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RESUMEN 

En este trabajo, se definen una serie de lógicas incluidas en la lógica de la rele-
vancia R sin el axioma de introducción de la doble negación. 

PALABRAS CLAVE: semántica relacional ternaria, lógicas de la relevancia, lógicas no 
involutivas, operador asterisco de Routley. 
 
ABSTRACT 

In this paper, I define a series of logics included in relevance logic R and with-
out the axiom of introduction of double negation. 

KEYWORDS: Routley-Meyer ternary relational semantics, relevant logics, non-involutive 
logics, “Routley-star” operator. 
 
 
 

I. INTRODUCTION 
 

As is well-known, negation in standard relevant logics is involutive in 
the sense that are valid the double negation axioms 

dn1. A → ¬¬A 
 
dn2. ¬¬A → A 

It is also a well-known fact that negation in standard semantics for relevant 
logics is explained by the “Routley–star”, a unary operator on the set of all 
points in the models [cf., e.g., Routley and Meyer (1973)]. Now, in Sylvan 
(formerly, Routley) and Plumwood (2003), the authors succinctly define the 
logic BM and some of its extensions in two and a half pages. The logic BM is, 
when negation is present, the basic logic in (Routley and Meyer) ternary rela-
tional semantics in the same sense that B+ [see Routley and Meyer (1972)] is 
the basic positive (i.e., without negation) logic in the same semantics. In BM, 
neither dn1 nor dn2 hold. 
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In Robles (submitted) a series of extensions of BM with dn1 but with-
out dn2 are studied. Two are the main results of that note: 
 
(a) Let R+ be the positive fragment of relevance logic R [see, e.g., Anderson 
and Belnap (1975)]. Then, the logic RMOlcNI is the result of adding to R+ the 
mingle, LC and weak contraposition axioms, i.e., 

A → (A → A) 
 
(A → B) ∨ (B → A) 
 
(A → ¬B) → (B → ¬A) 

respectively, and the principle of tertium non datur, 

A ∨ ¬A 

A Routley-Meyer semantics is provided for RMOlcNI, and it is shown that dn2 
is not derivable in RMOlcNI. 
 
(b) The constructive reductio axioms such as 

(A → ¬B) → ((A → B) → ¬A) 
 
(A → B) → ¬(A ∧ ¬B) 

etc. are theorems of RMOlcNI. Then, the non–constructive reductio axioms 
such as 

(¬A → ¬B) → ((¬A → B) → A) 
 
(¬A → B) → ((A → B) → B) 

etc. are added to RMOlcNI. This logic is labelled RMNI. It is shown that dn2 is 
still not derivable in RMNI. But, on the other hand, it is conjectured that RMNI is 
not representable in Routley–Meyer semantics. 
 

The aim of this paper is to carry on a similar study on logics including 
BM with dn2 and lacking dn1. To be more precise, in relevant logics includ-
ing BM and lacking dn1. Because, as certainly has been noted, in Robles 
(submitted) non-relevant logics included in R–Mingle (cf. Anderson and Bel-
nap (1975)) are considered. Then, symmetrically (but relevantly) reflecting 
Robles (submitted), two are the main results of the present paper: 
 
(a) As pointed out above, R+ is the positive fragment of relevance logic R. 
Then, the logic RM is the result of adding to R+ the minimal negation defined 
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in Sylvan and Plumwood (2003). Next, the logic RMNI2 (a second version of 
RM with a non-involutive negation: notice that RMNI commented above is de-
fined in Robles (submitted)) is the result of adding to RM the strong contrapo-
sition axiom 

(¬A → B) → (¬B → A) 

and the principle of tertium non datur 

A ∨ ¬A 

A Routley–Meyer semantics is provided for RMNI2 and it is shown that 
dn1 is not a theorem of it. 

 
(b) The constructive, as well as the non–constructive, axioms (cf. supra) 

are added to RMNI2. It is shown that thesis dn1 is not derivable in the resulting 
logic, which, unfortunately, seems to be not representable in the present se-
mantical framework. Acquaintance with Routley–Meyer semantics for rele-
vant logics is presupposed. 
 
 

II THE LOGIC RM AND ITS SEMANTICS 
 

The positive logic of relevance R+ can be axiomatized as follows [see, 
e.g., Anderson and Belnap (1975)]: 

Axioms: 
 
A1. A → A 
 
A2.  (B → C) → ((A → B) → (A → C)) 
 
A3.  (A→ (A → B)) → (A → B) 
 
A4.  A→ ((A → B) → B) 
 
A5.  (A ∧ B) → A  and  (A ∧ B) → B 
 
A6.  ((A → B) ∧ (A → C)) → (A → (B ∧ C)) 
 
A7.  A → (A ∨ B)  and  B → (A ∨ B) 
 
A8.  ((A → C) ∧ (B → C)) → ((A ∨ B)→ C) 
 
A9.  (A ∧ (B ∨ C)) → ((A ∧ B) ∨ C) 
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Rules:  
 
Modus ponens (MP): if ⊢A → B and ⊢A, then ⊢B 
 
Adjunction (Adj): if ⊢A and ⊢B, then ⊢A∧B 

Then, the logic RM is the result of adding to R+ the axioms: 

A10. ¬(A ∧ B) → (¬A ∨ ¬B) 
 
A11. (¬A ∧ ¬B) → ¬(A ∨ B) 

 
and the rule 

Contraposition (Con): If ⊢A → B then ⊢¬B → ¬A 

Next, we define the semantics. An RM-model is a structure 〈K,O,R,*,⊨〉 
where O is a non–empty subset of K; R is a ternary relation on K, and * is a 
unary operation on K subject to the following definitions and postulates for 
all a, b, c, d ∈ K: 

 
d1. a ≤ b =df (∃x∈O)Rxab 
 
d2. R²abcd =df (∃x∈K)(Rabx and Rxcd) 
 
P1. a ≤ a 
 
P2. If a ≤ b and Rbcd, then Racd 
 
P3. If R²abcd, then (∃x∈K)(Rbcx and Raxd) 
 
P4. If Rabc, then R2abbc 
 
P5. If Rabc, then Rbac 
 
P6. If a ≤ b, then b* ≤ a* 

Finally, ⊨ is a relation from K to the formulas of the propositional language 
such that the following conditions are satisfied for all propositional variables 
p, wff A, B and a∈K: 

 
i. If a ≤ b and a⊨p, then b⊨p 
ii. a⊨(A ∧ B) iff a⊨A and a⊨B 
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iii. a⊨(A ∨ B) iff a⊨A or a⊨B 
 
iv. a⊨(A → B) iff for all b, c∈K, if Rabc and b⊨A, then c⊨B. 
 
v. a⊨¬A iff a*⊭A. 

A is RM-valid (⊨RM A) iff a⊨A for all a∈O in all RM–models. 
 

Next, we sketch a proof of the soundness of RM. First, two useful lemmas: 
 
LEMMA 1. For any wff A and a, b∈K, if a ≤ b and a⊨A, then b⊨A. 
 
Proof. Induction on the length of A. The conditional case is proved with 

P2, and the negation case with P6. □ 
LEMMA 2. For any wff A, B, ⊨RM (A → B) iff if a⊨A then a⊨B, for all 

a∈K in all RM–models. 
 
Proof. By Lemma 1 and P1 (with d1). □ 
Then, by using Lemma 2, it is proved [cf., e.g., Routley et al., (1982)]: 
THEOREM 1 (Soundness of RM). If ⊢RM A, then ⊨RM A. 
 
Proof. A1, A5-A11, MP, Adj and Con are immediate. Then, A2, A3 

and A4 are proved RM–valid with P3, P4 and P5, respectively. □ 
 
 

III. COMPLETENESS OF RM 
 

Regarding completeness, the RM-canonical model is the structure 
〈KC,OC,RC,*C,⊨C〉 where KC is the set of all prime theories (KT is the set of all 
theories), OC is the set of all regular prime theories, and RC, *C and ⊨C are de-
fined as follows: 

 
RT: for any a,b,c∈KT, RTabc iff if (A → B)∈a and A∈b, then B∈c, for 
any wff A,B. 

 
Then, RC is the restriction of RT to KC. 

*C : for any a∈KC, a*C={A | ¬A∉a}. 
 

⊨C: for any a∈KC, a⊨CA iff A∈a. 
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A theory is a set of formulas closed under adjunction and RM–
entailment (that is, a is a theory iff (i) if A∈a and B∈a, then (A ∧ B)∈a (ii) if 
A → B is a theorem of RM and A∈a, then B∈a). A theory a is prime if when-
ever (A ∨ B)∈a, then A∈a or B∈a; and a theory is regular iff it contains all 
theorems of RM. 

 
Then, the essential lemmas are [cf., e.g., Routley et al. (1982)]: 

LEMMA 3. Let RTabc for a,b∈KT and c∈KC, then there are some x,y∈KC 
such that (a) a⊆x and RTxbc (b) b⊆y and RTayc. 

Proof. By a “maximizing” argument [see, e.g., Routley and Meyer (1973) 
or Routley et al. (1982)]. □ 

LEMMA 4. Let a,b∈KT. Then the set x = {B | there exists A such that (A → 
B)∈a and A∈b} is a theory such that RTabx. 

Proof. It is easily shown that x is a theory. Then, that RTabx holds is 
obvious. □ 

LEMMA 5. For any a,b∈KC, a ≤C b iff a⊆b. 

Proof. (a) From left to right, it is immediate. (b) Given that any theory a 
is closed by RM–entailment, obviously, RT

RMaa. Then, by Lemma 3(a), there 
is some (regular) member x in KC such that RCxaa. So, RCxab, and by defini-
tion, (x∈OC), a ≤C b. □ 

 
LEMMA 6. *C is an operation on KC. 

 
Proof. By A10, A11 and Con. □ 
 
LEMMA 7. Postulates P1–P6 hold in the RM–canonical model. 
 
Proof. P1 and P2 are trivial by Lemma 5 and P6 is immediate by Lem-

mas 5 and 6; then, P3, P4 and P5 are proved by, respectively, A2, A3 and A4 
with the assistance of Lemmas 3 and 4. □ 

LEMMA 8. Let a∈KT and A be a wff such that A∉a. Then, there is some 
x∈KC such that a⊆x and A∉x. 

Proof. As in the case of Lemma 3, by a “maximizing” argument. □ 

LEMMA 9. Clauses (i)–(v) are satisfied by the RM–canonical model. 

Proof. Clause (i) is trivial by Lemma 5, and clauses (ii), (iii), (v) and (iv) 
(from left to right) are immediate. Concerning clause (iv) from right to left, 
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suppose (A → B)∉a (a∈KC). Define the theories x={C | ⊨RM (A → C)}, and 
y={C | there exists D such that (D → C)∈a and D∈x} such that RTaxy (cf. 
Lemma 4), A∈x, B∉y. By Lemmas 3(b) and 8, x and y are extended to prime 
theories b and c such that RCabc, A∈b and B∉c, as required. □ 

 
A corollary of Lemma 8 is: 

LEMMA 10. If A is not a theorem of RM, then A fails to belong to some 
regular, prime theory. 

Now, by Lemmas 7, 9 and 10, the RM–canonical model is an RM–model 
whence, by Lemma 10, we immediately have: 
THEOREM 2 (Completeness of RM). If ⊨RM A, then ⊢RM A. 
 
 

IV. THE LOGIC RMNI2 AND ITS SEMANTICS 
 

The logic RMNI2 is the result of adding to R+ (cf. §2) the axioms: 

A10.  ¬(A ∧ B) → (¬A ∨ ¬B) 
 
A11.  (¬A ∧ ¬B) → ¬(A ∨ B) 

of RM  plus 

A12.  (¬A → B) → (¬B → A) 
 
A13.  A ∨ ¬A 

Some theorems and rules of inference of RMNI2 are (a proof is sketched 
to the right of each one of them): 

T1.  ¬¬A → A                       A12 
 
T2.  (A → B) → (¬B → ¬A)               A12, T1 
 
T3.  (¬A ∨ ¬B) → ¬(A ∧ B)                        T2 
 
T4.  ¬(A ∨ B) → (¬A ∧ ¬B)                        T2 
 
T5.  ¬(A ∧ ¬A)                 A13, T3 
 
T6.  If ⊢(A → B) and ⊢(A → ¬B) then ⊢¬A               T2, T5 
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T7.  If ⊢(A → ¬A), then ⊢¬A                        T6 
 
T8.  If ⊢(¬A → A), then ⊢A                     A13 
 
T9.  If ⊢(¬A → ¬B) and ⊢(¬A → B), then ⊢A             A12, T8 

Therefore, from an intuitive (syntactical) point of view, RMNI2 can be de-
scribed as having the following theses: (a) the principle of non–contradiction 
and the principle of “tertium non datur” (T5, A13), (b) the De Morgan laws 
(A10, A11, T3, T4), (c) the axiom of elimination of double negation (T1), (d) 
the constructive and non-constructive reductio principles as rules (T6, T9), 
(e) one of the constructive contraposition axioms (T2) and one of the non-
constructive contraposition axioms (A12). 

Nevertheless, we have: 

PROPOSITION 1. The following are, for example, not derivable in RMNI2: 
 
(a) The axiom of introduction of double negation A → ¬¬A. 
 
(b) The constructive contraposition axiom (A → ¬B) → (B → ¬A) (it is 

not even derivable as a rule). 
 
(c) The non-constructive contraposition axiom (¬A → ¬B) → (B → A) 

(it is not even derivable as a rule). 
 
(d) The constructive reductio axioms  

(d1) (A → ¬A) → ¬A, 
 
(d2) (A → B) → ((A → ¬B) →¬A), 
 
(d3) (A → B) → ¬(A ∧ ¬B). 

 
(e) The non-constructive reductio axioms 

(e1) (¬A → A) → A, 
 
(e2) (¬A → B) → ((A → B) → B), 
 
(e3) (¬A → ¬B) → ((¬A → B) → A). 

 
Proof. By MaGIC, the matrix generator developed by J. Slaney [see 

Slaney (1995)]. □ 
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So, RMNI2 is really a non-standard logic. It is, of course, a sublogic of 
relevance logic R, but it is not included in, for example, any of Łukasiewicz’s 
many-valued logics. 

Next, we provide a semantics for RMNI2: an RMNI2-model is defined, 
similarly, as an RM-model except for the addition of the postulates: 

P7. If Rabc, then Rac*b* 
 
P8. a** ≤ a 
 
P9. If a∈O, then  a* ≤ a 

As in the case of RM, A is RMNI2–valid (⊨RMNI2A) iff a⊨A for all a∈O in all 
RMNI2–models. 

 
In order to prove the soundness of RMNI2, we note the following: 

LEMMA 11. For any a∈K and wff A, if a⊭A, then a*⊨¬A. 

Proof. Suppose a⊭A. By P8 and Lemma 1, a**⊭A. So, a*⊨¬A by 
clause (v) (cf. §2). □ 

Notice, however, and this is important, that the converse of Lemma 11, 
i.e., if  a*⊨¬A, then a⊭A is not provable, the converse of P8 (i.e., a ≤ a**) 
being absent. 

Then, we prove: 
THEOREM 3 (Soundness of RMNI2) If ⊢RMNI2A, then ⊨RMNI2A. 
 
Proof. Given the soundness of RM (Theorem 1), it is clear that we just 

have to prove that A12 and A13 are valid. Now, that A12 is valid can be 
proved as in the semantics for E or R [use Lemma 11, cf., e.g., Routley et al. 
(1982)]. So, we prove that A13 is valid. Suppose then, a⊭A, a⊭¬A for A and 
a∈O in some model. By Lemma 1 and P9, a*⊭A; but, by definitions (clause 
(v)), a*⊨A □. 

Regarding completeness, the RMNI2–canonical model is defined in a 
similar way to which the RM–canonical model was defined, of course, its 
items being now referred to RMNI2–theories (i.e., theories closed by RMNI2–
entailment). 

Now, we set: 

DEFINITION 1. Let a be an RMNI2–theory. Then, a is w–inconsistent (in-
consistent in a weak sense) iff A∈a, ¬A being some theorem of RMNI2. (a is 
w–consistent iff a is not w–inconsistent). 
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REMARK 1. The notion of w-consistency (in fact, those of w1-consis-
tency and of w2-consistency) are introduced in Robles and Méndez (2008) 
(the reader is referred to the cited paper for details). 

Then, the two following lemmas are useful: 

LEMMA 12. For any wff A and a∈KT, if A∉a, then ¬A∈a*. 

Proof. By T1 and definitions. □ 

Notice, however, and this is important, that the converse of Lemma 12 
does not hold generally if the axiom A → ¬¬A is not present (cf. Lemma 11 
and the commentary following it). 

LEMMA 13. Let a∈OC. Then, a* is w-consistent. 

Proof. Suppose a∈OC and A∈a*, ¬A being a theorem of RMNI2. By 
definition, ¬A∉a contradicting the regularity of a. □ 

Finally, we prove: 
THEOREM 4 (Completeness of RMNI2). If ⊨RMNI2A, then ⊢RMNI2A. 

 
Proof. Given the completeness of RM (Theorem 2), it is clear that we 

just have to prove that P7, P8 and P9 hold canonically. Now, that P7 and P8 
hold can be proved as for E or R (use Lemma 12, cf. Routley et al. (1982)). 
So, we prove that P9 holds. Suppose, then, a∈OC, A∈a* and, for reductio, 
A∉a for some wff A. By Lemma 12, ¬A∈a*. Therefore, (A ∧ ¬A)∈a*. Con-
sequently, a* is w-inconsistent by T5, which is impossible by Lemma 13. □ 

V. RMNI2 AND THE REDUCTIO AXIOMS 
 

We add to RMNI2 the reductio axiom 

A14.  (A → ¬B) → ((A → B) → ¬A) 

Then, in addition to T1-T9, the following are, for example, provable: 

T10.  (¬A → ¬B) → ((¬A → B) → A)              A14, T1 
 
T11.  (A → ¬A) → ¬A                       A14 
 
T12.  (¬A → A) → A                        T10 
 
T13.  (¬A → B) → ((A → B) → B)             A12, T12 
 
T14. (A → B) → ¬(A ∧ ¬B)                     A14 
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T15.  (A → B) → ((A → ¬B) → ¬A)              A14, T2 
 
T16.  (A → ¬B) → ¬(A ∧ B)                      T15 

Nevertheless, we have: 

PROPOSITION 2. Thesis dn1, as well as the contraposition rules 
 
(a) If ⊢(A → ¬B), then ⊢(B → ¬A) 
 
(b) If ⊢(¬A → ¬B), then ⊢(B → A) 

 
are not derivable in RMNI2 plus A14. 

Proof. By MaGIC. □ 

Regarding semantics, we end this section by noting the following: 

REMARK 2. In Robles and Méndez (2004), corresponding postulates for 
the reductio axioms such as, e.g., A14, T10 or T12 are provided in the con-
text of Routley and Meyer’s positive logic B [cf., e.g., Routley et al. (1982)] 
plus the contraposition axiom A12. Unfortunately, these postulates are not 
adequate if the converse of P8, i.e., a ≤ a**, is not present. Therefore, it 
seems not possible to provide adequate models for RMNI2 plus A14 in the pre-
sent semantical framework. 
 
 

VI. CONCLUSION 
 

In this paper, the logics RM, RMNI2 and the one that results from adding 
the reductio axioms to the latter are considered. They are strong relevant lo-
gics lacking dn1. Now, it is clear that any relevant logic included in RMNI2 
plus the reductio axiom lacks dn1. Moreover, we remark that we have implic-
itly provided a semantics for a series of logics including Sylvan and Plum-
wood’s BM and included in RMNI2. Let us briefly discuss the matter. 

The logic BM can be axiomatized as follows [cf. Sylvan and Plumwood 
(2003), Robles (2008)]: A1, A5-A11, MP, Adj, con, and, in addition, the 
rules: 

Suffixing (Suf): If ⊢(A → B), then ⊢(B → C) → (A → C) 
 
Prefixing (Pref): If ⊢(B → C), then  ⊢(A → B) → (A → C) 
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Then, a BM–model is a structure 〈K,O,R,*,⊨〉 where K, O, R,* and ⊨ are 
defined similarly as in a RM–model except that P3, P4 and P5 are dropped. As 
in the case of RM, validity is defined in respect of all points in O. 

In Sylvan and Plumwood (2003) or Robles (2008), soundness and com-
pleteness of BM relative to the semantics just sketched are proved. 

Then, the logic BMdn2 is axiomatized by adding dn2 to BM. A BMdn2-model 
is defined similarly as a BM–model except for the addition of P8 a**≤a. And 
validity is defined similarly as in BM or RMdn2. 

Now, we note: 

PROPOSITION 3. Given the logic BM and BM–semantics, P8 is the corre-
sponding postulate (c.p) to T1 ¬¬A → A. 

That is, given the logic BM, it is proved that P8 holds canonically; and 
given BM–semantics, T1 is valid by P8. 

Proof. See, e.g., Routley et al. (1982). (Cf. Theorems 3, 4). □ 

Consider now the following axioms and semantical postulates: 

A2.  (B → C) → ((A → B) → (A → C)) 
 
A3.  (A → (A → B)) → (A → B) 
 
A4.  A → ((A → B) → B) 
 
A15.  ((A → A) → B)) → B 
 
A16.  (A → B) → ((B → C) → (A → C)) 
 
A12.  (¬A → B) → (¬B → A) 
 
A13.  A ∨ ¬A 
 
P3. If R²abcd, then there exists x∈K such that Rbcx and Raxd 
 
P4. If Rabc, then R2abbc 
 
P5. If Rabc, then Rbac 
 
PA15. There exists x∈Z such that Raxa (where Zx iff if Rxyz then there 

exists u∈O such that Ruyz) 
 
PA16. If R²abcd, then there exists x∈K such that Racx and Rbxd 
 



The Non–Involutive Routley Star:Relevant Logics…  115

P7. If Rabc, then Rac*b* 
 
P9. If a∈O, then a* ≤ a 
 
It is proved: 

PROPOSITION 4. Given the logic BMdn2 and BMdn2 semantics, P3, P4, P5, 
PA15, PA16, P7 and P9 are the c.p to A2, A3, A15, A16, A12 and A13, re-
spectively. 

Proof. Regarding P3, P4, P5, PA15, PA16 and P7, consult again Routley 
et al. (1982). As for P9, see Theorems 3, 4 above. □ 

Now, let SBMdn2 be any extensión of BMdn2 with any selection of A2, A3, 
A4, A15, A16, A12 and A13. And let SBMdn2-models be defined similarly as 
BMdn2-models except for the addition of the c.p to the axioms added. We 
clearly have: 

THEOREM 5. SBMdn2 is sound and complete in respect of SBMdn2-models. 

Proof. Immediate from the soundness and completeness of BMdn2 and 
Proposition 4. □ 
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