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Abstract

Bank liquidity management has become one of the main concerns of a bank during

the financial crisis as liquidity shortages have put pressure on banks to diversity and

improve their liquidity sources. Then, any programme of optimization of activities 

involving liquidity management are relevant issues as any significant improvement in

cash management at the bank distribution channels may have positive effects in 

reducing liquidity tensions. Among these activities, there is cash management in

ATMs. The purpose of this paper is to decide the optimum amount of money that

will be placed in the ATM for minimizing opportunity costs as well as satisfying the

customers uncertain demand. We propose a simple programme, easy to implement,

which substitutes the actual method used by the branches (historical data).Our

methodology is based on a simple dynamic model which describes and predicts the

movements of the ATM cash flow, and whose equations have the capability of easily

being changed if either the customers habits or the ATM rules of functioning change.

The stochastic elements have been integrated in the model before applying suitable

optimization programmes to all the costs involved. Some aspects of the Transaction

Demand for the Cash are also present.
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un manejo 
eficiente del (dinero en)
efectivo en ATMS

García Cabello, Julia

Resumen

El manejo del dinero en efectivo es una de las mayores preocupaciones de las entidades

bancarias en esta crisis económica y financiera, puesto que la escasez de liquidez las obliga

a diversificar y optimizar al máximo sus activos líquidos. Por tanto, todo programa de

optimización de actividades que involucren manejo de activos líquidos se convierte en un

tema de relevancia desde el momento en que cualquier mejora en los canales de uso y

distribución de dinero, puede tener efectos positivos a la hora de reducir tensiones por la

escasez de efectivo. Entre estas actividades está el manejo de efectivo en la red de cajeros

automáticos de una entidad bancaria. Nuestro objetivo es optimizar la cantidad de efec-

tivo que la entidad ha de depositar en sus cajeros a fin de minimizar costes al tiempo de

satisfacer la demanda de efectivo de los usuarios. Así, el autor propone un programa sim-

ple y fácil de implementar, que sustituiría el actual método usado por las sucursales ban-

carias (histórico de datos).Nuestro método se basa en un modelo dinámico simple que

describe (y puede predecir) los movimientos del flujo de efectivo del cajero, cuyas ecua-

ciones pueden ser fácilmente adaptadas a posibles cambios en los hábitos de los usuarios

o en las reglas de funcionamiento de los cajeros, en caso de que dichos cambios se pro-

dujesen. Los elementos estocásticos se integran en el modelo antes de aplicar adecuados

programas de optimización a los costes del proceso. Algunos aspectos de la Transacción

de Demanda de Dinero están también presentes.

Palabras clave: 

Manejo del efectivo en cajeros automáticos, modelo matemático dinámico, transacción

de demanda de dinero.



52
 

  

A E S T I T I OM A
  

a
n 

ef
fic

ie
nt

 l
iq

ui
di

ty
 m

an
ag

em
en

t 
fo

r 
a

t
m

s. 
G

ar
cí

a 
C

ab
el

lo
, J

.
a

es
t

im
a

t
io

, t
h

e
ie

b
in

t
er

n
a

t
io

n
a

l
jo

u
r

n
a

l
o

f
fi

n
a

n
c

e, 
20

13
. 6

: 5
0-

75

n 1. Introduction

Along with risk, liquidity management represents the main reason for the existence of

banks in the classical financial intermediation theory (see, for example, Allen and Gale,

2004; or Allen and Santomero, 1998). As far as liquidity is concerned, the basic

management challenge in the standard framework is how to cover depositors’ random

consumption needs and how to set the subsequent deposit insurance mechanisms for

these depositors.

Other studies have also dealt with liquidity management not just at the bank level but

as a general feature of firm management. In this front, some papers have made use of

stochastic and inventory theory to propose some models of firms’ cash management.

Among these approaches, Ferstl and Weissensteiner (2008) consider a cash manage-

ment problem where a company with a given financial endowment and given future

cash flows, minimizes the Conditional Value at Risk of final wealth using a lower bound

for the expected terminal wealth written as a multi-stage stochastic linear program (SLP).

In this framework, the company can choose between a riskless asset (cash), several de-

fault — and option — free bonds, an equity investment, and rebalances the portfolio at

every stage. Other authors analyze the problem of cash management as an application

of Operational Research by means of some stochastic programming models: Castro

(2009) defines and solves two short-term and one mid-term models for ATMs.

Bank liquidity management has become one of the main concerns of a bank during

the financial crisis as liquidity shortages have put pressure on banks to diversity and

improve their liquidity sources. Thus, all those activities involving liquidity management

are relevant issues as any significant improvement in cash management at the bank

distribution channels may have positive effects in reducing liquidity tensions. Among

the activities involving cash management in banking, there are cash management in

ATMs and branches or compensation of credit card transactions. This paper focus on

cash efficiency on ATMs.

Although the introduction of ATMs (Automatic Teller Machines) and other tech-

nological innovations has reduced cash management costs, there is still a pressing

need to optimize resources, imposed by the high competition among bank institutions

in the present scenario of economic and financial crisis. In this sense, this paper makes

a proposal for the optimization of cash at ATM level. Actually, the 21st century has

been recognized by the financial experts as the ATM age. This first ATM, known as

DAC (De La Rue Automatic Cash System) was the starting point of a banking services

revolution, making real the philosophy of the selfservice 24 hours per day. In addition

it changed forever the relationship between the cash and billion of people around the

world, who don't need anymore to keep great amounts of money at home in order to
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have it available. Forty years after this first DAC, a total of 1,3 millions of ATM
terminals are distributed all world wide. In particular, Spain is the first country in

number of ATM per habitant in Europe, and the second of the world after Japan. 

From the TNS Consulting report, 46% of the customers prefers to operate through

ATM facing 26% that rather go for a personal attention inside the office. Other sources

point out that Spanish customers turn to ATM an average of 83 times per year, more

that the double of the times they required for the branch personal attention. All these

habits (customers behavior) has been amply addressed in several ATM reports.

However, as far as we know, none of them models the customers habits into

mathematical terms in order to predict their movements.

The crucial decision for the bank is what amount to daily maintain in that account

given the overall sum to be charged. This problem is tried to be solved by the branches

using historical data: basically the branch registers both the initial ATM quantity in

some particular day (workable, weekend, holidays, etc) and the result obtained (i.e.,

success or failure). Thus, the branch imitates the ATM amounts that success. 

This problem can be related with a classic issue: the transaction demand for the cash,

which began with Baumol (1952) and Tobin (1956), and more recently with Álvarez

and Lippi (2009). Basically, the transaction demand for the cash consists of managing

an inventory of cash holdings: the decision maker holds two distinct types of assets,

one asset which bears interest at a given rate, and a noninterest bearing asset where

periodic receipts of income and expenditures are made. Transfers of funds between

the two accounts are permissible but at a cost (transfer cost). They are involved other

costs of different nature (opportunity costs) derived from the fact that funds into the

noninterest bearing asset are loosing money while they are not into the interest

bearing portfolio, as well as many others opportunity costs that includes the time

spent waiting at a teller’s window or in making decisions about purchases and sales,

see Miller and Orr (1966).

One of the more illustrative example of the transaction demand for the cash is that of

a family which has two different current accounts: one for the savings (bearing an

interest) and a second one, dedicated to paying the periodic expenditures. Obviously,

the second current account must be refilled from time to time to face the periodic

payments. The present work can be included in this theoretical framework if we

consider the branch of some bank having this “two-asset” setting: the ATM of the

branch as the asset which is not bearing interest and where periodic expenditures are

made, while the asset which bears interest at given rate would be conformed by the

wide range of bank different products as Treasure bills, certificates of deposits,

commercial paper and any other money bank instruments. 



In this context, our objective is then to determine the quantity of money that must be

placed into the ATM according to a future unknown demand. For this, we propose a

simple programme of cash efficiency for AMT’s, very easy to implement, which substitutes

the actual method used by the branches based on historical data. The methodology we

propose is based on the construction of a simple (dynamic) mathematical model which

describes and predicts the movements of the ATM cash flow, whose equations have the

capability of easily being changed if the customers habits change. The stochastic elements

presented in the problem have been also captured and integrated in the model before

applying suitable optimization programmes to all the costs involved in cash movements.

Apart from its simplicity, the more interesting point of this model is its capability of

easy changing these equations if either the customers habits or the ATM rules of

functioning change, by modifiying/adding more conditions as well as more significant

variables if necessary.

The structure of this paper is as follows: section 2 starts by analyzing the real method

the branch uses to provide enough service to the ATM customers along the day with

regard to the determination of the initial quantity of money (x0) which must be placed

into the ATM to satisfy the customers unknown demand. 

The second target of this section is to model mathematically our problem in order to

make, in later sections, a deeper study of the cash management problem from the

optimization point of view. 

Section 3 is devoted to capturing the randomness of the problem by means of some

stochastic processes whose presence in the mathematical model allows us to demon-

strate some useful properties on the quantity x0 as well as a formulae to calculate x0 in

real cases: the strength of this formulae lies on its extreme simplicity as well as on its

easy implementation in practice. The above formulae drives us in a natural way to com-

plete the constraints to the optimization problem which underlies the central problem

of this paper: this optimization problem consists of minimizing the costs of the bank in

all this process. Section 4 is devoted to considering and resolving this problem.

In section 5 we review the mathematical model made in section 2, which reproduced the

process of customers making withdrawals. In a first stage, we resolve this model obtaining

the same solution to that of the branch by its historical data. In a second step, we solve

it after adding more real circumstances in the form of more conditions to the model. 

Finally, in section 6, the model of former section is enforced by examining the different

possibilities of making predictions. In the light of this, we obtain the most important

formulaes to predict the initial amount of ATM money for optimizing its activity.
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n 2. The Dynamic of the Model

We start this section by analyzing the real method the branch uses to provide enough

ATM service to the customers along the day. The branch method consist of two basic

points. The first one (and the key decision for the branch) is what amount x0 to daily

maintain in that account given the overall sum to be charged. The branch predicts x0

from historical data of customers behavior in similar days to the referred one, and

places x0 into the ATM.

The second point concerns with the regulation of the ATM money for keeping it

suitable (suitable means to fluctuate between some levels for giving enough service to

the users): the branch staff check the remaining amount of ATM money at some key

instant during the day in order to refill the ATM if necessary.

The branch method is reflected in the following picture:

n Figure 1. The Dynamic of the ATM Day
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User 1 withdraws
money from the ATM

User n withdraws
money from the ATM

Branch does not
refill the ATM

TEST:
money enough into 

the ATM?

End of the day

Branch must
refill the ATM

The branch introduces
the initial amount x0

of money into the ATM

YES NO



As x0 is the initial amount of money each day, let xt be the amount of money in the

ATM at the instant of time t. We will use discrete notation for xt (which represents

different amounts of money in different discrete points of time) instead of x(t), since

both the ATM money recharge by the branch as well as the ATM money extraction by

the customers, occur in discrete instants of time. Note also that xt > 0, for all t.

n How does the bank keep suitable the amount of money in the ATM? To offset the

amounts of money that the customers withdraw from the ATM, the bank has to

recharge it in order to keep it suitable. Let us write with mathematical terms the

process of making withdrawals and of refilling the ATM. 

n Users withdraw money from an amount xt+a , where t+a represents a later moment

of time to t. As the amount withdrawn is probably smaller than the total, this user’s

behavior can be written as

–Axt+a ,  0<A<1 .

n The bank recharges the ATM, but never completing the initial total amount. This

can be expressed as

+Bxt , 0<B<1.

n Which is the process of customers making withdrawals from de ATM? Let us start

from xt , the amount of money at some instant t. After this instant of time t in 

which someone makes a withdrawal, the remaining amount in the ATM at the next

instant t +1, is 

xt+1 = xt – A1xt = (1–A1)xt ,  0<A1<1.

In a second instant of time t+2 in which someone makes a withdrawal, the remaining

amount in the ATM is

xt+2 = xt+1 – A2xt+1 = (1–A2)xt+1 ,  0<A2<1.

By substituting xt+1 in the former expression, we have

xt+2  =  xt+1 – A2xt+1 = (1–A2)xt+1 = 

= (1–A1)(1–A2)xt ,  0<A1, A2<1.

Consequently, after r instants of time, the remaining amount of money is

xt+r = (1–A1)(1–A2)...(1–Ar)xt  =
= Krxt . (1)

0<A1, A2,...,Ar<1,

r >0.
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Note that the counter of instants is a counter of ATM customers as well.

Let us simplify the above idea of users making withdrawals from the ATM, and also,

analyze the elements that appear in the above formulae. Considering only two

consecutive moments of time, the formulae is

xn = (1–An )xn–1 (2)

As xn denotes the amount of money that remains at the ATM after the nth-user has

made a withdrawal, and An represents the portion of xn–1 that the nth-user withdraws,

this expression condenses both the customers behavior along this process as well as

let explicit the ATM remaining money after each customer. Others consideration

around this formulae are:

n The number of Ai’s reflects the number of times the customers make withdrawals.

n As we said, each Ai’s represents the part of money that has been taken out, so this

is why each A’i s is 0 <Ai< 1 . On the other hand, given this portion Ai , the real amount

of money (in euros) that has been withdrawn by the ith-customer is given by 

A*
i = Ai · xi  –1.

Of course, all the referred information — the customers behavior — is known by the

branch of the bank.

If we solve the simple difference equation (2), the solution does not clear the situation

too much:

xn = Pn –1
j=1 (1–Aj+1)  or xn = Pn

j=1 (1–Ai )x0 .

We operate then in the expression (2) in order to transform it as

xn = (1–An)xn– 1 =
= xn– 1 – Anxn– 1 =
= xn– 1 – A*

n ⇒

xn = xn– 1 – A*
n (3)

The solution to this difference equation is the logical one:

xn = x0 –
n

∑
i=1

A*
i .

That is, if the branch wants to know the remaining money after n users had withdrawn

money (this is xn), they logically have to subtract to x0, the sum of all the quantities
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withdrawn during the day. Recall that the branch checks the remaining amount of

ATM money at some key instant during the day in order to refill the ATM if necessary.

Let xz be the remaining money in the ATM at this checking instant.

Hence, the above expression is concerned with this second point of the branch method,

that of the regulation of the ATM money after checking it at some instant of time.

Indeed, since each xn can be now determined by the above expression, also this can be

done for the xz at the checking point time. Thus, this could help the branch to readjust

the ATM money by comparing the real amount at the check point with that obtained

by this expression.

Let us now focus on the first point of the branch method: from the above expression,

inverting the problem, if we want to know how much money the ATM must have at

the beginning of the day in order to give service to the customers, this is 

x0 = xk +∑
i
A*

i

where xk is the remaining of money the branch plans to leave at the ATM at the end

of the day (for instance, xk can be taken under the minimum amount one can extract

of the ATM). As a result, if the branch plans to leave the ATM empty (xk=0) and can

estimate how many customers will make use of the ATM during the all day (let N be

this number), x0 is more accurate by being taken as 

x0 =  
N

∑
i=1

A*
i . (4)

From this expression, the initial amount of money, x0 is a function on both variables N
(total number of users during the day) and A*

i (quantities of money the users withdraw).

n 3. The Two Poisson Processes

This section is devoted to capturing the randomness of our problem by means of some

stochastic processes.

Through the analysis of our problem, some stochastic elements have been appearing:

first of all, the number of ATM users during each day, that the branch of the bank

deals with using its historical data.

In former sections, we called N to the number of customers which make use of the

ATM during the all day. Let us recall that often, the arrival process of customers can

be described by a Poisson process. Mathematically the process is described by the so
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called counting process (point process) N( t ) or Nt . The counter tells the number of

arrivals that have occurred in the interval (0, t ), that is,

Nt = number of ATM users in the interval   (0, t ).

From this definition and considering a day as the unit of time, note that N=N1.

For that reason, if Nt is a (Poisson) counter process of parameter, say, l, some of their

properties are

n  the number of arrivals to the ATM in an interval of length t has a Poisson distribution

with parameter l · t ; that is, P[Nt =n ] = measures the probability of 

n ATM customers in the time t.

n The mean and variance of Nt are

E[Nt] = l · t and     var[Nt] = l · t .

Particularly, since l=E[N ], it follows that the rate of the Poisson process N, l , is the

average of withdrawals made of ATM customers in a day.

Apart from the number of ATM customers per day, other random element of our

problem is the amount of each withdrawal made by each customer. We capture all

these quantities A*
i by means of a compound Poisson process. 

A compound Poisson process is a (random) stochastic process with jumps. The jumps

arrive randomly according to a Poisson process and the size of the jumps is also random,

with a specified probability distribution. In our context we define the withdrawal

process, parameterized by certain rate l , as the compound Poisson process given by

Xt =
Nt

∑
i=1

A*
i

where A*
i denotes the amount of money (in euros) that has been withdrawn by the 

ith-customer, viewed as independent and identically distributed (i.i.d.) random

variables. Then, Xt is the total amount that have been withdrawn by the Nt ATM users

until the moment t of the day.

As proved in section 2,

xn = x0 –
n

∑
i   
A*

i ,  for all n .
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Hence, the relationship of the new variable Xt with the former ones, is the following:

Xt =
Nt

∑
i=1

A*
i = x0–xNt .

Particularly, if we assume that the ATM gets empty at the end of the day (or it has a

worthless quantity of money, which we approximate by zero), then x0 coincides with

the withdrawal process at t =1:

x0 =
N

∑
i=1

A*
i = X1 .

At this point, recall that the mean of a compound Poisson process can be calculate by

means of the mean of one of the i.i.d. variables, as

E [Xt] =l • t • E [A*
i],

where l is the rate of the Poisson process Nt .

Consequently, for t =1, we have

E [X1] =l • E [A*
i] =

= Average of number of Average of quantity withdrawn
withdrawals per day from ATM per day

While x0 = X1, if we approximate X1 by its mean, one mathematical proceed to calculate

the quantity x0 to be put into the ATM at the beginning of the day, is

x0 =
Average of number of Average of quantity withdrawn
withdrawals per day from ATM per day

This provides a simple method of estimating the initial amount of money x0 which

could substitute the old method of the branches of the bank, based on success/

failure of x0 for similar days. Also this method is very easy to be implemented in

branches, as (part of) a set of optimization instructions from the cash central to

their branches. 

n 4. The Underlying Optimization Problem

The main objective of this paper is to formulate a mathematical method which helps

branches to decide the optimum amount of money that will be placed into the ATM
for satisfying the daily customers demand. 
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However, along this paper, it has been reminded clear one key question, that should

be considered on parallel form to the calculus of x0 : if it is crucial for this study that

x0 must be big enough to provide service to the ATM customers, it is important as well

that x0 must be small enough to avoid losses to the bank derived from the fact of

holding too much cash in the ATM, while the surplus of x0 should be generating money

if it should be deposited into other bank products.

This idea suggests the necessity of optimizing the banks objective function, as well as

still considering the main question of the paper (i.e., x0 must give enough service to

the customers). This leads us in a natural way to the following optimizing problem

with constraints:

Minimize:   banks objective function
s.a.        x0 must give enough service to the customers

Let us start with the banks objective function. For this, we follow the standard practice

in inventory theory by assuming that the bank seeks to minimize the long-run average

cost of managing the cash balance under some policy of simple form.

Specifically, we assume that the cash balance in ATM is allowed to fluctuate until it

reaches either the lower bound, zero, or the upper bound, x0 . Let xz be the checking

point of the ATM cash level which indicates either branch must refill the ATM or not

(see Figure 1.) 

On these two variables, x0 and xz , the banks objective function e(x0 , xz) is 

e(x0 , xz) = g                   + n              ,

This function is constructed with separated addends, one for transfers costs and the

other for opportunity costs:

e(x0 , xz) = g                  + n              ,

where g is the costs per transfer, and represents the total number of transfers,

while n is the daily rate of interest earned on the portfolio, and          represents 

the average daily cash balance on ATM, see Miller and Orr (1966).

As for the constraint of the optimization problem, i.e., x0 must give enough service to

the customers, this has been written into mathematical terms in the former section,

simply considering that x0 = E [X1]. 
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A
(x0 – xz)xz

x0 + xz
3

A
(x0 – xz)xz

x0 + xz
3

A
(x0 – xz)xz x0 + xz

3

transfer costs opportunity costs



Once both the bank objective function and the constraint are specified, the optimiza-

tion problem turns out to be the following: 

Minimize : g                  + n              

s.a. x0 = E [X1]

To resolve this problem, we effect the following change of variables:

x = x0 – xz
y = xz

Accordingly, the optimization problem turns out to be 

Minimize :  g       + (x + 2y)

s.a. x + y = E [X1]

which can be solved by substituting one of the new variables from the constraint into

the objective function: if we do so with y = E [X1]–x , the solutions to the problem are

the roots of the following quartic equation:

x4–2E [X1]x3+E [X1]2x2– x +               ,

which yields to the desired upper bound x0 , as well as the return point of the cash

level, xz.

Note that this return point, xz, is in the reality the level of ATM money which is

supervised by the branch staff after they close the branch at the middle of the day.

Since usually branches do not open after this supervision, the ATM cash level must be

high enough till next day. Consequently, it is crucial that the return point, xz, has been

adjusted properly.

n 5. The Mathematical Model Again. Resolution

In the former section, we interpreted the actual process the branch uses to determine

x0, by means of the equation that describes the dynamic of the model, (2), as the central

equation. The conclusions from our model concord with that of the branch real process.

In this section, we shall improve our model with equations that simulates the ATM real

rules of working. Thus the model will be more accurate in their predictions.
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A
(x0 – xz)xz

x0 + xz
3

A
xy

n
3

6g A
n

3gAE [X1]
n



The more interesting point of this model is its capability of changing these equations

if either the customers habits or the ATM rules of functioning change, by modifiying/

adding more conditions as well as more significant variables.

For this, we modify the starting difference equation (3), to the equivalent one

xn–1 = xn + A*
n .

As a second equation which adds to the model the information concerning to the ATM
working rules, we consider

A*
n = cn–1A*

n–1

Why? Because it is impossible to predict the next amount withdrawn from the ATM,

A*
n from the former one, A*

n–1. Indeed, A*
n can be bigger, smaller o equal to A*

n–1 but in

all the cases, these quantities must be multiple of 10 euros: 

A*
n–1 = 10a*n–1

A*
n = 10a*n

Let us denote cn–1 to the quantity            , as indicated in the above formulae. The use

of the notation cn to represent the multiple between quantities A*
n and A*

n–1 reveals that

this multiple does depend on n. In fact, this number, cn, can be consider as a discrete

random variable, that is, one which may take on only a countable number of distinct

positive values. Note also that each cn ∈ ℚ .

Hence, we arrive to the following homogeneous linear difference equations system,

where the second one is stochastic (or that of variable coefficients at the variable A*
n):

xn = xn–1  – A*
n = xn–1  –cn–1 A*

n–1

A*
n = cn–1 A*

n–1, (5)

Thus, using the transition matrix

A(n) = (      ) (6)

the central system can be expressed as

(   ) = (  ) (    ) (7)
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⇒ A*
n =         A*

n–1} a*n
a*n–1

cn–1

}

a*n
a*n–1

}

1 –cn–1
0 cn–1

1 –cn–1
0 cn–1

xn–1

A*
n–1

xn
A*

n



with significant variables both xn and A*
n. Through the matrix A(n), it may also be

written in the following equivalent matricial form

Xn = A(n)Xn–1,

where Xn is Xn = (   ) as usual.

Note that the variable coefficient cn, viewed as discrete random variable could be

replaced by a suitable RNG, random numbers generator if necessary. 

5.1. Solving the Model
Considering the above system as a homogeneous system with variable coefficients,

written as

Xn = A(n)Xn–1,     where  Xn = (   ) .
Thus, the general solution is

Xk = (   ) =  Pk –1
j=r<k A ( j ) (   )

= A (k–1)A (k–2) . . .A (r–1)A (r )(   )
due to, as the matrix product is non commutative, it is obliged to precise in which

order we do the product. We shall take r=2 since A(1), which involves the coefficient

c0, is meaningless. Hence, the solution to system (7) is

( ) =   A (k–1)A (k–2) . . .A (3)A (2) (   )
To develop this matrix product, let us begin with the simplest case, namely

A (3)A (2)   =   (         ) (       ) =

= (    ) (    )
= ( )

Thus, the matrix product A (3)A (2) turns out to be

A (3)A (2)   =  (       )
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xn

A*
n

xn
A*

n

xk
A*

k

xr
A*

r
xr
A*

r

xk
A*

k

x2
A*

2

1 –c2
0 c2

1  –c1
0  c1

a*3
a*2
a*3
a*2

1  –

0

a*2
a*1
a*2
a*1

1  –

0

a*3
a*2
a*3
a*2

a*2
a*1
a*2
a*1

1  – –

0

a*2
a*1

a*3
a*1

1  –

0

a*2+a*3
a*1



It is easy to check that next step A (4)A (3)A (2) is

A (4)A (3)A (2)   = (            )
and so forth

A (k–1)A (k–2) . . .A (3)A (2)  = (                     )
From this point on, the method follows by isolating each xk and A*

k . These are

xk  =  x2  – A*
2

A*
k =  A*

2

Apart from the information that gives second equation, from the first one, by putting

x2 as x0  – A*
1  – A*

2 and isolating x0 , we finally conclude that

x0 =  A*
1 + A*

2 + xk + A*
2 (8)

for k = 0, 1, 2,... .

If N represents the instant of the day that the branch decides to get closed the ATM,

then xN denotes the remaining quantity of money which is left at the ATM at the

end of this day. This quantity xN may also be decided by the branch to be 0 or

alternatively, other quantity (xN can be taken under the minimum amount one can

withdraw from the ATM): if they decide to get the ATM completely empty, xN must

be 0. Introducing this branch decision at the former equation (8), the initial amount

x0 turns out to be 

x0 =  A*
1 + A*

2 + A*
2 (9)

n 6. The Dynamic Model for the Real World: 

How to Determine A*
n

If in the previous section we introduce a simple model to represent one ATM day, in

this section we attempt to bring over the model to the reality. In regards of simplicity,

we can say that the above formulae shows the initial quantity x0 as a function of both

A*
n and N,

x0 = f (A*
n, N ).
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a*4
a*1

1  –

0

a*2+a*3+a*4
a*1

a*k–1

a*1

1  –

0

a*2+a*3+...+a*k–1

a*1

a*k–1

a*1

}

a*2+a*3+...+a*k–1

a*1

a*2+a*3+...+a*N–1

a*1

a*2+a*3+...+a*k–1

a*1



Even more, as N (the instant of time of the day that the ATM gets empty) is a branch

decision (as well as how much money remains at the ATM after the last user), we can

even assume that x0 depends only on quantities A*
n that users withdraw the ATM, i.e., 

x0 = f (A*
n).

Hence, to be closer to x0 the point is how to calculate in a accurate form these

quantities A*
n .

For this, let us denote E(A*
n) the expected value of A*

n at each instant n. The branch

calculates these impacts by estimating them in view of its historical data, that is, they

use the same items they know for a similar day (recall that similar means similar

characteristic, i.e., working day versus bank holiday etc).

In this paragraph we analyze some different ways to calculate E(A*
n). In order to give

a complete vision, we shall examine all the known expectations, even the non realistic

ones. Let us note that this range of possibilities could be augmented by defining ad

hoc other kind of expectations if necessary (ad hoc means in this context depending

on the features of each branch, like size or location).

Then, the common way to procedure will be the direct substitution of items A*
n by the

expected ones, E(A*
n). Namely, we shall replace the original system (5)

xn = xn–1  –A*
n

A*
n =  cn–1A*

n–1, 

by the system

xn =  xn–1  – E(A*
n)

E(A*
n) =  cn–1 E(A*

n–1), (10)

6.1. Rational Expectations
One way to calculate the impacts E(A*

n) is by considering no possible estimation error,

that is, taking them as equal to the real ones, A*
n. This is the case of rational expectations,

the forecast is equal to the actual impact: 

E(A*
n) = A*

n ,

This case has been solved in the former section, bringing us the formulae obtained

in (9).
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}

}



6.2. Naïve Expectations
In the case of naïve expectations, the forecast is equal to the previous impact:

E(A*
n) = A*

n–1 .

By direct substitution in the system

xn =  xn–1  – E(A*
n)

E(A*
n) =  cn–1 E(A*

n–1), 

we would get

xn =  xn–1  – A*
n–1

A*
n–1 =  cn–1 A*

n–2

However, to be faithful to the model, the second equation, which expresses the

relationship between two consecutive quantities must be still the same. Hence, the key

system at this paragraph is 

xn =   xn–1  – A*
n–1

A*
n =   cn–1 A*

n–1

Note also that, by shifting the time (or user number) subscripts by one unit, A*
n denote

now the quantity of money that n+1-user withdraws from the ATM. Due to this, A*
0 ,

which was meaningless, represents now the first quantity of money that is withdrawn

from the ATM, corresponding to the first user in the day. Continuing this argument,

A*
1 represents the second quantity corresponding to the 2-user in the day, and so on.

Let us solve the main homogeneous linear difference equations system:

xn =  xn–1  – A *n–1

A *n =  cn–1 A *n–1 (11)

This may also be written in the following equivalent matricial form

Xn = A(n)Xn–1,   where A(n)now is A(n) = (        ) 
To solve this system, we can proceed as for (5). Then, the solution is

(   ) =   A (k–1)A (k–2) . . .A (2)A (1) (   )
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}

}

}

}

1 −1
0 cn–1

xk
A*

k

x1
A*

1



By developing the above matrix product, we find out that

A (k–1)A (k–2) . . .A (2)A (1) = (                                        )
where it is easy to check that

–1 –c0 – c0c1 –c0c1c2 – ... –c0c1c2 ... ck–2   =  –1 –

so the above matrix is

A (k–1)A (k–2) . . .A (2)A (1) = (                                         )
= (                         )

From this point on, the procedure of isolating each xk and A*
k is the same we used

before:

xk =  x1  – A*
1 – A*

1

A*
k =  A*

1

As x1= x0–A*
0, isolating x0 , we finally conclude that

x0= A*
0+A*

1+xk+A*
1       (12)

for k = 0 , 1, 2... . Taking into account the numbered-user subscripts shifted, we obtain

the same result as in the former paragraph, namely,

x0= A*
0+A*

1+A*
1       (13)

6.3. Adaptive Expectacions
A good deal of papers generalize naïve expectations into adaptative expectations. In

the case of adaptative expectations, the forecast is equal to the convex combination

of the previous impact and the previous forecast: 

E(A*n) = lA*n–1+(1– l)E(A*n–1),  0<l≥1. (14)

Then, the original system (5)

xn = xn–1  –cn–1A*n–1

A*n = cn–1 A*n–1 ,
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1 –1 –c0 –c0c1 –c0c1c2 – ... –c0c1c2 ... ck–2

0
a*k
a*1

a*1+a*2+...+a*k–1

a*0

1 –1 –c0 –c0c1 –c0c1c2 – ... –c0c1c2 ... ck–2

0

1 –1 –

0

a*k
a*1

a*1+a*2+...+a*k–1

a*0

a*2+a*3+...+a*k–1

a*1

a*k
a*1

a*k
a*1

}
a*2+a*3+...+a*k–1

a*1

a*2+a*3+...+a*N–1

a*1

}



can now be enlarged with an additional equation:

xn =    xn–1  –cn–1A*
n–1

A*
n =   cn–1 A*

n–1 (15)

E(A*
n) =   lA*

n–1+(1– l)E(A*
n–1),

Hence, we have 3 difference equations as well as 3 variables: xn , A*
n and E(A*

n ),

xn =    xn–1   –cn–1A*
n–1

A*
n =             cn–1A*

n–1 (16)

E(A*
n) =                 lA*

n–1+  (1– l)E(A*
n–1),

where the transition matrix is now the matrix

B(n)  =  (                ) = B(n,l )

i.e., the block partition matrix

B(n) =  (             ) 
where the matrix A(n) is the transition matrix (6),

A(n) = (            ) , 

F (l) is the row matrix F (l) = ( 0  l ), 0 represents the column matrix 0 = (  ) and 

1– l is an scalar.

The procedure to solve this system is the same as in former paragraph, namely:

Xk  =  (          ) = Pk –1
j=r<k B ( j ) (          )

= B (k–1)B (k–2) . . .B (3)B (2) (         )
It is not difficult to check out that

B (3)B (2)= (                                )
while

B (4)B (3)B (2)= (                            )
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}

}

1 −cn–1      0
0 −cn–1   0
1 l 1 − l

A(n) 0

F(l) 1 − l

1  −cn–1
0  cn–1

0 
0 

xk
A*

k
E(A*

k)

xr
A*

r
E(A*

r ) x2

A*
2

E(A*
2)

A (3)A (2)            0
F(l)A(2)+(1 − l)F(l)    (1 − l)2

A (4)A (3)A (2)        0
F(l)A(3)A(2)+     

(1 − l)F(l)A(2)+    (1 − l)3

(1 − l)2F(l)    



and, in general,

B (k–1)B (k–2) . . .B (3)B (2)  =(                                  )
with the convention that the matrix A(1) is the identity matrix. The left down block can

also be expressed as

k–3

∑
j=0

(1 − l)jF(l)A (k –1– j–1)A (k –1– j–2) . . . A (2) .

Then, we solve the system in the usual way:

(         ) =(                                  ) (        )
and due to the block partition, we obtain that

F(l)A(k–2) . . . A (3)A (2)+   
(1 − l)F(l)(k–3) . . . A (3)A (2)+

E(A*
k)=  (   )+(1 − l)k–2E(A*

2)
+(1 − l)k–3F(l)  

Hence, this expression reveals that the expected value of the k-user depends on the

previous ones, and in a very significant way, it depends on the first one, A*
2 . That point

is highly interesting for the real implications it has since the branch could predict the

amounts of money A*
i almost only from A*

2 .

Let us analyze in detail the former expression: 

k = 3 For k = 3 the former expression derives into the known definition of adaptative

expectations, which expresses the expected value to be equal to the convex

combination of the previous impact and the previous forecast. Namely,

E(A*
3) = F(l)(   )+(1 − l)E(A*

2)

= (0 l) (   )+(1 − l)E(A*
2)

= lA*
2+(1 − l)E(A*

2).
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A (k–1)A (k–2) . . . A (3)A (2)        0
F(l)A(k–2) . . . A (3)A (2)+     

(1 − l)F(l)(k–3) . . . A (3)A (2)+    (1 − l)k–2

+(1 − l)k–3F(l)    

..
.

A (k–1)A (k–2) . . . A (3)A (2)        0
F(l)A(k–2) . . . A (3)A (2)+     

(1 − l)F(l)(k–3) . . . A (3)A (2)+    (1 − l)k–2

+(1 − l)k–3F(l)    

..
.

..
.

xk
A*

k
E(A*

k)

x2

A*
2

E(A*
2)

x2
A*

2

x2
A*

2

x2
A*

2

row matrix 1x2



k = 4 For k = 4 , we have

E(A*
4)  = [F(l)A (2)+(1 − l)F(l)] (   )+(1 − l)2E(A*

2)

= [(0  l)(       )+(1 − l)(0  l)]( )+(1 − l)2E(A*
2)

= [(0  lc1)+(0  l(1 −l))](   )+(1 − l)2E(A*
2)

= (0  lc1+l(1 −l))( )+(1 − l)2E(A*
2)

= l[c1+(1 −l) ] A*
2+(1 − l)2E(A*

2).

k = 5 For k = 5 , we have

=     F(l)A (3)A (2)+

E(A*
5) =    (1 − l)F(l)A (2)+ (    )+(1 − l)3E(A*

2)

= (1 − l)2F(l) 

(0  l) (               )
= +(1 −l)(0   l)(        ) (    )+(1 − l)3E(A*

2)

+(1 − l)2(0   l)

= l[c1c2+(1 −l)c1+(1 − l)2]A*
2+(1 − l)3E(A*

2).

In general, the k-forecast is

E(A*
k)= l [ k–3

∑
j=0

c1c2...ck–3–j (1 −l) j ] A*
2+(1 − l)k–2E(A*

2)

This expression resembles the known formulae that relates the k-expected value for

adaptative expectations with the backward previous forecasts, namely

E(A*
k)= l

n

∑
j=0

(1 −l) jA*
j–1+ (1 − l)n+1E(A**

k–1–n).

However, our formulae improves that one in the sense that the expected value of the

k-user only depends on the first one, A*
2 . As we commented before, this point allows

the branch to predict the amounts of money A*
i only from A*

2 while solving our initial

problem.
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x2
A*

2

x2
A*

2

x2
A*

2

1  –c1
0  c1

x2
A*

2

[                    ]
[                      ]

x2
A*

2

1  –c1
0  c1

1  –c1 –c1c2
0  c1c2 x2

A*
2



n Conclusion

The liquidity management is one of the main concerns of banks, particularly in the

actual situation of economic and financial crisis. In consequence, all studies for

optimizing liquidity management are welcome in the present scenario, for all bank

activities involved in banking cash management. 

Our contribution to all these optimization efforts is done in the front of cash

management for ATMs banks: we have designed some formulae which will help

branches to decide the optimum amount of money that will be placed into the ATM
for satisfying the customers daily demand as well as minimizing all costs. 

The main obstacle of this modeling process is to control the stochastic ingredients

involved in the problem, as number of daily ATM users or number of quantities of

money they withdraw from ATM as well as the erratic behavior of ATM customers,

where erratic means, for instance, that no conclusions on quantity of money withdrawn

by an ATM user can be extracted for the next ATM user. Also, there are other

impediments of different nature in modeling this situation: possible changes in the

customers behavior as well as possible changes at the ATM rules of functioning could

make obsolete the mathematical model that reproduces this situation unless the model

anticipates these troubles and integrates them as part of itself. 

The stochastic ingredients have been captured by using Poisson processes. They allow

us to demonstrate some formulae, simple and easy to implement in practice, of

calculating the optimum amount of money that will be placed in the ATM for

minimizing opportunity costs as well as satisfying the customers uncertain demand.

The way to implement this mathematical routine in branches could be as (part of) a

set of optimization instructions from the cash central to their branches. To help to

illustrate better the accuracy of the model, it would be interesting to contrast this with

real data from branches of the different bank companies. Nowadays the major part

of these data are protected and it is difficult to access to them for the policy of

maintaining both the names of the persons and the banks confidential. This could be

a matter for future research in any case. 

The last handicap — changes in the customers behavior and/or new rules of functioning

— has been intended to save by designing our model with simple equations (difference

equations —accord with the discrete-in-time situation we model) which can be

restructured easily. Even more, although in the later development of the model it has

been considered the three principal kind of expectations (rational, naïve and adaptive),

many other types of expectations can be implemented by substituting them into the

model, as the form of having being constructed their equations allows new possibilities
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for future research. Actually, as we observed in section 6, the range of possibilities for

expectations could be augmented by defining our own ad hoc expectations accord with

the features of each branch, like size or location. The inclusion of these new exogenous

variables (branch size or location) is let by the author as an open problem.
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