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Resumen

La “Gran Confusión” radica en las condiciones necesaria y suficiente para la utilización
del análisis media-varianza en la práctica. Las distribuciones Normales (Gaussianas) de
rendimientos constituyen una condición suficiente, pero no necesaria. Para aquellos que
(como el autor) aceptan la maximización de la utilidad esperada en la toma de decisiones
racionales, la condición necesaria y suficiente es que una cuidadosa selección a partir de
la frontera media-varianza prácticamente maximice la utilidad esperada para un amplio
abanico de funciones de utilidad cóncavas (aversión al riesgo). Más de cincuenta años
de extensa (pero ciertamente poco conocida) investigación muestran que determinadas
funciones de la media y la varianza han funcionado bastante bien en lo que a la estimación
de la utilidad esperada se refiere. La investigación reciente indica que realmente funcionan
mejor que las funciones de la media y medidas líderes alternativas de riesgo.

Palabras clave: 

MPT, Media-varianza, Semivarianza, MAD, VaR, CVaR, Media geométrica.
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n 1. Introduction

Our field is plagued by a Great Confusion, namely the confusion between necessary

and sufficient conditions for the use of mean-variance analysis in practice. Normal

(Gaussian) return distributions are sufficient to justify the use of mean-variance

analysis: But they are not necessary. If you believe (as many do, including me) that

rational decision making should be consistent with expected utility maximization, then

the necessary and sufficient condition for the use of mean-variance analysis is that a

carefully selected portfolio from the mean-variance efficient set will approximately

maximize expected utility, for a great variety of concave (risk-averting) utility functions.

This was the argument for mean-variance analysis that I presented in Markowitz

(1959). A large number of subsequent research papers, by me and others, following

up along the same lines, have generally been supportive of mean-variance analysis—

subject to certain caveats. In this paper I will briefly summarize some highlights of this

literature with emphasis on its practical significance. See Markowitz (2012b) for a

more complete review of the literature.

The first section below reviews the fundamental assumptions of Markowitz (1959),

of which the maximization of single-period expected utility is a part. Subsequent

sections review mean-variance approximations to expected utility, including recent

work comparing such approximations to ones using other risk-measures.

n 2. Markowitz’s fundamental assumptions

Markowitz (1959) justifies mean-variance analysis by relating it to the theory of

rational decision making over time and under uncertainty, as developed by von

Neumann and Morgenstern (1944), Savage (1954) and Bellman (1957). The

fundamental assumptions of the book appear in Part 4, Chapters 10 through 13.

Specifically, Chapter 10 deals with single-period decision-making with known odds.

It echoes the view that, in this case, the rational decision maker (RDM) may be

assumed to follow certain axioms, from which follows the expected utility maxim.

Below I assume the reader is familiar with the expected utility maxim and justifications

for it. This is covered in many modern texts on decision making, including the

aforesaid Chapter 10 of Markowitz (1959).

Chapter 11 of my 1959 book considers many-period games, still with known odds.

It shows that essentially the same set of axioms as in Chapter 10 implies that an RDM

would maximize expected utility for the game as a whole which, in turn, implies that

the RDM would maximize the expected values of a sequence of single-period utility

functions, each using a Bellman “derived” utility function. Research on the rela -
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tionship between single-period mean-variance analysis and the many-period game,

beyond the observations in Markowitz (1959), is reported in Markowitz and van Dijk

(2003). The application of the Markowitz-van Dijk approach to the rebalancing of

portfolios at State Street Bank is described in Kritzman et al. (2008).

Chapter 12 of Markowitz (1959) considers single or multiple-period decision-making

with unknown odds. Taking off from Savage’s work, it adds a “sure thing” principle

to the axioms of Chapter 10 and 11 and concludes that, when odds are unknown,

the RDM maximizes expected utility using “probability beliefs” where objective

probability are not known. These probability beliefs shift according to Bayes rule as

evidence accumulates.

Chapter 13 applies the conclusions of Chapters 10 through 12 to the portfolio

selection problem. In particular, it extends an observation made in Chapter 6 for the

logarithmic utility function, that if a probability distribution of a portfolio’s returns

is not “too spread out,” a function of its mean and variance closely approximates its

expected utility. I review this argument in the next section.

The reason the fundamental assumptions of Markowitz (1959) are presented at the

back rather than at the front of the book was that I feared that if I started with an

axiomatic treatment of the theory of rational decision-making under uncertainty, no

one involved with managing money would read the book. This may have been a wise

strategy at the time, but its side-effect is that a very small percent of our industry

understand the conditions for the applicability of mean-variance analysis.

n 3. Quadratic approximations to expected utility

Suppose an investor wished to maximize the expected value of a logarithmetic utility

function 

U=Ln(1+R) (1)

where R is return on the investor’s portfolio. Perhaps this is the investor’s goal because

of the reasons Daniel Bernoulli (1954) gave in favor of this function when he first

proposed maximizing expected utility rather maximizing expected income; or perhaps

because of its connection with the growth rate G (i.e., the “geometric mean” return)

of the portfolio, namely

Ln(1+G )=ELn(1+R) (2)

where E is the expected value operator. How bad would it be for such an investor if

he or she had to be satisfied with a portfolio from a mean-variance efficient frontier?



Consider Table 1 here, which is Table 2 of Chapter 6 on Page 121 of Markowitz

(1959). The first column lists return R , the second Ln(1+R) and the third R– R 2

There is little difference between Ln(1+R) and this quadratic approximation to it for

returns between a 30% loss and a 40% gain on the portfolio-as-a-whole. For example, 

at R= –0.30 (a thirty percent loss) Ln(1+R)= –0.36 whereas the quadratic is –0.35. 

At R= 0.40 (a forty percent gain) Ln(1+R)= 0.34 whereas the quadratic is 0.32. Between

these two values, i.e., for  R= –0.20, –0.10, ..., +0.30, the approximation equals the

log utility function to the two-places shown. Even at a forty percent loss or a fifty

percent gain, the difference is noticeable but not great: –0.51 vs –0.48 in the one case;

0.41 vs. 0.38 in the other. As the range of possible returns increases further, however,

the approximation deteriorates at an increasing rate. In particular, Ln(1+R) goes

towards minus infinity as R approaches –1.0, a hundred percent loss, whereas the

quadratic goes to –1.5. Conversely, as R increases Ln(1+R) increases without bounds

whereas the quadratic reaches a maximum at R= 1 and then declines. 

l Table 1. Comparison of Ln(1+R) with R–½R2

R Ln(1+R ) R– ½R2

-.50 -.69 -.63

-.40 -.51 -.48

-.30 -.36 -.35

-.20 -.22 -.22

-.10 -.11 -.11

.00 .00 -.00

.10 .10 .10

.20 .18 .18

.30 .26 .26

.40 .34 .32 

.50 .41 .38 

As long as the returns on a portfolio are within the range in which Ln(1+R) and

R– R 2  are close, the expected value of the one must be close to the expected value

of the other. But the expected value of the quadratic depends only on portfolio mean

and variance. Thus Markowitz (1959) concludes that for choice among return

distributions which are mostly within the range of a thirty or forty percent loss to a

forty or fifty percent gain on the portfolio-as-a whole, and do not fall outside this

range “too far, too often,” the E[Ln(1+R)] maximizer will almost maximize expected

utility by an appropriate choice from the mean-variance efficient frontier. 

Note that this argument does not depend on the shape of the return distribution: 

It can be skewed to the left, skewed to the right, bimodal—whatever! Just as long as

it is not spread out “too much” in the sense illustrated by Table 1.
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In general Markowitz (1959) suggested two types of approximations to any utility

function, U(R ):
QZ(R )=U (0)+U’ (0)R+0.5U”(0)R 2 (3)

QE(R )=U (E )+U’ (E )(R–E )+0.5U”(E )(R–E )2 (4)

where a prime denotes differentiation. For example, for the natural logarithm utility 

function, U =Ln(1+R), approximations (3) and (4) are, respectively,

q
Z
(R )=R – R2 (5)

as shown in Table 1, and 

qE(R )=Ln(1+E ) + (R – E )/(1+E ) – (R – E )2/[2(1+E )2]. (6)

The expected values of Equations 5 and 6 are the following functions of mean and variance,

fZ (E,V )=E – (E 2+V )/2 (7)

fE (E,V )=Ln(1+E )– V/(1+E )2 (8)

QZ in Equation 3 is the Taylor approximation to U(R ) centered at R = 0; QE in Equation

4 is that centered at R=E. Markowitz (1959) observed that QE was superior to QZ . This

was confirmed by subsequent research. For example, Markowitz (2012a) presents

historical comparisons between geometric mean and six different mean-variance

approximations to it, for two databases. One database consists of the historical returns

on asset classes widely used in asset allocation decisions. The second database

contains the real returns during the 20th Century of the equity markets of sixteen

countries. The six approximations included fZ and  fE in Equations 7 and 8. Of the six,

three did well for a wide range of distributions, including ones with observations well

beyond the 30 to 40 percent loss and 40 to 50 percent gain within which fZ would be

expected to do well. As it turned out, fZ did poorly whereas fE was one of the three that

did quite well.

n 4. Why not just maximize expected utility?

If one believes that action should be in accord with the maximization of expected

utility, i.e., the max EU rule, why seek to approximately maximize EU via a mean-variance

analysis? Why not just maximize expected utility? In considering this question,

distinguish three types of expected utility maximization: 

• explicit           • MV-approximate         • implicit 
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I refer to it as “explicit” EU maximization when a utility function is given and analytic or

numerical methods are used to find the portfolio that maximizes the expected value of

this function. In contrast, I refer to it as “MV-approximate” when a mean-variance

approximation to expected utility is maximized. An example would be to approximately

maximize ELn(1+R) by generating an MV efficient frontier, and choosing from it the

portfolio that maximizes the approximation in Equation 7 or 8.

As reviewed below, Levy and Markowitz (1979) find that mean-variance approximations

are usually quite accurate. From this they conclude, for some hypothetical investor 

Mr. X, that “If Mr. X can carefully pick the MV efficient portfolio which is best for him,

then Mr. X, who still does not know his current utility function, has nevertheless selected

a portfolio with maximum or almost maximum expected utility.” I refer here to such a

process as “implicit” expected utility maximization.

Typically it is much more convenient and economical to determine the set of mean-

variance efficient portfolios than it is to find the portfolio which maximizes expected

utility. Historically, one source of inconvenience and added expense for the latter was

computational. One typically had to wait longer (perhaps hours longer) and pay a

higher computer bill to find an expected-utility-maximizing portfolio than to trace out

a mean-variance frontier. This computational problem is now trivial thanks to faster,

cheaper computers. It still takes many times as long to compute the expected value of

most concave functions as it does to trace out a mean-variance efficient frontier. But

neither calculation takes long enough to be a practical limitation.

There are, however, other expenses and inconveniences that remain for explicitly

maximizing expected utility as compared to using an MV or implicit approximation

to it. The first of the remaining economically significant differences in cost and

convenience concerns parameter estimation. The only inputs required for a mean-

variance analysis are the means, variances and covariances of the securities or asset

classes of the analysis. (A factor model can serve in place of individual variances and

covariances). Typically, more than this is required to explicitly maximize the expected

value of a utility function. The formulas relating the expected return and variance of

a portfolio to the expected values, variances and covariances of return of securities

do not depend on the form of the probability distribution. For example, letting Ep

be the expected return on the portfolio; Xi, the fraction of the portfolio invested in

the ith security and Ei the expected return on the ith security, the relationship 

Ep=
n
∑
i=1

XiEi (9)

holds whether or not returns are normally distributed. More generally, Equation 9 is

true whether or not distributions are symmetrically distributed, and whether or not
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the return distributions have “fat tails,” as long as the  Ei exist and are finite. Similarly,

letting Vp be the variance of the portfolio, and sij be the covariance between security

returns ri  and rj, the formula for portfolio variance

Vp=
n
∑
i=1

n
∑
j=1

Xi Xjsij (10)

is true whether or not the return distributions are normal, or symmetric or have fat tails

as long as the Vi =sii  are finite. The case is different when one explicitly maximizes

expected utility. Then one needs to determine what type of joint probability distribution

generates return combinations, (r1,r2...,rn), and must estimate the parameters for such

a joint distribution. Accomplishing this can be a substantial research project.

A second difficulty with using explicit expected utility maximization, as opposed to

implicit EU maximization, is that someone must determine the investor’s utility

function. As von Neumann and Morgenstern explain, theoretically this should be done

by answering a series of questions as to what probabilities pa of returns Ra versus 

(1–pa ) of  Rc  the investor considers just as desirable as return Rb with certainty. This

would be challenging enough for an institutional investor, such as an endowment or

pension fund with a single large portfolio, but seems hardly possible in any thorough

way on behalf of the many clients of a financial advisor. This step is not necessary

when implicit EU maximization is used.

Finally, another advantage of using implicit EU maximization is that no one has to

explain the expected utility concept to the individual investor, or to the supervisory

board of an institutional investor, or to the typical financial advisor. Instead, portfolio

choice can be couched in the familiar terms of risk versus return.

n 5. Levy and Markowitz (1979)

The Levy-Markowitz study had two principal objectives:

(1) to see how good mean-variance approximations are for various utility

functions and portfolio return distributions; and

(2) to test an alternate way of estimating expected utility from a distribution’s

mean and variance.

The Levy-Markowitz “alternate way” was to fit a quadratic approximation to U at

three values of R:

(E–ksp ), (E ), (E+ksp ) (11)
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where sp is the portfolio’s standard deviation. They tried their approach for 

k =0.01, 0.1, 0.6, 1.0 and 2.0

Of these, k =0.01 did best in almost every case. This is essentially the same as the

approximation in Equation 4. I will therefore relate their results for k =0.01 and

subsequently treat these as if they were results for the Equation 4 approximation.

Table 2 shows the Levy-Markowitz results for four data sets. The first column of the

table lists various utility functions. The next shows results based on the annual returns

for 149 mutual funds for the years 1958 through 1967. (These were all the funds

whose returns Wiesenberger 1941 reported at the time for the full period.) Levy and

Markowitz considered these 149 return series as 149 real-world return distributions.

This second column of the table shows correlations between average utility

EU =
T

∑
t=1

U (rt )/T (12)

and the mean-variance approximation f.01(E,V ) based on the quadratic fit through

the three points in Specification 11 with k =0.01.

l Table 2. Correlation between EU and f.01 (E,V )
For four historical return series. 1958 -1967

Annual returns of Annual returns Monthly returns Random portfolios 
Utility function 149 mutual funds on 97 stocks on 97 stocks of 5 or 6 stocks

Log(1+R ) 0.997 0.880 0.995 0.998

(1+R )a a = 0.1 0.998 0.895 0.996 0.998

a = 0.3 0.999 0.932 0.998 0.999

a = 0.5 0.999 0.968 0.999 0.999

a = 0.7 0.999 0.991 0.999 0.999

a = 0.9 0.999 0.999 0.999 0.999

–e–b(1+R ) b = 0.1 0.999 0.999 0.999 0.999

b = 0.5 0.999 0.961 0.999 0.999

b = 1.0 0.997 0.850 0.997 0.998

b = 3.0 0.949 0.850 0.976 0.958

b = 5.0 0.855 0.863 0.961 0.919

b = 10. 0.447 0.659 0.899 0.768

The utility functions used were the logarithmic, and the power and exponential func-

tions for the values of a and b shown in the table. For the logarithmic utility function,

and for all the power utility functions considered, the correlation (over the 149 return
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distributions) between average utility and the mean-variance approximation to it was

at least 0.997. Since this is more precision than one may expect from forward looking

estimates of means, variances and covariances for a mean-variance analysis—or from

estimates of joint distributions for an explicit expected utility maximization—Levy and

Markowitz concluded that, for such utility functions and return distributions, for all

practical purposes EU and its mean-variance approximation are indistinguishable. 

On the other hand, MV approximation was much less successful for exponential utility

U = –exp{–b(1+R)}

for b=5 and, especially, for b=10. This raises serious questions about the applicability

of mean-variance analysis to certain kinds of investors: In particular, what are the

characteristics of such investors? And what needs to be done for them? I return below

to these questions.

The other columns of Table 2 show the correlation between EU and f.01 for three

more sets of historical distributions reported by Levy and Markowitz. The second data

set reported in the table shows correlations for annual returns on 97 randomly chosen

U.S. common stocks during the years 1948-1968. It is understood, of course, that

mean-variance analysis is to be applied to the portfolio-as-a-whole rather than

individual investments. Annual returns on individual stocks were used, however, as

examples of return distributions with greater variability than that found in the

portfolios reported in the prior column. As expected, correlations for individual stocks

are poorer than for the mutual fund portfolios. For U=Ln(1+R), for example, the

correlation is 0.880 for the annual returns on stocks as compared to 0.997 for the

annual returns on the mutual funds.

Since monthly returns tend to be less variable than annual returns, we would expect

the correlations between EU and f.01 to be higher for the former than the latter. The

correlations for monthly returns on the same 97 stocks are shown in the fourth

column of Table 2. For the logarithmic utility function, for example, the correlation

is 0.995 for the monthly returns on individual stocks as compared to 0.880 for annual

returns on the stocks, and 0.997 for annual returns on the mutual funds. On the

whole, the correlations for monthly returns on individual stocks are comparable to

those of the annual returns on mutual funds.

The central limit theorem implies that compounded returns would tend to a log

normal distribution if successive returns were independent. This suggests that annual

returns should be closer to log normal than monthly returns. However, the point that

Markowitz (1959) makes in connection with our Table 1 is that even though monthly
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returns may have a less Gaussian-like or lognormal-like shape than do annual returns,

one should expect fZ or fE to provide a better approximation to EU for monthly return

distributions than for annual return distributions because they are less spread out.

This is amply confirmed by the Levy-Markowitz data.

As noted above, annual returns on individual stocks—i.e., on completely undiversified

portfolios—had perceptibly smaller correlation, between EU and f.01, than do the

annual returns on the well diversified portfolios of mutual funds. The final column in

Table 2 presents such correlations for “slightly diversified” portfolios consisting of a

few stocks. Specifically, it shows the correlations between EU and f.01 on the annual

returns for 19 portfolios of 5 or 6 stocks randomly drawn (without replacement) from

the 97 U.S. stocks. We see that for the logarithmic utility function, correlation is 0.998
for the random portfolios of 5 and 6, up from 0.880 for individual stocks. Generally,

the correlations for the annual returns on the portfolios of 5 and 6 were comparable

to those for the annual returns on the mutual funds. These results were among the

most surprising of the entire analysis. They indicate that, as far as the applicability of

mean-variance analysis is concerned, at least for joint distributions like the historical

returns on stocks for the period analyzed, a little diversification goes a long way.

n 6. Highly risk-averse investors 

The Levy-Markowitz results for the exponential with b =10 differ markedly from those

of the other utility functions reported in Table 2. In this section we explore the reasons

for this. In particular, why do mean-variance approximations have difficulty with such

utility functions and what characterizes such investors? A later section, reviewing the

work of Simaan (1993) addresses the question of what to do about it. 

For E=0.1 and s=0.15, Table 3 compares the exponential utility function with the

quadratic QE of Equation 4. The utility function is rescaled as follows 

U= 1000e–10(1+R)

(As von Neumann and Morgenstern explain, such multiplication of a utility function

by a positive constant does not affect its choices among probability distributions)

With this scaling the difference between U(0.5) and U(–0.3) is of the same order of

magnitude as that for Ln(1+R) in Table 1, namely, 0.41– (–0.36) = 0.77 in the latter

case versus about 0.91 in the former. Table 3 is presented to four places, rather than

two as in Table 1, since U(R ) rounds to 0.00 to two places for R≥0.3 for the

exponential. 
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l Table 3. Comparison of exponential utility with the QE quadratic approximation
For U= 1000e–10(1+R);E= .1; and s = .15

R U(R) QE(R) U–QE

-.30 -.9119 -.2171 -.6948

-.20 -.3355 -.1420 -.1935

-.10 -.1234 -.0835 -.0399

.00 -.0454 -.0418 -.0036

.10 -.0167 -.0167 .0000

.20 -.0061 -.0084 .0022

.30 -.0023 -.0167 .0144

.40 -.0008 -.0418 .0409

.50 -.0003 -.0835 .0832

The first column of Table 3 lists R; the second, U(R ); the third, the quadratic

approximation QE; the fourth column presents the difference between utility U and

the quadratic QE, namely dE(R )=U (R )–QE(R ). The table sheds light on why a 

qua dratic approximation does much better for Ln(1+R ) than for –exp{–10(1+R)}.
As Table 1 showed, for R between –0.30 and +0.40 the maximum difference between

Ln(1+R ) and QZ (R ), is 0.02. Table 5 shows that, with U scaled for comparability with

Table 1, the absolute value of the difference, |dE|, is 0.69 at R=–0.3 —over thirty times

as great. (The approximation Q1 fit to the three Levy-Markowitz points in Specification

11 with k = 1, did a little better, but not much better, than QE or f.01 in its correlation

with EU and its fit to U(R ).) 

The reason that a quadratic has trouble approximating the utility function in Table 3

is that this U(R ) turns too quickly in the neighborhood of R=E. Between R=–.30 and

R=.10 utility increases by 0.74 from U(–.3)=–.912 to U(.1)=–.017. But since U≤0.0
everywhere, it becomes comparatively flat as R increases further. Specifically, it rises

less than 0.2 between R=.10 and “R=∞.” Essentially U(R ) has a knee at R = E.

Levy and Markowitz observe that an investor who had –e–10(1+R)  as his or her utility

function would have some strange preferences among probability distributions of

return. Since U(R )<0 for all R, it follows that 

U(0.0)+ U(R )<–0.0227 < U(.1)    for all R.

Therefore, the investor would prefer

(A) a 10 percent return with certainty, to

(B) a 50-50 chance of zero return (no gain, no loss) versus a gain of 109 percent 

or more.
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Put another way, such an investor would prefer 10 percent with certainty to a 50-50
chance of either breaking-even or a “blank check.” Markowitz, Reid and Tew (1994)

find that real investors do not assign such a low “value of a blank check,” (VBC). In
their survey of brokerage customers, the median value of VBC was 404 percent as a

fraction of the investor’s portfolio, or 143 percent as a fraction of the investor’s total

wealth, well above the less-than-ten percent of the U(R ) in Table 3. They conclude

that few if any real investors have utility functions for which Levy-Markowitz found

that QE provides a poor approximation to expected utility.

n 7. Highly risk-averse investors and a risk-free asset

Simaan explores the efficacy of MV-approximate maximization for investors with an

exponential utility function when a risk-free asset is available versus when such a risk-

free asset is not available. He finds that, for investors with exponential utility functions

with large values of b, MV-approximate EU maximization is highly efficacious when a

risk-free asset is available, and much less so when it is not.

In deriving these results, Simaan assumes that security returns follow a factor model,

1+ri = ai+biF +ui i =1,...,n (13)

where the ui  are normally distributed, not necessarily independently, and F is a

(skewed) random variable with a Pearson Type Three distribution. Simaan also

assumes that the only constraint on portfolio choice is

∑ Xi=1 (14)

without regard to the sign of the Xi . Given these assumptions, Simaan is able to solve

for the optimum portfolio. 

Simaan illustrates his solution in terms of monthly returns for ten randomly selected

securities. The measure of efficacy used by Simaan is what he calls the “optimization

premium,” namely, the return q which would have to be added to the MV-approximate

maximum portfolio in order to make it as desirable for the investor as the explicit

optimum.

Table 4 presents the Simaan results. The first column shows the coefficient b in the

exponential utility function; the second column shows the optimization premium

when a risk-free asset is not available; the third column shows it when a risk-free asset

is available. For example, for b=10, if there is no risk-free asset, one would have to
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add 0.00323, i.e., roughly 3/10 of 1% percent of the value of the portfolio, each month

to make it just as good as the explicitly maximized portfolio; whereas if a risk-free

asset is available 0.00001, i.e., 1/1000th of one percent per month (roughly a basis

point per annum) need be added. Simaan concludes that, given his assumptions and

sample, as long as a risk-free asset is available the MV-approximation delivers

essentially the same expected utility as explicit EU maximization. In other words, if

you are going to cater to “pathologically risk-averse” investors, among others, be sure

to include a risk-free asset in your universe of securities.

l Table 4. Simaan’s optimization premiums

Exponential coefficient Without a risk-free asset With a risk-free asset

2 0.00023 0.00050

4 0.00073 0.00025

6 0.00144 0.00017

8 0.00229 0.00012

10 0.00323 0.00010

15 0.00581 0.00007

20 0.00859 0.00005

25 0.01147 0.00004

50 0.02646 0.00002

100 0.05719 0.00001

n 8. Recent research

Markowitz (2012a) reports on the ability of six different functions of mean and

variance to approximate the geometric mean or, equivalently ELn(1+R) as in Equation

2 for two different databases. The first database was that of the frequently used asset

classes listed in Table 5a with data from Morningstar’s EnCorr back to 1926 where

available. The second database was the Dimson, Marsh and Staunton (2002)

database of real returns of the equity markets of the 16 countries listed in Table 5b

for the 101 years, 1900-2000. Of the mean-variance approximations considered, fZ

in Equation 7 was eliminated early as the worst of the lot. This is perhaps not

surprising since both databases include series with returns that fell well outside the

interval (30 or 40 percent loss to 40 or 50 percent gain) for which fZ was expected to

do well. The three approximations that did best were fE of Equation 8; an

approximation, fLN , that is exactly right if portfolio returns are log normal, and another

fHL, due to Henry Latané, which is exactly right if the return distribution has only two

outcomes Ep –sp  and Ep +sp . fHL did best for the asset class database, but the other
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two did fairly well also. For the DMS database fLN did best but, again, the other two

did fairly well. Markowitz (2012a) shows that necessarily

fLN ≥  fE ≥ fHL

As to how well is “fairly well,” below I report such numbers from recent research compa -

ring the efficacy of  fE in approximating ELn(1+R) versus that for other risk-measures. 

l Table 5a. Frequently used asset classes used in Markowitz (2012b and 2013)

Large Cap Stocks U.S. Treasury bills

Small Cap Stocks Inflation

Long-term corporate bonds EAFE (Developed non-U.S. markets)

Long-term government bonds Energy Markets

Intermediate-term government bonds 

l Table 5b. Sixteen countries whose real equity returns, 1900-2000, 
are used in Markowitz (2012b and 2013)

Australia Japan

Belgium Netherlands

Canada South Africa

Denmark Spain

France Sweden

Germany Switzerland

Ireland U.K.

Italy U.S

n 9. Related research

I have summarized only a small portion of the literature on mean-variance

approximations to expected utility. A more complete survey is presented in Markowitz

(2012b). Perhaps the most interesting article omitted here but reviewed there is that

of Hlawitschka (1994). It is often said that mean-variance analysis is inapplicable if

a portfolio includes derivative securities, since these have quite non-Gaussian return

distributions and are not linearly related to underlying risk-factors. Hlawitschka

demonstrates that this view is wrong. While an MV approximation to EU for a single

put or call would do quite poorly, Hlawitschka found that MV approximations to EU

did quite well for portfolios of ten calls each. For randomly drawn stocks Hlawitschka
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assumed the calls to be 5 percent out-of-the-money and were priced according to

Black-Scholes. He also assumed that all portfolios had 10 percent invested in T-Bills,

to eliminate the possibility of a 100 percent loss. For such portfolios Hlawitschka

concluded that “empirically, two-moment approximations to the utility functions

studied here perform well for the task of portfolio selection.” 

Other measures of risk
The results of Markowitz (2012a) raise the question: Could an approximation based

on a different risk-measure have done better? This is the topic of Markowitz (2013)

which considers the following risk-measures

Variance (V)
Mean Absolute Deviation (MAD)
Semivariance (SV)
Value at Risk (VaR)
Conditional Value at Risk (CVaR)

These are defined as follows:

MAD = E|R–E(R)|
SV = E(Min(0,R–E(R ))2

VaR is the largest number such that 

Prob(R≤–VaR)=p
CVaR=E(R |R ≤–VaR)

Markowitz (2013) used p = 0.05.

Konno and Yamazaki (1991) is the principal proponent of MAD for portfolio

selection; Sortino & Satchell (2001) argue for semivariance, a.k.a. downside risk; see

Jorion (2006) regarding VaR; and Kaplan (2012) who recommends CVaR.

Rearranging the terms in Equation 8, we see that

Ln(1+E ) –L(1+gQE)= V / (1+E )2 (15)

where gQE is the fE –based estimate of the geometric mean G. Thus the expression on

the right hand side of Equation 15 characterizes the fE method for approximating

the difference on the left. Let

DL ≡ Ln(1+E ) –Ln(1+G ) (16)
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Markowitz (2013) tests approximations to DL of the form

DL = b • f (RM ) (17)

where f (RM) represents a function of some risk-measure. The f (RM) considered by

Markowitz (2013) are listed in the first column of Table 6. RawVaR is computed as if

the returns in each data series were equally likely and were the only possible returns in

the population. Thus -RawVaR at the five percent level is the largest loss such that this

loss—plus all returns which are worse than it—constitute at least five percent of the

population. For a small data series there may be a considerable gap between -RawVaR
and the next lower return. Interpolated VaR assumes, instead, that the return distribution

has a step-function probability-density with returns uniformly distributed between 

-RawVar and the next lower return. Thus interpolated VaR is a linear interpolation

between these two values. Since each series in the DMS database has 101 observations,

the fifth from the worst return was used to define VaR. This makes VaR be at the 5/1.01
percent level, and RawVar precisely equal to VaR. For both databases CVaR was

computed as the average return given that return equaled -RawVaR or worse. It was

deemed unnecessary to compute CVaR using both RawVaR and interpolated VaR where

these differed, since there is a large overlap in the range of the two computations. 

In a series with no variability, E=G and thus DL= 0. Therefore the beta coefficients

were fit by regressions in which the intercept was forced to be zero. This was done

separately for each of the two databases. 

Table 6 shows the root-mean-squared (RMSQ) error made by each tested f (RM) for

each of the two databases. The first column of the table lists the f (RM) considered;

the second column lists the RMSQs in the asset class database; and the third shows

the same for the DMS database. RMSQ is expressed as a percent. For example, using

a confidence interval equal to the estimate plus or minus two RMSQ, in the asset class

database if adjusted variance estimated a geometric mean of 10.0%, this estimate

would be subject to an error of probably no more than plus or minus 2•(0.05)=0.1
percent, i.e., 10 bps (where a basis point, bp, is 1/100th of 1%). MAD, on the other

hand, has an RMSQ of 0.51, therefore is subject to an estimated error of probably no

more than plus or minus 102 bps, slightly over one percentage point. Adjusted 

MAD-squared does much better, with an RMSQ 0.20, therefore a confidence interval

of ± 40 bps, about twice that of variance and four times that of adjusted variance.

Viewing the entire second column of Table 6, we see that the best fit in the asset class

database is provided by adjusted variance with an RMSQ of 0.05, followed by

(unadjusted) variance, semivariance, adjusted semivariance and CVaR2 with RMSQs
of 0.10, 0.11, 0.12 and 0.15 respectively.
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All f (RM ) did worse in the DMS database than they did in the asset class database.

Specifically, in this database unadjusted variance does slightly better than adjusted

variance, with RMSQs equal to 0.17 and 0.18. The next closest risk measure is

semivariance, adjusted and not, with an RMSQ of 0.35, about twice that of variance.

MAD-squared and adjusted MAD-squared are a bit behind the semivariance measures.

The worst performers are unadjusted MAD and the various functions of VaR and

CVaR with RMSQs ranging from 0.46 to 0.70.

Thus in the DMS database with its large losses, functions of VaR and CVaR—which

are promoted as the measures-to-use in case of large deviations—have substantially

larger errors of approximation than do functions of variance.

l Table 6. Root mean-squared errors (percent)

Frequently used Real returns for
f (RM ) asset classes 16 countries 1900-2000

Variance 0.10 0.17

Variance/(1+E )2 0.05 0.18

MAD 0.51 0.70

MAD2 0.29 0.40

MAD2/(1+E )2 0.20 0.42

Semivariance 0.11 0.35

Semivariance/(1+2)2 0.12 0.35

RawVaR 0.65 0.68

((RawVaR+E )/K )2 0.38 0.61

((RV+K )/K )2/(1+E )2 0.46 0.60

InterpVaR 0.32 —

((IntVaR+E )/K )2 0.38 —

((IV+E )/K )2/(1+E )2 0.30 —

CVaR 0.48 0.55

CVaR2 0.15 0.49

CVaR2/(1+E)2 0.17 0.46

n 10. Postscript

It is now over a half-century since Markowitz (1959) justified mean-variance by its

ability to approximate expected utility. In light of repeated confirmation of this ability,

the persistence of the Great Confusion is as if cartographers of 1550 still thought the

world was flat. 
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n Endnote

Markowitz (2012a,b and 2013) are chapters from a book which the author is writing

under the sponsorship of 1stGlobal of Dallas, TX. The author is delighted to thank 1st

Global in general and, more specifically, its CEO Stephen A (Tony) Batman, its President

David Knoch, and Kenneth Blay, my principal day-to-day contact at 1stGlobal.
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