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Abstract

This article reports on a study which investigated first year university

engineering students’ construction of the definition of the concept of the chain

rule in differential calculus at a University of Technology in South Africa. An

APOS (Action-Process-Objects-Schema) approach was used to explore

conceptual understanding displayed by students in learning the chain rule in

calculus. Structured worksheets based on instruction designed to induce

construction of conceptual understanding of the chain rule were used. A number

of students used the straight form technique in differentiating complicated tasks

while very few used either the link and Leibniz form techniques. In this manner

differentiation of each function within the composite function was

accomplished. Students either operated in the Inter- or Trans stages of the

Triad. It was found that even students who had inadequate understanding of

composition of functions, performed well in the application of the chain rule.
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De la Actividad Humana a la
Comprensión Conceptual de la
Regla de la Cadena

Resumen

Este artículo presenta un estudio sobre la construcción de la definición del

concepto de regla de la cadena en el cálculo diferencial en el marco de

estudiantes de primer año de ingeniería, en la Universidad Tecnológica de

Sudáfrica. Se utiliza el enfoque APOS (Acción-Proceso-Objeto-Esquema) para

explorar la comprensión conceptual que los estudiantes muestran en el

aprendizaje de la regla de la cadena en cálculo. Se utilizaron fichas de trabajo

estructuradas basadas en una instrucción diseñada para inducir la construcción

de la comprensión conceptual de la regla de la cadena. Una parte de los

estudiantes usaron utilizaron la técnica "directa" para diferenciar tareas

complicadas, mientras que muy pocos de ellos utilizaron o bien el método de la

conexión, o bien el enfoque de Leibniz, como técnicas de resolución. De esta

manera se logró diferenciar cada una de las funciones simples en las funciones

compuestas presentadas. Los estudiantes operaron tanto en las etapas inter,

como intra, de la triada. Se encontró que incluso aquellos estudiantes con una

comprensión no adecuada de las funciones compuestas, aplicaron la regla de la

cadena correctamente.

Palabras Clave: cálculo, regla de la cadena, APOS, descomposición

genética.

2013 Hipatia Press

ISSN 2014-3621

DOI: 10.4471 /redimat.2013.21

Zingiswa Mybert

Monica Jojo

Mangosuthu University

ofTechnology

Aneshkumar Maharaj

University of

KwaZulu Natal

Deonarain Brij lall

University of

KwaZulu Natal

http://dx.doi.org/10.4471/redimat.2013.21


one of the topics introduced to matric learners at high school, yet a large

number of them receive inadequate mathematics education and join the

university mostly under-prepared for the study of differential calculus.

Furthermore the chain rule is not part of the South African school

syllabus. In our experience many first year university students have

difficulty in understanding the chain rule in differentiation. This

phenomenon was also observed by Orton (1983) who indicated that

students: (1 ) had problems in the understanding of the meaning of the

derivative when it appeared as a fraction or the sum of two parts and

application of the chain rule for differentiation, and (2) had little

intuitive understanding of solving differentiation problems as well as

fundamental misconceptions about the derivative. He further asserts that

some students are introduced to differentiation as a rule to be applied

without much attempt to reveal the reasons for and justifications of the

procedure. When asked about the chain rule, most students will simply

provide an example ofwhat it is rather than explain how it works (Clark

et al. , 1 997; Cottrill, 1 999). The literature related to studies in calculus

provides evidence that students develop more procedural understanding

rather than conceptual understanding in differentiation. However, very

few studies investigate the characteristics of student’s understanding of

composition of functions and the chain rule.

Also in our experience some teachers at high school are less

comfortable with calculus and its applications. This indicated that there

was a need to engage with a study on students’ understanding of the

concept of the chain rule. The chain rule states that if g(x) is a function

differentiable at c and f is a function differentiable at g(c) , then, the

composite function fog given by (fog)(x)=f(g(x)) is differentiable at c

and that (fog)'(c)=f'(g(c))×g(c) . This paper reports on the last part of a

study conducted with first year engineering students exploring APOS in

the conceptual understanding of the chain rule where questionnaires

were used to explore the mental constructions formed by students in

understanding the chain rule.

nformal discussions held with other lecturers, revealed that the

chain rule is one of the most complicated calculus tools, despite

being one of the basic tools for a mathematician. Calculus isI
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The research questions for this study were:

• How do students construct various structures to recognize

and apply the chain rule to functions in the context of

calculus?

• How should the teaching of the concept of the chain rule in

differential calculus be approached?

• What insights would an APOS analysis of students’

understanding of the chain rule in differential calculus

reveal?

Research Questions

This study was conducted according to a specific framework for

research and curriculum development in mathematics education, which

guided the systematic enquiry of how students acquire mathematical

knowledge and what instructional interventions contribute to student

learning. The framework consists of three components: theoretical

analysis, instructional treatment, and collection and analysis of data

observed when students learn as proposed by Asiala et al (2004). This is

also well illustrated in other papers (Maharaj , 2010; Jojo et al 2011 ).

Theoretical Framework

Theoretical Analysis

The study is based on APOS theory –Actions, Processes, Objects and

Schema– (Dubinsky & McDonald, 2001 ). This approach starts with a

statement of an overall perspective of what it means to learn and know

something in mathematics as prescribed by Asiala et al:

An individual’s mathematical knowledge is his tendency to

respond to perceived mathematical problem situations by reflecting

on problems and their solutions in a social context and by

constructing and reconstructing mathematical actions, processes

and objects and organizing these in schemas to use in dealing with

the situations. (Asiala et al, 2004, p. 7)

They further believe that understanding a mathematical concept begins

with manipulating previously constructed mental or physical objects to



form actions; actions are then interiorised to form processes which are

then encapsulated to form objects. They say that these objects could be

de-encapsulated back to the processes from which they are formed,

which would be finally organized in schemas. For an elaboration of

these concepts refer to Maharaj (2010, p. 43).

Construction of knowledge in this study was analysed through

reflective abstraction at the heart of which is APOS (Dubinsky, 1991b)

which then incorporates Piaget’s Triad mechanism. The Triad

mechanism occurring in three stages explained other constructions in

the mind implicating mental representations and transformations in the

analysis of schema formations. These stages are: The Intra stage fo-

cuses on "a single entity", followed by Inter– which is "study of trans-

formations between objects" and Trans– noted as "schema development

connecting actions, processes and objects."

Reflective abstraction has two components: (a) a projection of existing

knowledge onto a higher plane of thought and (b) the reorganization of

existing knowledge structures (Dubinsky, 1991a). Reflective abstraction

is therefore a process of construction and Dubinsky outlines five kinds

of construction in reflective abstraction:

Interiorisation: Actions conceived structurally as objects are

interio-rised into a system of operations.

Co-ordination: Two or more processes are co-ordinated in order

to form a new process, e.g. the chain rule for differentiation

requires the co-ordination of composition of functions with

derivatives.

Encapsulation: This is where the construction of mathematical

understanding extends from one level to the other, where new

forms of the process are built drawing from the previous ones to

form an object.

Generalisation: An existing schema is applied to a wide range

of contexts. This would happen for example when the student is

able to see that after finding the derivatives of the various

functions in a composition, they now have to be multiplied to

put the chain rule into application.

Reversal: A new process can be constructed by means of

reversing the existing one.

80REDIMAT- Journal ofResearch in Mathematics Education, 2 (1 )



In extension of this theory, Dubinsky et al (1 991 ) isolated

someessential features of reflective abstractions reorganized and re-

constructed them to form a coherent theory of mathematical knowledge

and its construction, APOS. Jojo (2011 ) used the flow diagram (see

Figure 2) to explain the activities involved in construction of the chain

rule concept and illustrate APOS extended.

81

Figure 1 . APOS theory extended
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A structured set of mental constructs which might describe how the

concept can develop in the mind of an individual is called the genetic

decomposition of that particular concept. Based on the above

discussion, the researchers arrived at the following genetic decom-

position:

For a student to have his or her function schema, he or she:

(i) has developed a process or object conception of a

function and

(ii) has developed a process or object conception of a

composition of functions.

Figure 2. Initial genetic decomposition of the chain rule.

For a derivative schema,

(iii) has developed a process conception of

differentiation;

(iv) the student then uses the previously constructed schemas of

functions, composition of functions and derivative to
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define the chain rule. In this process the student

recognizes a given function as the composition of two

functions, takes their derivatives separately, and then

multiplies them.

(v) The student recognizes and applied the chain rule to

specific situations. The initial genetic decomposition is

modeled in figure 2.

Literature Review

The chain rule is used to find the derivatives of composite functions.

Kaplan (1984) referred to the chain rule as a function of functions. A

composite function is a function that is composed of two or more

functions. For the two functions f and g, the composite function or the

composition of f and g, is defined by (f×g)(x)=f(g(x)) . Despite the

importance of the chain rule in differential calculus and its difficulty for

students, the chain rule has been studied in mathematics educational

research (Clark et al, 1 997; Gordon, 2005; Uygur & Ozdas, 2007;

Webster, 1 978). Students’ difficulties included the inability to apply the

chain rule to functions and also with composing and decomposing

functions (Clark et al, 1 997; Cottrill, 1 999, Hassani, 1 998). In our

experience the University of Technology students experience most

problems in differential calculus.

Burke, Erickson, Lott & Obert (2001 ) assert that there is growing

research support for designing classroom instruction that focuses on

developing deep knowledge about mathematics procedures. When

instruction is focused only on skillful execution, students develop

automated procedural knowledge that is not strongly connected to any

conceptual knowledge network (Star, 2000). This instruction resulted in

procedures not executed “intelligently” and systematically. Under-

standing could be achieved, however, if students were given

opportunities to develop a framework for understanding appropriate

relationships, extended and applied what they knew, reflected on their

experiences, and made mathematical knowledge their own (Carpenter &

Lehrer, 1 999). Further (1 ) when mathematical knowledge is understood,

that knowledge is more easily remembered and more readily applied in

a variety of situations (Hiebert & Carpenter, 1 992; Kieran, 1 992), (2)

Jojo, Maharaj, & Brijlall - The Chain Rule
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when a unit of knowledge is part of a well-connected network of

mathematical understandings, parts of the network can facilitate recall

(and even recreation) of other parts, and (3) when knowledge is

understood it becomes easier to incorporate new knowledge into

existing networks, so that current understanding facilitates future

learning (Hiebert & Carpenter, 1 992). It is therefore important to

develop teaching methods that help students develop mathematical

understanding.

Brij lall & Maharaj (2009) used the APOS theory in a study where they

investigated fourth-year undergraduate teacher trainee students’

understanding of the two fundamental concepts monotonicity and

boundedness of infinite real sequences. They found that: (1 ) the

structured worksheets encouraged group work and fostered an

environment conducive to reflective abstraction, (2) the students

demonstrated the ability to apply symbols, language, and mental images

to construct internal processes as a way ofmaking sense of the concepts

of monotonocity and boundedness of sequences, (3) the students could

apply actions on objects (sequences) which were interiorized into a

system of operations, and (4) the conceptualization of the concept of

boundedness of sequences and monotonocity enabled the formulation of

new schema which could be applied in various contexts.

It can be agreed (Dubinsky & McDonald, 2001 ) that mathematical

ideas begin with human activity and then proceed to be abstract

concepts. It is therefore important for us to understand how the

construction of concepts in the mind, lead to abstraction of

mathematical knowledge. This interpretation of the relevant knowledge

construction processes is essential since it points to the contributions we

get from APOS analysis. These include (1 ) understanding the

importance of human thought, and (2) pointing to effective pedagogy

for a particular concept. An experimental, constructivist approach, was

explored in teaching differentiation in calculus. Classroom activities

used included working in teams, individual work, class discussions,

sometimes, a mini-lecture summarizing the results of students’ work,

and providing examples on the use of chain rule in differentiation.

It is evident from the above discussion that, many well-known

functions have simple expressions for their derivatives while composite



85

functions require the use of the chain rule for differentiation. Functions

having fairly complicated expressions have explicit formulas for

derivatives. It was the development of formulas and rules such as the

chain rule enabling mathematicians to calculate derivative that

motivated the use of the name calculus for this mathematical discipline.

Participants, Instructional Design and Methodology

A qualitative study where worksheets were used to collect data from 12

groups of 76 first year civil engineering students was conducted. There

were twelve groups, eight of which had six members and the other four

had seven members. Instruction was designed using worksheets with

four tasks on the use of the chain rule. There was space provided below

each task in the worksheet for students’ responses. This was done to

reinforce the learning that took place in three sequential lesson

components based on the proposed genetic decomposition of the

concept of the chain rule. The aim was to provide students with

opportunities to make applications of the chain rule they learnt and

prepare them for the mathematics in which chain rule would be applied.

Discussions would ensue between students working on each of the four

problems, after which an agreed upon answer would be documented on

the worksheet. Selected students from the groups were then interviewed

and responded in explanations regarding their corresponding group

presentations and responses.

The instructional design based on APOS theory included Activities,

Classroom discussions and Exercises done outside of the classroom. The

activities which form the first step of the ACE teaching cycle were

designed to foster the students development of mental structures called

for by APOS analysis. Students were requested to reflect on chosen

activities on the use of the chain rule in differentiating composite

trigonometric functions collaboratively. Classroom discussions ensued

in each of the 12 groups and they listened to others’ explanations and

agreed upon a mathematical meaning to be presented in the worksheet.

Exercises in the form of homework were then given to re-enforce the

knowledge obtained in the activities and classroom discussions.

Whilst working in groups students discussed their results and listened

to explanations given by fellow students. The students worked

Jojo, Maharaj, & Brijlall - The Chain Rule
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collaboratively on mathematics tasks designed to help them use the

mental structures that they had built during instructional design. In some

cases, students worked on a task as a group, whilst in other cases they

worked as individuals and then compared notes, and then negotiated a

group solution to the problem. They then wrote their agreed upon

solution on the spaces provided in the worksheets. During this process,

the emphasis was on: (1 ) discussions, (2) reflection on explanations by

the researchers where appropriate, (3) completion of the tasks by the

students, and (4) understanding the use and application of the chain rule.

The comparisons between three different techniques were made in chain

rule differentiation. The first technique was the one using Leibniz form

technique. The second one was the one where we differentiate from the

innermost function and move outwards. We shall henceforth refer to this

method of chain rule differentiation as a link form technique of the chain

rule. The third one involves straight application of the chain rule in

differentiation. We shall refer to this method of differentiation as a

straight form technique. In this technique students used the chain rule

mechanically by finding the derivatives of all the functions starting with

the function on the outside of the given problem and multiplying out.

For example, consider differentiating y=lnsinx3. We have characterized

the three forms of the chain rule:

(1 ) Leibniz form technique gives, we let y=lnu; then dy/du = 1 /u; where

u=sinv; and v=x3 so that dv/dx=3x2; and du/dv=cosu, and dy/dx=dy/du×

du/dv×dv/dx=1 /u×cosu×3x2. This would give 3x2cosx3/sinx3. (2) Link

form technique gives, we get 3x2×cosx3×1 /sinx3. (3) Using the Straight

form technique we get, 1 /sinx3×cosx3×3x2. Answers using the three

techniques were simplified to see if they were the same.

As the researchers moved from group to group, she noticed that some

students used a lead pencil to record their responses on the worksheet.

They were trying to avoid mistakes and allow correction of an incorrect

response without spoiling the worksheet. In some groups, after

transcriptions of agreed responses, all the members of the group

satisfied themselves that the submitted response was appropriate. They

argued from time to time of the positions where brackets should be

inserted. Even after submissions of completed worksheets, other

students continued convincing and teaching the inquisitive students on

how the chain rule works.
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Analysis and Discussion

The worksheets were analyzed for meaning which is one of the

mechanisms necessary for understsnding a concept. These included

detecting (1 ) the connections made by students to other concepts, (2)

calculations made using the chain rule, (3) the chain rule technique

used, and (4) mental images on which the chain rule was based. In what

follows each of the four group tasks are first presented, and group

responses are discussed. Where relevant interview extracts are also

included to support the discussions. The task analysis indicating

mechanisms used and percentage (correct to one decimal place) for each

of the four tasks are illustrated in Tables 1 to 4 below.

Figure 3. Task 1 .

Table 1 summarizes the analysis of task 1 using the responses presented

by the groups in this task.

Table 1

Analysis oftask 1

Incorrect

responses

Partially

correct

Completely

correct

Chain rule

preference

Connection to

other concepts

Number

of

groups

%

groups

6 4 2 12 7

50 33,3 16,7 100 58,3

All the groups applied the chain rule to the first task y=tan2 (3x + e )

correctly using the straight form technique although only 16,7% of the

groups presented a solution with brackets, when they differentiated the

composite function inside the brackets in the given task. One of the

groups who left out the bracket then went on to detach the derivative 3

Jojo, Maharaj, & Brijlall - The Chain Rule
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Figure 3. One group’s presentation of task 1

This mistake was not detected by any of the other members of the

same group. Those students struggled with the connection of previously

learnt algebraic skills like use of brackets where appropriate and

manipulation of algebraic terms in a function. The calculations

presented after differentiating using the chain rule successfully were

therefore not correct for 58,3% responses received. When one

representative was interviewed and asked to state the chain rule, he

Figure 4. Chain rule in human terms

This student thought of differentiation in human terms. He had a

mental picture of an onion being peeled from the outer layer (power in

his terms), to the innermost layer. He pictured the straight form

technique in human terms.

Also the given function was represented as equal to its derivative. The

derivative should have been indicated as y’. The mental images

constructed by the 58,3% in using the chain rule were incomplete.

Although the actions were interiorized into processes, the processes

were not encapsulated to objects. This could partly be attributed to

previous knowledge of algebraic skills which were just actions and

never interiorized. According to the Triad students in the said groups

of 3x from the + sign. This 3 now multiplied the first two functions (see

Figure 3).
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saw the chain rule as a procedure of differentiation which could not be

connected or related to other processes applied to functions. Thus most

students operated in the Intra- stage regarding task 1 . According to

APOS, we observed that most students could only go as far as the

interiorizing the action to a process stage.

Figure 5. Task 2.

Table 2 summarizes the analysis of task 2 using the responses

presented by the groups in this task.

Table 2

Analysis oftask 2

Incorrect

responses

Partially

correct

Completely

correct

Chain rule

preference

Connection to

other concepts

Number

of

groups

%

groups

2 4 6 11 1

16,7 33,3 50 91 ,7 8,3

The solution to second differentiation problem y=(cos2x+esinx)2 was

presented correctly by 50% of the groups. Only one group avoided the

use of the chain rule by squaring the given function and then

differentiating. This was a brilliant idea but still required them to apply

chain rule on the individual terms, cos4x, 2cos2x×esinx and e2sinx. They

then used straight form technique to differentiate (see Figure 6). Those

students were connecting the given function to a square of a binomial.

Thus a part of understanding the concept of the chain rule is a mental

process involving sorting out the given function, dealing with its

composition, and connecting the two to find the derivative. They

indicated a process construction of mental images since they

Jojo, Maharaj, & Brijlall - The Chain Rule
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transformed the given function to a trinomial which was operated on by

repeating the actions of differentiation.

Figure 6. Chain rule application after squaring a binomial

Also the group did not completely apply the chain rule to the function

e2sinx. Not all the layers were peeled and all the group members did not

detect this. They therefore were in the Intra- stage of the Triad since

they focused on the function as a single entity.

Figure 7. Task 3.

Table 3 summarizes the analysis of task 3 using the responses

presented by the groups in this task.

Table 3

Analysis oftask 3

Incorrect

responses

Partially

correct

Completely

correct

Chain rule

preference

Connection to

other concepts

Number

of

groups

%

groups

6 1 3 7 5

50 8,3 25 35 41 ,7
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The third task required students to differentiate sin(x+y)=ey^2+2x

implicitly using the chain rule. 41 ,7% of the groups introduced natural

logarithms on both sides of the equation before differentiating. They

explained that they connected the relationships of exponentials in the

right hand side function with logarithms which would get rid of the

exponent. In this way they ended up with simple expressions on both

sides and thus allowed them, to use the straight form technique of chain

rule differentiation (see Figure 8).

Figure 8. Differentiation using natural logarithms

Their calculations indicated a full understanding of the use of the chain

rule except for omitting dx in the second step from the bottom of the

solution. They operated in the Trans- stage of the triad since they could

reflect on relationships between various objects from previous stages.

They displayed coherence of understanding of differentiation rules and

composition of functions.

25% of the groups presented responses of full construction of mental

images of the chain rule and a connection between The other 35% of the

groups applied the chain rule directly using the straight form technique

and then processed the resulting function to get the derivative. Two of

the responses indicated a transition from an operational to a structural

mode of thinking since they brought the concept of the chain rule into

existence and used it with caution, and preferred it over other methods

of differentiation (see Figure 9).

Jojo, Maharaj, & Brijlall - The Chain Rule
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Figure 9. Straight form technique used in differentiation

Figure 10. Task 4.

Table 4 summarizes the analysis of task 4 using the responses

presented by the groups in this task.

Table 4

Analysis oftask 4

Incorrect

responses

Partially

correct

Completely

correct

Chain rule

preference

Connection to

other concepts

Number

of

groups

%

groups

3 4 2 1 8

25 33,3 16,7 100 66,7
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Generally, one of two strategies was employed by students. The first

form technique called for a specific connection between application of

natural logarithms and differentiation.

Figure 11 . Group 3’s response on logarithmic differentiation

16,7% of the groups displayed a coherent collection of the logarithmic

rules and differentiation. Those groups were operating in the Trans-

stage since they reflected on the explicit structure of the chain rule and

were also able to operate on the mental constructions which made up

their collection. Those students presented responses showing internal

processes for manipulating logarithmic objects. Their schema enabled

them to understand, organize, deal with and make sense out of

application of the product rule, quotient, logarithmic rules and the chain

rule. The other three groups could not apply logarithmic rules correctly

and as such could not process the differentiation of the given task. This

is illustrated in Figure 11 where students resolved the surd form of the

function correctly and took natural logarithms both sides of the

equation. The interpretation of logarithms was then incorrect since a

bracket was left out in step three of the response. Thus the function

Jojo, Maharaj, & Brijlall - The Chain Rule



94REDIMAT- Journal ofResearch in Mathematics Education, 2 (1 )

differentiated was not the originally given one. Even in their process of

differentiation some brackets were still left out when they should have

been there.

The response illustrated in Figure 12 indicates that the derivative of

the last term, -ln(x2+1 ) in step four was recorded as 1 /(x2+1 )×2

instead of 1 /(x2+1 )×2x. In the next step the subtraction sign had been

left out and then restored back again in the following one. The students

in this group’s actions indicated that they knew which steps to follow

when differentiating. Their mental manipulations did not react to

external cues of basic algebraic manipulations and as such

transformation was not complete and their actions were not interiorized.

Those students did not recognize the relationships between application

of natural logarithms and algebraic manipulations resulting in

multiplications when they were due and subtractions where appropriate.

They perceived differentiation as a separate entities and even the rules

applied were not remembered correctly. These were operating in the

Intra- stage of the Triad.

Figure 12. Incorrect application of chain rule in differentiation

The other group employed the straight form technique after converting

the surd form to its exponential form. However, they did not then utilize

the product and quotient rules appropriately. Their actions were not

interiorized with regards to logarithms and this had an impact on
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applying the chain rule in the given task. Their mental images could not

be related to the string of symbols forming the expression, since they

could not interpret both the symbols and or manipulations. Since

calculations reflect the active part of mental constructions, the

differentiation rules for these students were not perceived as entities on

which actions could be made. Dubinsky (2010) asserts that in such cases

the difficulty does not depend on the nature of the formal expressions,

but rather in the loss of the connections between the expressions and the

situation instructions.

Conclusion

The researchers noticed that students in some groups would first copy a

task in the worksheet onto their books. They would then work on it as

individuals after which they compared their answers. Students argued

and agreed upon certain responses. Individuals justified how they

arrived at their responses. This way they taught each other and gave

verbal descriptions of actions taken in their own words. They then

repeated the actions many times with different tasks in their books and

in the worksheet. Thus the worksheet helped the students interiorise the

actions.

All groups did not use the Leibniz technique when differentiating the

loaded trigonometric functions in all four tasks. Explanations given

from interviewed group representatives indicated that this technique was

complicated and would involve a long series of multiplication and

substitutions of functions before and after differentiation.

A common error where students recorded the derivative of cos x

correctly as –sin x but left out the brackets to end up with a different

function from the one that was given for differentiation, was observed.

Such students’ actions of differentiation are detached from the basic

algebraic operational signs. The multiplication sign left out indicates the

absence of links between actions and procedures. Knowing the

derivative of a particular function is not an indication of conceptual

understanding since the relationships constructed internally were not

connected to existing ideas. This understanding should also involve the

knowledge and application of mathematical ideas and procedures

related to basic arithmetic facts.

It was also noticed that most students in different groups were

Jojo, Maharaj, & Brijlall - The Chain Rule
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operating in the Intra- stage of the Triad. They had a collection of rules

of differentiation with no recognition of relationships between them.

Those students were helped by others who reflected on using the chain

rule by applying the input by other students to group dynamics. The

latter group had created an object of the chain rule. At the same time

they applied actions on differentiation and as such the process of

differentiating using the chain rule was encapsulated to form an object.

A possible modification to the proposed genetic decomposition was

made. The student recognizes and applies the chain rule to specific

situations using either the straight, link or Leibniz form techniques. This

would then help the student to think of an interiorised process of

differentiation in reverse and to construct a new process by reversing the

existing one. Instruction on the conceptual understanding of the chain

rule should incorporate all three different techniques.
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