]. For an equivalence relation R the abstract 
of a term t is the property of being equivalent to it, symbolically (λu)R(t,u). 

We first construct a sequence of concrete symbols to represent the 
natural numbers in concrete intuition, say by the rule: =>|, n=>n|. Then we 
define addition and multiplication as (primitive) recursive functions (addi-
tion, for example, by n|+m=(n+m)|). Subtraction and division (on a symbol 
sequence) can also be defined primitive recursively. Symbols representing 
negative numbers can then be introduced as an abstraction by means of a 
primitive recursive definition in terms of the usual arithmetical operations 
and relations, for instance -x<0 if x>0. (Thiel actually introduces symbols for 
negative numbers as an abstraction from a ‘recalibration’ equivalence rela-
tion between ordered pairs of number symbols (m,n) and (m+k,n+k), pp. 136-
138.) 

To form assertions about numbers, we abstract over corresponding 
symbols. For example, we convert the assertion A(||) about the symbol || into 
the assertion A´(||) about the number which || represents, as (∀x)(x≡||→A(x)), 
where ≡ is an equivalence relation between two symbols (in the same symbol 
sequence or not) which holds if the two symbols appear in the same place in 
a sequence, and where the same symbols for the arithmetical operations are 
used in each symbol sequence. In this context the universal quantifier should 
be read substitutionally, namely as “when a symbol equivalent to || is substi-
tuted for x then A(x) holds”. 

Rational numbers are introduced by means of a further abstraction. If 
we define (m,n)≡(k,l) if l.m=k.n with n.l≠0, then ≡ is an equivalence relation. 
We can then abstract from the representative (m,n) to the rational number 
m/n (the property of being equivalent to (m,n)). Real numbers are yet another 
abstraction. We can define a sequence of rational numbers as a function from 
the natural numbers to the rational numbers. We cannot construct each se-
quence of rational numbers: we can construct only those for which f is a re-
cursive function and have to be content with the abstracted concept of 
sequence of rational numbers. A sequence of rational numbers f is concen-
trated if (∀ε)(∃N)(∀m,n>N)(|f(m) f(n)|<ε), where ε is a positive rational num-
ber, N, m, n are natural numbers, and |...| is the absolute value function x⇒x 
if x>0 and x⇒-x if x<0. The quantifiers should be read substitutionally, ∃N as 
“as you can find an N”. A real number can be defined by means of a further 
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further equivalence relation: f≡g if (∀ε)(∃N)(∀n>N)(|f(n)-g(n)|<ε). We can 
abstract from a concentrated sequence of rational numbers f to the real num-
ber which f represents (being the property of being equivalent to f). Asser-
tions about real numbers are understood as follows. If A(f) is an assertion 
about a concentrated sequence of rational numbers, then A′(f) about the real 
number which f represents is (∀g)(g≡f→A(g)). 

Now that we have sketched the derivation of real numbers from natural 
numbers, there are some points about the method which are characteristic of 
Lorenzen and his school. 

The first point is that the basis of the derivation is everyday experience, 
concrete symbols (albeit regulated by a conceptual requirement that we rec-
ognize symbols as of the same kind, for instance one  and another ) and 
commonplace operations on the symbols. The use of everyday experience as 
the ultimate reference for mathematics and natural science closes the episte-
mological gap present in many philosophies of mathematics. For Lorenzen 
this requirement gives rise to a proto subject, which is the subject before the 
process of construction and abstraction begins. 

The second point is that Lorenzen’s approach is always based on con-
structions. Lorenzen seems to have regarded part of mathematics or natural 
science as unfounded if it could not be founded by means of constructions. In 
Differential und Integral Lorenzen followed Weyl in rejecting real numbers 
formed with reference to the totality of all real numbers, permitting instead 
only that arithmetical properties of real numbers could be used. A good deal 
of real analysis can then be developed [cf. Gaishi Takeuti, Two Applications 
of Logic to Mathematics, Tokyo, I. Shoku; and Solomon Feferman, “Weyl 
vindicated: ‘Das Kontinuum’ 70 years later”, Temi e prospetti della logica e 
della filosofia dell scienzia contemporanea, vol. 56, Bologna, CLUEB, 1990, 
pp. 59-93 for alternative developments]. The classical assertion of complete-
ness that every set of real numbers with an upper bound has a least upper 
bound then fails; but we can instead assert that every sequence of real num-
bers with an upper bound has a least upper bound. 

The third point is that Lorenzen’s construction and abstraction process 
has a strong nominalist flavour. From the beginning with concrete particulars 
to a process designed to minimize the ontological burden of the final result. 
Although the immediate source is probably the influence of Immanuel Kant, 
of which more below, the method employed by Lorenzen is in keeping with 
the spirit of William of Ockham and the via moderna. 

The fourth and final point is that the strongest influence on Lorenzen’s 
abstraction and construction process seems to be Kant. As Thiel notes (p. 27) 
the Kantian method in mathematics was to construct a mathematical concept 
in intuition, this statement applying equally to geometry, arithmetic and alge-
bra [cf. Critique of Pure Reason, A717/B745 and A734/B762]. In his Logic 
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[1800, trans. R.S. Hartmann & W. Scherz, Indianopolis, Bobbs-Merrill, 
1974, s6, pp. 100-101] Kant gave the principles of formation of empirical 
concepts as comparison, reflection and abstraction: we compare the features 
of things, reflect on what they have in common, and finally abstract away the 
features not in common. This process is similar to the abstraction process en-
visaged by Lorenzen: the only difference is that when you have an equiva-
lence relation you have already removed what is different between them. It 
seems that the similarity between Kant and Lorenzen goes even further. The 
construction process begins with everyday experience. But, as noted above, 
to be more exact it begins with spatio-temporal objects subjected to certain 
common concepts. Kant’s view of mathematical concepts seems to have been 
that for spatio-temporal objects to be treated as mathematical they need to be 
constructed in intuition insofar as they satisfy certain concepts of the under-
standing. For instance, a number is “a representation which comprises the suc-
cessive addition of homogeneous units” [Critique of Pure Reason, A142-
143/B182]. It seems reasonable to suppose that the homogenous units have a 
concept as a ground of their unity. On this interpretation to judge that “there 
are five apples” you firstly judge each apple under the concept “apple”, and 
then apply the counting rule (=>|, n=>n|) to synthesize the five units as a sin-
gle totality. Lorenzen’s approach seems very similar to this interpretation of 
Kant’s views on mathematical concepts. 

To test the interpretation of Lorenzen’s philosophy given above, let us 
consider the foundations of geometry and logic. 

In the Lorenzian tradition geometry is the theory of spatial form. We 
begin from the everyday rules that we have learnt about spatial objects: how 
they match one another, and how they fit together. This is protogeometry. 
Lorenzen believed that Euclidean geometry is privileged because it can be 
given a foundation in terms of the abstraction and construction process. The 
account given here is based on Lorenzen’s article “The Foundational Prob-
lem of Geometry” [in Constructive Philosophy, pp. 257-273] with some as-
sistance on dimensionality from Bernard Riemann’s “On the Hypotheses 
which Lie at the Foundation of Geometry” [A Source Book in Mathematics, 
New York, McGraw-Hill, 1929, pp. 411-425]. 

We firstly need some definitions. An extension is a connected spatial 
object which can be taken to consist of as many parts as one pleases. One ex-
tension X is said to be homogeneous with respect to an extension Y if every 
part of X has the same properties with respect to Y. A spatial object is said to 
be homogenous if it is homogeneous with respect to itself. Let us characterize 
some geometrical terms. A point is an extension which we stipulate can be 
mapped onto itself only by the identity map. A line is an extension which can 
be mapped onto itself by two mutually inverse families of maps. A plane is 
an extension which can mapped onto itself with two pairs of mutually inverse 
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families of maps (with the independence property, that the only map in both 
pairs is the identity map). A space is an extension which can be mapped onto 
itself by three independent pairs of mutually inverse families of maps. A 
plane is Euclidean if it is homogeneous with respect to the space in which it 
is embedded. (We identify coincident parts on the top and the bottom of the 
plane.) A highly symmetric body like the sphere fails to be a Euclidean plane 
because when embedded in space one can distinguish a top and a bottom. 
Because we cannot distinguish edges of the Euclidean plane a Euclidean 
plane must be unbounded in every direction. A line is Euclidean if it is 
formed by the intersection of two Euclidean planes. Two Euclidean planes 
(lines) are parallel if every point on one plane (line) is homogeneous with re-
spect to every point on the other plane (line). Parallel Euclidean planes 
(lines) cannot intersect because the line (point) of intersection would be dis-
tinguished. A Euclidean line is orthogonal to a Euclidean plane if every 
Euclidean line in the plane that passes through the point of intersection of the 
plane and the line is homogeneous with respect to the point. The Euclidean 
axiom of parallels is true because given any Euclidean line and a point not on 
the line we can construct parallel Euclidean planes containing the point and 
the line. Moreover, the Euclidean planes are parallel in the normal sense: any 
Euclidean line orthogonal to one Euclidean plane is orthogonal to the other. 
We can see this by imagining that there were two Euclidean lines, L1 and L2, 
through a point on one Euclidean plane, E, L1 orthogonal to that Euclidean 
plane and the other L2 orthogonal to the other Euclidean plane, F. Then the 
Euclidean plane containing L1 and L2 will intersect the F in a particular line. 
But this line is distinguished with respect to the point of intersection of L2 
and F. This contradicts the definition of orthogonality of L2 and F. Hence L1 
is identical to L2. We can complete the construction of Euclidean geometry 
by showing how Euclidean congruence can be defined using parallelism and 
orthogonality, because we can define a rigid motion as one that preserves 
Euclidean congruence. We omit the details here, but refer the interested 
reader to Lorenzen’s original article. 

One significant feature of this account is the abstraction involved in 
forming the notion of Euclidean plane. After all no actual spatial object is 
exactly homogeneous with respect to its embedding space. The important 
point is that homogeneity is a logical notion (based on the identity of indis-
cernibles). When applied to Euclidean geometry homogeneity (of X with re-
spect to Y) is an equivalence relation, thus giving rise to a foundational 
account of Euclidean geometry which mirrors that of the theory of real num-
bers. The constructive element arises because geometrical objects must be 
constructed in the original Euclidean (and Kantian) sense. 

Before discussing Lorenzen’s foundation of logic, it is worthwhile to 
remark that Lorenzen’s philosophical approach has a strong sense of history: 
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his article on geometry can be thought of as a defence of Euclid’s original 
geometrical spirit. 

Just as geometry begins with protogeometry, logic begins with 
protologic. Protologic might be defined as logic that arises out of considera-
tions of practice or usage prior to logic. With respect to mathematics such 
considerations are syntactic operations on proofs, since truth values for 
quantified formulae with infinite domains involve us in adopting infinities as 
actual or completed totalities. Thiel gives an example (pp. 82-83). The intro-
duction rules for the logical “or” connective are: a→a∨b and b→a∨b. If we 
could assert a→c and b→c, then if we could assert a∨b then we could assert 
c. This is so because a∨b must have been introduced by either a→a∨b or 
b→a∨b; so we can use either the proof of a→c or the proof of b→c to prove 
c. Thus we have justified [(a→c)∧(b→c)] →(a∨b→c). This last fomula can 
be seen as a rule for eliminating the logical “or” connective ∨, if we write it 
as a∨b,a→c,b→c⇒c, where ⇒ stands for “is inferred from”. Using ideas of 
natural deduction developed originally by Gerhard Gentzen and enhanced by 
Dag Prawitz [cf. “Ideas and Results of Proof Theory”, in ed. J. Fenstad, Pro-
ceedings of the Second Scandinavian Logic Symposium, Amsterdam, North-
Holland, 1973, pp. 235-306] it is possible to formulate logical systems by 
providing introduction rules and elimination rules for each logical connec-
tive. One can provide at least a partial foundation for logic if we can justify 
an elimination rule as a consequence of its introduction rule, and say that a 
logical connective is defined by its introduction rule [cf. “Ideas and Results 
of Proof Theory” p. 247]. The logic that we can found in this way is called 
minimal logic, which is a subsystem of both intutionistic and classical logic 
(cf. “Ideas and Results of Proof Theory” p. 240). If we wanted to justify in-
tuitionistic logic we would need to justify the ex falso quodlibet inference of 
any atomic proposition from the assertion of a contradiction; and for classical 
logic we would need a justification of double negation elimination. 

With Kuno Lorenz Lorenzen also developed dialogic [cf. Dialogische 
Logik, Wissenschaftliche Buchgesellschaft, Darmstadt, 1978], a formulation 
of logical systems as a dialogue between a proponent and an opponent, each 
of whom tries to win the dialogue by forcing the other into a contradiction. 
This approach to logic once again seems to have its origin in the history of 
philosophy, in particular in the Socratic method. 

It is very difficult to evaluate a whole tradition, but I find Lorenzen’s 
foundational work in the mathematics far more satisfactory than his founda-
tions of logic. Usage-theoretic views of the foundation of logic are deeply 
unsatisfactory philosophically: for, in what do you ground your usage? In the 
case of mathematics “usage” becomes “proof”. At some stage one must give 
some meaning-theoretic justification of some logical rules or axioms; and it 
is circular to justify these rules or axioms on some prior notion of proof. Dia-
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logic does not seem any better: for, what is the ground of the rules employed 
in a dialogical dispute? My own view is that each domain of discourse may 
have its own grammar or logic, and that logic needs to be founded in terms of 
a particular standpoint that you consider legitimate, in mathematics the fini-
tistic standpoint, the potential infinite standpoint, or the actual infinite stand-
point, for example. 

Thiel’s book fits well into the Lorenzian tradition. He follows Lorenzen 
in his discussions of arithmetic and analysis, and in geometry (pp. 273-302) 
describes a variant of Lorenzen’s approach due to Rüdiger Inhetveen [Kon-
struktive Geometrie, Mannheim, B.I.-Wissenschaftsverlag, 1983]. As I un-
derstand it, the Euclidean plane is specified by the property that if any part of 
the plane is brought into contact with another part by a fold the parts on the 
plane will fit together exactly. This property is certainly an homogeneity 
condition on the Euclidean plane in terms of its embedding space. The con-
cept of orthogonality is founded by having two wedges of opposite orientation 
which fit together exactly; and parallelism arises when two “pieces of cake” bod-
ies are brought into contact, the non-touching straight sides being parallel. 

As I mentioned at the start of this review, Thiel discusses the problem 
of the applicability of mathematics to reality. As Thiel notes (p. 40) the ap-
plicability problem is a neglected area of the philosophy of mathematics. It is 
also an area of central importance to the subject, because mathematics is al-
together mysterious if it is a domain its own right which just happens to be 
essential in formulating most physical laws. Lorenzen’s foundations of 
analysis and geometry are formulated to solve the applicability problem: 
mathematics is applicable to reality because and insofar as it is constructed 
from reality. It seems that the Lorenzian tradition led Thiel into a discussion 
of the applicability problem. 

Thiel analyses the difference between empiricism and Kantianism by 
saying that the empiricist view is that mathematics is applicable to reality be-
cause it originally depends on reality, while Kant’s view was that mathemat-
ics is applicable to reality because both reality and mathematics depend on 
the same laws (p. 37). Thiel also gives a very interesting account of the work 
of Victor Kraft, who was the member of the Vienna Circle who gave the 
deepest analysis of the applicability problem. (This was a particular problem 
for the logical empiricists because they held that since “pure” mathematics 
was not empirical it must be logical or analytic.) 

There are some elements in Thiel’s work that do not seem inspired by 
Lorenzen. Thiel’s discussion of the foundational crisis in mathematics in the 
early part of this century (pp. 330-350) has a disengaged, methodological 
flavour that I have not found in Lorenzen’s. work. Thiel stands back from the 
subject and looks at the subsequent developments with the eye of an historian 
and methodologist of the philosophy of mathematics. 
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Thiel also seems more in sympathy with the structuralist position than 
does Lorenzen. Thiel says (p. 314, my trans.): 

 
That we speak inter alia of “sets of” and refer with points to meaningful sorts 
of mathematical objects already suggests in fact that we do indeed perform the 
same operations in different areas of mathematics, but that there are no ‘sets’ as 
autonomous objects which form a proper category or have the objects ‘in them-
selves’ for which the type of the expression is referred to at the location of the 
points. 

 
Lorenzen was not a structuralist nor an advocate of general set theory. 

In fact in order to admit theories which admit the law of the excluded middle 
to a theory with quantification over an infinite domain, in his inaugural lec-
ture at the University of Kiel in 1957 “Wie ist Philosophie der Mathematik 
möglich?” [“How is Philosophy of Mathematics possible?”, published in 
Philosophia Naturalis IV, 1957, pp. 192-208] Lorenzen required a consis-
tency proof from the finite standpoint [cf. Hilbert , “Beweis des Tertiums non 
datur”, Nachrichten von der Gesellschaft der Wissenschaft zu Göttingen, 
1931, pp. 120-125]. Thiel does not seem to require consistency proofs for 
theories of the infinite structures of classical mathematics. 

Thiel’s discussion of logic has elements of Lorenzen’s work in pro-
tologic and dialogic. I was unaware of the result (p. 258) that classical logical 
propositional truths are truths which can established by a proponent in a dia-
logue using knowledge of the truth or falsehood of the propositions that 
make up the truth, while intuitionistic logic can be established by the 
proponent independently of the truth or falsehood of those propositions. This 
is a very interesting result. But Thiel also presents a nice formulation of sys-
tems of propositional logic in the Hilbertian style (pp. 92-102). The deriva-
tion of double negation elimination on pp. 100-102 can possibly be 
shortened. Step (22) ¬¬p→(¬¬p→p) can be derived by noting that 
¬¬p→(¬¬¬¬p→¬¬p) is an axiom and (¬¬¬¬p→¬¬p) →(¬¬p→p) fol-
lows by applying the axiom (¬q→¬p) →(p→q) twice with suitable substitu-
tions. 

Bearing in mind these differences, Thiel’s work does make a worthy 
contribution to the Lorenzian tradition, and is well worth reading on those 
grounds and in its own right. 
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