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Abstract

We investigate the impact of choosing quasi-random (deterministic) numbers versus

pseudorandom numbers on the pricing of zero-coupon bond options. We compare

quasi-Monte Carlo (QMC) simulations using Sobol, Faure, Niederreiter and Halton

sequences to Monte Carlo (MC) simulations with pseudorandom generators such as

congruential generation and Mersenne twister. We benchmark MC/QMC methods to

the Cox-Ingersoll-Ross (1985) closed form solution. We examine bond option prices

when the U.S. yield curve experiences different shapes -normal, inverse, flat and

humped- and experiences a volatile environment or not. We show that one form of

Halton sequence improves significantly bond options pricing when the shape of the

yield curve is normal (85% of the time), whether the interest rate environment is volatile

or not. We base our findings on 2,707 U.S. Treasury yield curves over the 2001-2012

period. Market participants in need of selecting an adequate number generator for

pricing bond options with MC/QMC methods will find our paper appealing. 
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contrastando números quasi-aleatorios
frente a números pseudoaleatorios 
en la valoración de opciones 
sobre bonos
Rostan, Pierre
Rostan, Alexandra

Resumen

En este artículo se investiga el impacto que tiene el elegir números cuasi-aleatorios

(deterministicos) o números pseudoaleatorios sobre la valoración de opciones sobre

bonos cupón cero. Se comparan simulaciones cuasi-Monte Carlo utilizando secuen-

cias de  Sobol, Faure, Niederreiter y Halton con simulaciones Monte Carlo utilizando

generadores pseudoaleatorios tales como los congruenciales y el Mersenne twister.

Los métodos Monte Carlo y cuasi Monte Carlo se comparan con la solución en forma

cerrada de Cox-Ingersoll-Ross. Se examinan los precios de las acciones sobre bonos

con diferentes formas de la curva de tipos americana: normal, inversa, plana y en-

corvada, y ello tanto en un entorno de volatilidad o no. Se muestra que una forma

de la secuencia de Halton mejora significativamente la valoración de opciones obre

bonos cuando de la curva de tipos es normal (85% de las veces), independientemente

de que el entorno de los tipos de interés sea volátil o no. Nuestras conclusiones se

basan en 2.707 curvas de tipos del Bono Americano en el periodo 2001-2012. Los

participantes en el mercado que necesitan un generador de números adecuado para

la valoración de opciones sobre bonos con métodos Monte Carlo y cuasi Monte Carlo

encontrarán atractivo este artículo.

Palabras clave: 

Secuencias de Faure, Halton, Sobol, Niederreiter, Simulación cuasi-Monte Carlo, 

Simulación Monte Carlo, Valoración de opciones sobre bonos, Modelo Cox-

Ingersoll-Ross.
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n 1. Introduction

We present a methodological framework to test quasi-random numbers (Halton, Sobol,

Faure and Niederreiter) and pseudorandom numbers (congruential generation, Mersenne

twister) applied to Monte Carlo (MC) and quasi-Monte Carlo (QMC) simulations when

pricing bond option. ‘A quasi-random sequence, is “less random” than a pseudorandom

number sequence, but can be more useful…because low discrepancy sequences tend to

sample space “more uniformly” than random numbers. Algorithms that use such se-

quences may have superior convergence’ (Burkardt, 2012). This is the basic assumption

that we test on bond option pricing: are quasi-random sequences superior to pseudo-

random sequences? More specifically, we test the pricing of a 2-year European1 call option

on a 5-year zero-coupon bond. The analytical solution of Cox-Ingersoll-Ross (1985) is

well-known and will therefore constitute our benchmark. We price the option daily over

an 11-year period (2001-2012), in different economic environments, the yield curve ex-

periencing different shapes  — normal, humped, flat or inverted — and interest rates being

volatile or not. Closed-form solutions are quite rare considering the variety of derivatives

and the abundance of exotic features that may be embedded in these products such as

barriers: when the analytical solution is missing, especially when derivative products de-

part from plainness, numerical solutions such as MC/QMC methods may become help-

ful. Simulated trajectories take their source from a number generator: it is therefore

essential to understand the nature and potential of generators underlying simulations. 

Section 2 will review the literature concerning quasi-random and pseudorandom num-

bers. Section 3 will present the methodology in four steps. Section 4 will present the

results and section 5 will wrap up our findings. 

n 2.  Literature Review

Random number generators may be classified as quasi-random (also called low-

discrepancy sequences, see section 2.1 below) and pseudorandom detailed in section

2.2. In the last two decades (Faure and Lemieux, 2010), QMC methods spread out in

finance to compensate limits of pseudorandom numbers. Among pioneers using Sobol

and Faure sequences, we may cite Tezuka (1993), Traub and Paskov (1995) and Joy 

et al. (1996). Traub and Paskov compared MC method (using pseudorandom) with

QMC method (using quasi-random numbers) when calculating a collateralized

mortgage obligation, involving the numerical approximation of a number of integrals

in 360 dimensions. Traub and Paskov concluded that QMC always beat MC methods.

At this time, contemporary specialists in number theory believed that integrals of

1 Since the underlying security, a discount bond, makes no payments during the life of the option, the analysis of Merton (1973)

implies that premature exercise is never optimal, and, hence American and European calls have the same value' (CIR, 1985).
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dimension ≥ 12 should not be solved by QMC, therefore Traub and Paskov’s results

were received with circumspection. The theory was improved by Papageorgiou (2001,

2003). Nowadays, QMC methods are extensively used to price derivative products.

However, these methods have still limits for high dimensional integrals. 

2.1. Low-discrepancy sequences
‘Discrepancy is a measure of how inhomogeneous a set of d-dimensional vectors {ri}
is distributed in the unit hypercube. If we generate a set of N multivariate draws {ri}
from a selected uniform number generation method of dimensionality d, these N vec-

tors describe the coordinates of points in the d-dimensional unit hypercube [0,1]d. A

sequence in [0,1]d is called a low-discrepancy sequence if for all N >1 the first N points

in the sequence satisfy 

D(d )
N ≤ c(d ) (1)

For some constant c(d ) that is only a function of d ’ (Jäckel, 2002).

Among low-discrepancy sequences, we select Faure, Halton, Sobol and Niederreiter due

to their success amid authors: for example, Bratley and Fox (1988) and Faure and

Lemieux (2010) have been promoters of these low-discrepancy sequences. Jäckel shows

that through pairwise projections, ‘low-discrepancy number generators tend to lose their

quality of homogeneous coverage as the dimensionality increases’ (Jäckel, 2002, pp. 88-

91). Based on this observation, we choose a low-dimensionality for quasi-random se-

quences. However, we test Sobol and Niederreiter sequences for higher dimensionality. 

Finally, we remind that quasi- and pseudo-random sequences generate numbers be-

tween [0,1]. Therefore, we convert these numbers by computing the inverse of the

normal cumulative distribution function of the standard Normal distribution. The re-

sulting series feeds the Wiener process in Equation 6. We apply the conversion to all

quasi- and pseudo-random numbers discussed in this paper. 

2.1.1. Faure sequences

With other pioneers, Joy et al. (1996) introduced QMC methods in finance. These

authors referred to several types of quasi-random sequences such as Halton, Sobol

and Faure. Since Fox (1986) explained the advantages of Faure sequences over the

other two, Joy et al. (1996) focused their study on Faure sequences to price with QMC

methods various derivative products, including European plain-vanilla equity options,

exotic options such as options on the geometric mean of a portfolio, basket options,

Asian options and swaptions. They proved the superiority of Faure sequences over

pseudorandom generators. However, a limitation of the Faure sequence basic form

has been identified: it ‘suffers from correlations between different dimensions. These

(lnN)d

N



correlations result in poorly distributed two-dimensional projections’ (Vandewoestyne

et al., 2010). These authors developed ‘a randomly scrambled version of the Faure

sequence, analyzed various scrambling methods and finally proposed a new nonlinear

scrambling method, which has similarities with inversive congruential methods for

pseudo-random number generation’. In our paper, we generate a Faure sequence of

3 dimensions in base 3. We use a default seed that is computed by the algorithm as

the most suitable for the generation of the sequence. We do not choose to scramble

the sequence. We borrow the Matlab algorithm of Faure sequence from Burkardt

(2012), adapted from Algorithm 647 (Fox, 1986).

2.1.2. Halton sequences

Halton (1960) proposed the following sequence in one dimension. The jth number Hj

in the sequence is obtained using a two-step methodology: ‘1) Convert j in a number

in base b, where b is some prime, for example j =17 in base 3 is equal to 122. 2) Reverse

the digits and put a radix point (ie a decimal point base b) in front of the sequence.

Our example returns 0.221 in base 3. The result is Hj . To get a sequence of n-tuples in

n-space, we choose each component a Halton sequence with a different prime base b.

Usually, the first n primes are used. The intuition behind Halton sequence is that 

every time the number of digits in j increases by one place, j’s digit-reversed fraction be-

comes a factor of b finer-meshed’ (Press et al., 1992). As expected from a low-

discrepancy sequence, the later produces points of finer and finer Cartesian grids, with

a maximal spread-out order on each grid. Wang and Hickernell (2000) proposed a new

method for randomizing the Halton sequence by randomizing the starting point of the

sequence and therefore called the sequences ‘random-start Halton’. Faure proposed

to apply scrambling to ‘digital (0, s)-sequences (in an arbitrary prime base b ≥ s), by

multiplying on the left the upper triangular generator matrices by non singular lower

triangular matrices whose entries are randomly chosen in the set of digits 

Zb = {0, 1, . . . , b − 1}. This methodology may be applied to any kind of digital sequences,

like Halton or Niederreiter sequences’ (Faure, 2006). As exposed in Faure and Lemieux,

two lines of research have revived the interest in Halton sequences: 1) one has been to

generalize Halton sequences by including permutations since basic Halton sequences

are ‘inadequate to integrate functions in moderate to large dimensions, in which case

(t, s)-sequences such as the Sobol’ sequences are usually preferred’ (Faure and Lemieux,

2008). For example, Tamura (2006) proposed a randomization structure by Coordi-

nate-wise and Digit-wise Permutations (CDP) that proves to give excellent results re-

gardless of the classical low-discrepancy sequences (Faure, Halton, Sobol and

Niederreiter sequences). 2) The second line explained in Faure and Lemieux (2008) has

been the improvement by Atanassov (2004) in the upper bounds for the discrepancy

of Halton sequences. Atanassov found clever generalizations of Halton sequences by

means of permutations that are even asymptotically better than Niederreiter-Xing (1995,

1996) sequences in high dimensions. Unfortunately, the good asymptotic behavior was
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offset by remaining terms and was not sensitive to different choices of permutations of

Atanassov. Thus, the reasons of the actual success of Halton and Faure sequences must

be found in specific selections of good scramblings by means of tailor-made permuta-

tions detailed in Faure and Lemieux (2010). 

In our paper, we generate a straightforward Halton sequence of one dimension in base

3 with a seed = 0 and a step = 1,000. Then, we generate a sequence in bases 2, 3 and 5
with a seed = 0 and a step = 1,000,000. We do not add randomization or permutation

to the algorithm. We simply use a routine that ‘selects elements of a “leaped” subse-

quence of the Halton sequence. The subsequence elements are indexed by a quantity

called Step. The Step-th subsequence element is simply the Halton sequence element

with index Seed(1:Dim) + Step * Leap(1:Dim) with a default leap of 1’ (Burkardt, 2012).

Again, we borrow the Matlab algorithm of Halton sequence from Burkardt, adapted

from Algorithm 247 (Halton and Smith, 1964) and Kocis and Whiten (1997).

2.1.3. Sobol sequences

Sobol and Levitan (1976) and Sobol (1977) proposed an original low-discrepancy se-

quence of ‘binary fractions of length w bits, from a set of w special binary fractions, Vi,
i =1, 2, ..., w, called direction numbers. The j th number Xj is generated by XORing together

(bitwise exclusive or) the set of Vi ’s satisfying the criterion on i, the ith bit of j is nonzero.

As j increments, in other words, different ones of the Vi ’s flash in and out of Xj on dif-

ferent time scales. V1 alternates between being present and absent most quickly, while

Vk goes from present to absent (or vice versa) only every 2k-1 steps. Antonov and Saleev

(1980) show that instead of using the bits of the integer j to select direction numbers,

one could just use the bits of the Gray code of j, G(j). Now G(j) and G(j+1) differ in ex-

actly one bit position (Gray, 1953 and Black, 2011). A consequence is that the j+1st

Sobol-Antonov-Saleev number can be obtained from the j-th by XORing it with a single

Vi , namely with i the position of the rightmost zero bit in j. It makes the calculation of

the sequence very efficient. Vi are generated using the three following steps: 

1) Each different Sobol’s sequence (or component of an n-dimensional sequence) is

based on a different primitive polynomial over the integers modulo 2, that is, a poly-

nomial whose coefficients are either 0 or 1, and which cannot be factored (using

modulo 2 integer arithmetic) into polynomial of lower order. Define P as such poly-

nomial of degree q:

P = x q+a1xq–1+a2xq–2+ ...+aq–1+ 1 (2)

2) Define a sequence of integers Mi by the q-term recurrence relation:

Mi = 2a1 Mi–1 ⊕ 22 a2 Mi–2 ⊕ ... ⊕ 2q–1aq–1 Mi–q+1 ⊕ (2q Mi–q ⊕ Mi–q ) (3)
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Here bitwise XOR is denoted by ⊕. The starting values for this recurrence are that 

M1, ..., Mq can be arbitrary odd integers less than 2, ..., 2q, respectively. 

3) Then, the direction numbers Vi are given by:

Vi = i = 1,..., w (4) ‘ (Press et al., 1992).

Sobol and Shukhman reaffirmed that ‘in contrast to random points that may cluster,

quasi-random points keep their distance’ (Sobol and Shukhman, 2007). These au-

thors propose a way to compute distances between quasi-random points of Sobol

sequences. They extend their findings to Halton and Faure sequences. For practical

implementation, we generate a Sobol sequence of 3 dimensions, with a seed = 0.

Again, we base our choice of low-dimensionality of Sobol sequence on Jäckel’s (2002)

remark and we increase the dimension to 10, with a seed = 10,000 to test for higher

dimensionality. The Matlab algorithm of Sobol sequence is borrowed from Burkardt

(2012), which is adapted from Algorithm 647 (Fox, 1986), Algorithm 659 (Bratley

and Fox, 1988) and Antonov and Saleev’s ideas (1980).

2.1.4. Niederreiter sequences

Niederreiter (1992) presented a general framework for low-discrepancy sequences.

Among the different algorithms he proposed (1988, 1996), only one has been imple-

mented (Bratley et al., 1994). The Niederreiter generator is similar to the Sobol’s one,

based on arithmetic modulo m. However, the generator employs irreducible rather than

primitive polynomials. Theoretically, the Niederreiter generator is supposed to be superior

to Sobol’s in the limit (Jäckel, 2002). For practical implementation, we generate a

Niederreiter sequence of 3 dimensions, base 2, with a seed = 0, then we increase the di-

mension to 10, with a seed = 10,000. We borrow the Matlab algorithm of Niederreiter

sequence from Burkardt (2012), adapted from Algorithm 738 (Bratley et al., 1994). 

2.2. Pseudorandom numbers
Knuth argued that ‘every number random generator will fail in at least one application’

(Knuth 1997, 2012) due to the algebraic nature of its generation. It ‘always exists a high-

dimensional embedding space Rd such that vector draws u whose elements are sequen-

tial draws from a one-dimensional number generation engine can appear as

systematically aligned in a lower dimensional manifold’ (Jäckel, 2002). This is why com-

puter-generated random numbers are called pseudorandom numbers (Sobol, 1994). 

As a general rule regarding any pseudorandom number generator, the higher the num-

ber of simulations, the better as a result of the central limit theorem. We look at two

pseudorandom number generators: congruential generator and Mersenne twister

(Matsumoto and Nishimura, 1998).
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2.2.1. Congruential generator

Park and Miller (1988) surveyed a large number of random number generators. The

most popular, that we test in this paper, is the linear congruential generator, which

is defined by a recurrence relation:

Yn+1 ≡ (aYn + c )             (mod m) (5)

with the following constant integers: Yn is the sequence of pseudorandom values, 

m > 0 the modulus, 0 < a < m the multiplier, 0 ≤ c < m the increment, 0 ≤ Y0 < m the

seed or start value. If c = 0, the generator is called a multiplicative congruential

method. If c ≠ 0, the generator is called a mixed congruential method. The linear con-

gruential generator has ‘the advantage of being very fast, requiring only a few opera-

tions per call, this why it is so popular. It has the inconvenient of not being free of

sequential correlation on successive calls’ (Press et al., 1992). 

2.2.2. Mersenne twister generator

It is a popular generator proposed by Matsumoto and Nishimura (1998). The period

of the sequence is a Mersenne number which is a prime number that can be written as

2n –1 for some n ∈ N , and that belongs to the class of Twisted Generalized Feedback

Shift Register (GFSR) sequence generator (Matsumoto and Kurita, 1992). The advan-

tage is to have equidistribution properties in a minimum of 623 dimensions. An incon-

venient is that ‘for all random number sequences exists an embedding dimensionality

in which, in the right projection, all sample points appear to lie in hyperplanes. It can

have fatal consequences for a MC calculation if the problem that is evaluated just so

happens to be susceptible to the used sequence’s regularity’ (Jäckel, 2002). 

n 3. Methodology

We test quasi- and pseudo-random number generators when applied to the pricing

of a 2-year European option on a 5-year zero-coupon bond, using MC and QMC

methods. Since we can compute the ‘exact’ price of this option with the closed-form

solution of Cox-Ingersoll-Ross (CIR, 1985), this ‘exact’ price will serve as benchmark

of option prices obtained by MC/QMC simulations from the different number gen-

erators. We compute the option price over the 2,705 days of the database that con-

tains U.S. yields curves of government bills and bonds from 2001 to 2012 (refer to

section 3.5). Our methodology presents 4 steps.

3.1. Step 1 
U.S. yield curves of government bills and bonds of the database must be bootstrapped

in order to obtain zero-coupon yield curves that help computing premiums of 2-year

European options on a 5-year zero-coupon bond. Starting with the curve of known
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bills and bonds yields, the bootstrapping technique solves for unknown zero-coupon

yields using an arbitrage theory. Then, we convert the zero-coupon yields in continu-

ously compounding rates, since the CIR solution deals with continuous rates and

since MC/QMC methods, involving the stochastic CIR model (Equation 6 below),

assumes also continuous rates. 

3.2. Step 2 
We interpolate the observed daily yield curve with a 20-point cubic spline interpola-

tion (de Boor, 1978). This is a must for Kladivko’s (2007) methodology that needs

data points at regular time interval. The CIR (1985) model ensures mean reversion

of interest rate towards the long-term average m, with speed of adjustment a positive.

s √r avoids the possibility of negative interest rates for all positive values of a and m:

dr= a(m – r)dt + s √r  dzt (6)

Kladivko’s (2007) methodology aims at calibrating Equation 6 with the daily observed

yield curve to find parameters a, m� and s� by maximizing the log-likelihood function

(Equation 7) of the CIR process:

lnL(θ) = (N–1)ln c + SN–1
i=1  {uti +vti+1

+ 0.5q ln(     )+

ln{Iq (2 uti vti+1
)} } (7)

Where uti = crti e
–aDt, vti+1

= crti+1

We find maximum likelihood estimates θ̂ of parameter vector θ maximizing the log-

likelihood function (7) over its parameter space:

θ̂ ≡ (â, m̂, ŝ) = arg max lnL(θ) (8)

Since the logarithmic function is monotonically increasing, maximizing the log-likeli-

hood function also maximizes the likelihood function.

3.3. Step 3
We price a 2-year European call option on a 5-year zero-coupon bond with the CIR

(1985) analytical solution. The inputs are the exercise price that we fix at 0.45 for the

whole sample, the zero-coupon bond face value of $1, the 2 and 5-year maturities, the

instantaneous rate and the three parameters a, m and s� calibrated at step 2. We note

that all these inputs (including a, m and s) are identical to both CIR analytical solution

and MC/QMC simulations that make the CIR closed-form solution a valid benchmark

for MC/QMC methods. The proxy of the instantaneous rate that we input in both ana-

lytical and numerical methods is the daily observed yield of the 1-month U.S. T-bill, with

continuous compounding.
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3.4. Step 4
We price a 2-year European call option on a 5-year zero-coupon bond with MC/QMC

simulations of the CIR (1985) model (Equation 6). The inputs are identical to step 3.

We simulate equation 6 using different number generators: Sobol, Faure, Halton and

Niedderreiter sequences for quasi-random, congruential generation and Mersenne

twister for pseudorandom numbers. 

During the simulation, we make the time step dt varying with dt = [0.0833,0.1667,
0.25,0.5,1,1,2,2,3,10], respecting the maturity of the securities that constitute the U.S.

yield curve at 1-, 3-, 6-month, 1-,2-,3-,5-,7-,10- and 20-year constant maturity. Thus,

we simulate the instantaneous rate from 0 to 5 years with 10 to 10,000 simulations.

Once the zero-coupon bond yield curve is simulated, we compute 2r5 the forward rate

of 3-year in 2-year, from 2r0 the 2-year and 0r5 the 5-year spot rates:

2r5 =  (9)

From 2r5 of Equation 9, we compute the price of a 5-year pure discount bond in 2 years

with $1 face value. Finally, we compute the payoff of a 2-year European call option at

maturity with an exercise price of 0.45 that we discount at time zero using Equation 10:

Call =(1x e            –0.45)+ x e (10)

Readers may wonder why we did not choose an option covering a wider range of the

yield curve, e.g. a 2-year option on a 10- or 20-year zero-coupon bond. The answer is

illustrated in Figures 1 and 2. 

n Figure 1. Price Series of a 2-year European call option on a 5-year zero-coupon bond
with an exercise price = 0.45, over a sample of 2,705 yield curves, using the CIR (1985) closed
form solution and a QMC method (1,000 simulations, Sobol sequence of 3 dimensions, with
a seed = 0). Mean Square Error = 0.000692.

source: the authors
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n Figure 2. Price Series of a 2-year European call option on a 10-year zero-coupon bond
with an exercise price = 0.45, over a sample of 2,705 yield curves, using the CIR (1985) closed
form solution and a QMC method (1,000 simulations, Sobol sequence of 3 dimensions, with
a seed = 0). Mean Square Error = 0.003198.

source: the authors

The longer the bond maturity, the wider is the gap between option prices obtained

from numerical and analytical solutions. The Mean Square Error (MSE) defined by

Equation 11 is 0.000692 over the sample for an option on a 5-year bond when it is

0.003198 on a 10-year bond, almost 5 times higher. 

MSE =  
n

∑
i=1

(Call price analitycali – Call price numericali )2 (11)

The wider gap may be explained by the randomness inherent to MC/QMC methods,

the degree of randomness increasing with maturity, but our intuition points to the CIR

analytical method that used the instantaneous short term interest-rate as input. The

longer the maturity, the wider the gap between the short term rate and the forward rate

used to discount the bond. Therefore, we assume that the CIR model becomes inaccu-

rate with maturity. We did not find anything to support our assumption in the literature.

In order to investigate the problem, we replaced the 1-month T-bill yield as proxy of the

instantaneous short rate in the CIR analytical solution by the 2-year bond yield, the

latter being more representative of the average yield of the yield curve. When we priced

a 2-year European call option on a 10-year zero-coupon bond over the 2,705 day-sam-

ple, we found that the gap measured with the MSE between the CIR analytical solution

and the QMC method (using Sobol sequence of 3 dimensions, with a seed = 0 and

1,000 simulations), was significantly lower with this new proxy, with a MSE decreasing

from 0.003198 with the 1-month yield to 0.001558 using the 2-year bond yield (more

than 50% lower). We may deduce that our assumption is correct.

3.5. Database
The database includes market yields of U.S. Treasury securities (bills and notes) at 

1-, 3-, 6-month, 1-,2-,3-,5-,7-,10- and 20-year constant maturity, quoted on investment

basis yields on actively traded non-inflation-indexed issues adjusted to constant matu-
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rities. The U.S. yield curves of 2,705 days, extending from July 31, 2001 to May 24, 2012,

are obtained from the Federal Reserve website2. Since the 30-year Treasury constant

maturity series was discontinued on February 18, 2002, and reintroduced on February

9, 2006, we discard the 30-year maturity. We divide the database in four sub samples-

normal, humped, flat and inverted yield curve. We present the statistics regarding the

four types of yield curves in Table 2, using the criteria presented in Table 1. 

l Table 1. Classification of the U.S. yield curve in four occurrences: 
inverted, flat, humped and normal.

Type of curve: Inverted Else: Flat Else: Humped Else: Normal

Criteria: 1-month rate All rates remain 6-month rate is Remaining
is higher than in a range of higher than yield curves
20-year rate 50 basis points 5-year rate

l Table 2. Counting occurrences among 2,705 observed U.S. yield curves from 
July. 31, 2001 to May 24, 2012. 

Type of curve: Normal Humped Flat Inverted Total

Number of occurrences: 2,298 104 168 135 2,705

%  of occurrences: 85 4 6 5 100 

Figure 3 illustrates the repartition of the four types of yield curve — normal, humped,

flat and inverted — over the sample. 

n Figure 3. Plotting type of yield curve versus time on a sample ranging between
July, 31 2001 and May 24, 2012: non normal curves concentrate between Dec. 27,
2005 and January 17, 2008.

source: the authors
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2 http://www.federalreserve.gov/releases/h15/data.htm. Accessed on January, 28 2013. Method for constructing yield curves used in this
paper: 'Yields on Treasury nominal securities at “constant maturity” are interpolated by the U.S. Treasury from the daily yield curve for non-
inflation-indexed Treasury securities. This curve, which relates the yield on a security to its time to maturity, is based on the closing market
bid yields on actively traded Treasury securities in the over-the-counter market. These market yields are calculated from composites of
quotations obtained by the Federal Reserve Bank of New York. The constant maturity yield values are read from the yield curve at fixed
maturities, currently 1, 3, and 6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years. This method provides a yield for a 10-year maturity, for
example, even if no outstanding security has exactly 10 years remaining to maturity' (footnote on the Federal Reserve website). 



In addition to the type of yield curve, we test generators when the interest rate envi-

ronment is volatile or not. To identify a volatile period, we interpolate daily observed

yield curves with a 500-point cubic spline interpolation. Then, we extract a distribution

of innovation terms from Equation 12. Innovation terms are deduced from equation

6 by rearranging the terms of the equation:

e= (12)

Finally, we fit the Normal distribution to every yield curve distribution of the 2,705
days of our sample by calibrating m and s�. We obtain Figure 4 below. Periods of our

sample with a high s� will be defined as volatile. 

n Figure 4. Variability of the Normal distribution parameters over the sample of
2,705 yield curves when the distribution of observed innovation terms has been
fitted to the Normal distribution. Long-term averages of Mu = -0.00437 and
Sigma =0.34738.  

source: the authors

n 4. Results

QMC and MC methods are tested with the Mean Square Error criteria (MSE, Equation

11) over the period of 2,705 days from July 31, 2001 to May 24, 2012. The benchmark

is the CIR (1985) analytical model. We price a 2-year European call option on a 5-year

discount bond. Figure 5 illustrates convergence of prices obtained with QMC and MC

methods towards the price of 0.4122 obtained with the CIR analytical model on Aug.
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21, 2007. We observe the progressive convergence of price of the QMC method using

Halton sequence with bases 2, 3 and 5 and a step equal to 1,000,000. Niederreiter se-

quence with 3 dimensions and a seed equal to zero performs second best.

n Figure 5. Illustrating convergence of prices of a 2-year call option on 5-year
discount bond with an increasing number of simulations (10 to 10,000), using MC
and QMC methods. The benchmark is the CIR (1985) analytical solution. Day:
Aug. 21, 2007.

source: the authors

We need of course to extend our results to the entire database of 2,705 days. Figure

6 illustrates the MSE as a function of number of simulations (from 10 to 10,000) for

the whole sample. The lower the MSE, the better: Halton sequence with bases 2, 3

and 5 and a step equal to 1,000,000 outperforms all other pseudorandom numbers

and quasi-random sequences with a MSE averaging 0.000533. 

n Figure 6. Mean Square Error (MSE) function of Number of Simulations using
MC and QMC methods. The benchmark is the CIR (1985) analytical model. MSE
computed over the sample of 2,705 yield curves.

source: the authors
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Table 3 gathers the inputs of Figure 6. It shows that, beside the outlier, Halton sequence

with bases 2, 3 and 5, the other generators perform pretty much the same way. 

l Table 3. Mean Square Error (MSE) function of Number of Simulations using MC
and QMC methods. The benchmark is the CIR (1985) analytical model. MSE
computed over a sample of 2,705 yield curves.

Number Mersenne Congruential Faure Halton Halton Sobol Sobol Niederreiter Niederreiter
of Twister Base 3 Base 3 Base2,3,5 Dim 3 Dim 10 Dim 3 Dim 10
simulations Dim 3 Dim 1 Dim 1 Seed 0 Seed 10,000 Seed 0 Seed 10,000

Step 1000 Step 1M

10 0.000701 0.000701 0.000696 0.000670 0.000514 0.000689 0.000704 0.000689 0.000725

50 0.000712 0.000695 0.000687 0.000686 0.000526 0.000687 0.000683 0.000687 0.000683

100 0.000718 0.000691 0.000681 0.000685 0.000525 0.000687 0.000685 0.000687 0.000685

200 0.000703 0.000692 0.000683 0.000687 0.000526 0.000688 0.000687 0.000688 0.000687

300 0.000695 0.000691 0.000683 0.000683 0.000525 0.000692 0.000686 0.000692 0.000686

500 0.000695 0.000692 0.000684 0.000684 0.000526 0.000692 0.000687 0.000692 0.000687

1000 0.000701 0.000692 0.000683 0.000683 0.000525 0.000692 0.000687 0.000692 0.000687

5000 0.000695 0.000692 0.000687 0.000683 0.000570 0.000620 0.000646 0.000620 0.000645

10000 0.000693 0.000692 0.000687 0.000683 0.000555 0.000632 0.000665 0.000631 0.000661

First, we must say that whatever the numbers of simulations, MSEs in Table 3 do not

vary much from 10 to 10,000 simulations, meaning that over the sample of 2,705
days, MSEs do not show convergence (does not decrease when the number of simu-

lations increases), except for Sobol and Niederrreiter sequences that show a decrease

in MSEs at five- and ten-thousand simulations. However, Table 3 shows the slight ad-

vantage of convergence of quasi-random sequences over pseudo-random for simula-

tions between 10 and 1,000 where quasi-random sequences converge more quickly.

Second, we confirm Jäckel’s (2002) conclusion stating that ‘low-discrepancy number

generators tend to lose their quality of homogeneous coverage as the dimensionality

increases.’ Comparing Sobol and Niederreiter sequences with dimensions 3 and 10,

Table 3 and Figure 6 show that sequences with dimension 3 outperform the ones with

dimension 10.

Table 4 presents the computation and testing of MSEs resulting from QMC and MC

methods with 10,000 simulations. We look at the whole sample of 2,705 days but

also at six sub-samples: when the yield curve experiences different shapes — normal,

humped, flat or inverted — and when interest rates are volatile or not.
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l Table 4. Testing the Mean Square Error (MSE) for Equality of Means using MC
and QMC methods with 10,000 simulations. The benchmark is the CIR (1985)
analytical model. Impact of the type of curve (normal, humped, flat, inverted) and
the volatile environment on the MSE.

Over the whole sample (Line 1, Table 4), MSEs are statistically different. We identify

three groups from the worst MSE (highest MSE) to the best (lowest MSE): 1) the group

of Mersenne Twister, Congruential, Faure Base 3 Dim 3 and Halton Base 3 Dim 1; 2)

the group of Sobol and Niederreiter sequences and finally 3) the outlier, Halton se-

quence with bases 2, 3 and 5. The first conclusion that we may draw is that pseudo-

random numbers and quasi-random Faure and Halton sequences in their basic forms

(base 3, dim 1 or 3) are not statistically different in terms of pricing power. Of course,

this conclusion applies only to our example, the pricing of a 2-year European call option

on a 5-year discount bond. This result contradicts the conclusion of Fox (1986) who

explained the advantages of Faure sequences over Halton and Sobol. The second con-

clusion is that Sobol and Niederreiter sequences may be considered as second genera-

tion sequences since they offer significantly better results than basic Faure and basic

Halton, being considered as first generation. Except Fox (1986), the literature confirms

this general perception of ranking. At this stage, the Niederreiter generator is supposed

to be superior to Sobol’s in the limit (Jäckel, 2002). However, Table 4 shows that these

two generators are not statistically different. The third conclusion is that quasi-random

sequences must be tailor-made, “cooked” in order to offer better results: by changing
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the parameters of Halton sequence from base 3 dimension 1 and a step equal to 1 000

to bases 2, 3 and 5 dim 1 and a step equal to 1,000,000, we drastically improve the

MSE result from 0.000683 to 0.000555. 

Finally, Table 4 illustrates the MSE results when the yield curve experiences different

shapes — normal, humped, flat or inverted — (Lines 2 to 5) and when interest rates are

volatile or not (Lines 6 and 7). With a normal curve (Line 2), the situation is the same

as for the whole sample (Line 1). Although MSEs are higher in this subsample, Halton

sequence with bases 2, 3 and 5 is best. The contradictory result is for humped, flat and

inverted curves (Lines 3 to 5): Halton sequence with bases 2, 3 and 5 is significantly

worst in these 3 scenarios, whereas the group of Mersenne Twister, Congruential, Faure

Base 3 Dim 3 and Halton Base 3 Dim 1 is best. In addition, either volatile or non-volatile

the environment, Halton sequence with bases 2, 3 and 5 is significantly best.

n 5. Conclusion

We test quasi- and pseudo-random number generators applied to the pricing of a 

2-year European call option on a 5-year zero-coupon bond, using MC and QMC meth-

ods. We compare QMC methods using Sobol, Faure, Niederreiter and Halton se-

quences to MC methods with pseudorandom generators such as congruential

generation and Mersenne twister. We benchmark MC/QMC simulation to the Cox-

Ingersoll-Ross (1985) closed form solution. We examine bond option prices when the

U.S. yield curve experiences different shapes — normal, inverse, flat and humped —

and experiences a volatile environment or not. We show that one form of Halton se-

quence (with bases 2, 3 and 5 and a step equal to 1 000 000) improves significantly

bond options pricing when the shape of the yield curve is normal only (85% of the

time) and whatever the volatility of the interest rate environment. We base our findings

on 2,707 U.S. Treasury yield curves on the 2001-2012 period. In addition, our marginal

results are that: 1) pseudorandom numbers (Mersenne Twister and Congruential Gen-

eration) and quasi-random Faure and Halton sequences in their basic forms (base 3,

dim 1 or 3) are not statistically different in terms of pricing accuracy; 2) basic Sobol

and Niederreiter sequences offer significantly better results than basic Faure, basic Hal-

ton and pseudo random numbers generators. 3) Niederreiter generator is supposed

to be superior to Sobol’s: our paper shows that they are statistically equal.

Reviewing the literature and results, we identify one limit of low-discrepancy sequences:

they offer faster convergence with QMC methods but in order to obtain better results

they must be tailor-made, “cooked”: it is therefore difficult to generalize a given solution

to a given problem such as pricing a given derivative product. Our evolved Halton

sequence with bases 2, 3 and 5 may not be valid for pricing equity option for example.
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Over the past twenty years, authors have regularly presented new developments on low-

discrepancy sequences, proving their effectiveness in special situations, for example

Traub and Paskov (1995) found that QMC always beat MC methods when valuing a

collateralized mortgage obligation. We believe that a conservative approach should be

to avoid generalizing the ability of low-discrepancy sequences in finance even if

nowadays quasi-MC methods are extensively used to price derivative products. Their

limit is related to the setting of parameters such as dimension, base, seed, step, adding

or not permutations or scrambling, which results in multiple combinations. Since a

given problem requires a special choice of sequence and parameters, it is presumptuous

to generalize the ability and power of low-discrepancy sequences in finance. There will

always be a lag between theory and empirical research on this topic.
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