Former agriculture impacts on properties of Norway spruce forest floor and soil

D. Kacalek*, D. Dusek, J. Novak, M. Slodicak, J. Bartos, V. Cernohous and V. Balcar

Forestry and Game Management Research Institute. Opočno Research Station. Na Olivě 550. 517 73 Opočno. Czech Republic

Abstract

Forest floor is considered a major feature distinguishing forest from agricultural soils. Forest floor develops as forest stands grow and is composed of more or less altered plant-tissue biomass accumulated on the soil surface. Our study's aim was to find whether properties of both the organic layers and mineral soil differ according to the land-use history of the sites compared. Each site included an afforested area of immature 50-year-old spruce forest (AFF) on formerly agricultural land plus an adjacent area of old-growth 100-year-old spruce stand (FOR). The localities are situated at altitudes ranging between 600 and 850 metres above sea level. From the results of our study it can be concluded that both forest floor and mineral soil had higher pH and Ca concentration at formerly agricultural sites. C/N ratio is significantly lower in afforested soil. First-generation humus was significantly higher in phosphorus.

Key words: afforestation; land use; legacy of agriculture; Picea abies (L.) Karst.

Resumen

Impactos en las propiedades del suelo de los bosques de pinabete en terrenos agrícolas abandonados

El piso forestal es considerado una de las principales características distintivas de los suelos forestales frente a los agrícolas. El piso forestal se desarrolla según crecen las masas forestales y se compone de tejidos de vegetales de la biomasa más o menos alterados acumulados en la superficie del suelo. El objetivo de nuestro estudio fue determinar si las propiedades de las capas orgánicas y minerales del suelo difieren de acuerdo a la historia del uso del suelo de los sitios. Cada sitio incluye un área reforestada de bosque de pinabete inmaduro de 50 años de edad (AFF) en antiguo terreno agrícola, más un área adyacente madura de pinabete de 100 años de edad. Las localidades se encuentran en altitudes que oscilan entre 600 y 850 metros sobre el nivel del mar. De los resultados de nuestro estudio se puede concluir que tanto el suelo del bosque como el suelo mineral tenían un pH más alto y mayor concentración de Ca en los sitios agrícolas abandonados. La relación C/N es significativamente menor en los suelos reforestados. La prime-ra generación de humus presentó un significativamente mayor contenido en fósforo.

Palabras clave: reforestación; uso del suelo; Picea abies.

Introduction

A surface organic layer forms as forest stand grows and creates canopy. This layer is an important source of organic matter to the soil. Over time, organic matter consisting of plant tissues (litterfall) accumulates on the soil surface. This material is collectively referred to as forest floor (Briggs, 2004). As this forest floor decomposes, it creates organic horizons such as litter, fermented material and humus typical of forest soil. A presence of these surface organic layers is a principal visible feature distinguishing forest from agricultural

* Corresponding author: kacalek@vulhmop.cz Received: 24-11-10. Accepted: 29-07-11. soils (Briggs, 2004). Agricultural cultivation has such an important impact on soil properties that they no longer resemble those of a forest soil (Torreano, 2004). From a historical point of view, the beginning of deforestation for agricultural purposes dates back to the Neolithic Age (Ložek, 1999; Olofsson and Hickler, 2008). Thousands of years of cultivation have probably been a key earth-transforming process (Wiliams, 2000). However, forest land that had been converted into fields, meadows and pastures can once again become forest land due to both succession and artificial afforestation. This is a common practice for managing abandoned or less-productive agricultural land. In such cases, some environmental features of the new forests still reflect the former agriculture. For instance, tillage and fertilization lead to formation of an arable horizon and changes in the distribution of soil organic matter (Domżał et al., 1993). Such ameliorative measures have long-term impacts on the properties of soils being altered to grow crops (Bedrna, 2002). The altered soil properties can be found decades and even centuries after afforestation (Szujecki, 1996; Ritter et al., 2003; Morris, 2004; Wall and Hytönen, 2005; Wall and Westman, 2006; Koerner et al., 1997; Verheyen et al., 1999; Richter et al., 2000; Dupouey et al., 2002) and can be considered as a legacy of former agriculture. For example, thick A horizons that are high in soil organic matter and phosphorus and which are key factors for classifying profiles as formerly cultivated (Singer and Munns, 1996) help to prove manuring in the past (Ellert and Gregorich, 1996; Oheimb et al., 2008).

Our study focuses on properties of both forest floor and soil on sites experiencing different land use in past decades. The samples were taken beneath Norway spruce [Picea abies (L.) Karst] stands established during the 1950s, when a decreased number of inhabitants had led to a surplus of marginal agricultural land. Although the new stands greatly changed the soil environment, we had supposed that some soil properties typical of cultivated soils had long endured and were also impacting on properties of the surface organic layers. This study deals with alteration of soil properties by comparing formerly agricultural (AFF) to old-growth (FOR) forest soil and addresses the research question: Do both forest floor and soil of afforested agricultural land 50 years after afforestation differ from those of long-term forest origin?

Materials and methods

The study area (Fig. 1) represents soils derived from metamorphic rocks, *i.e.* phyllites, greenschists (metabasites), mica schists and gneisses (Opletal and Domečka, 1983), north-eastern Bohemia, Czech Republic. The localities on gneiss, phyllite and greenschist were situated at altitudes ranging between 590 and 650 metres above sea level while those on mica schist were located at altitudes ranging between 750 and 850 metres above sea level. All localities include two sites of different land-use history. We focused our analysis on neighbouring wooded sites of formerly agricultural and old-growth origins to provide reliable data from comparable site conditions. The first-rotation stands could be easily distinguished from long-term forest

Figure 1. Localization of the study area (grey), Czech Republic.

land because tip-up mounds were missing. These local terrain disturbances usually form in soil when the uprooted base of a fallen tree excavates mineral soil (Schaetzl et al., 1989). If the mounds were present in stands, we would consider such sites as long-term forest. In addition to the locally disturbed soil surface, recognition of the new stands on formerly agricultural soil was possible from such evidence as remnants of buildings and former baulks. Sampling was done three or four times within each of the two sites (afforestation and old-growth origin). In total, we sampled eight localities. Forest floor samples were taken using a square iron frame (625 cm²) to demarcate an area for collecting all enclosed forest floor material. This permitted us to calculate dry-mass weight per unit area. Both forest floor and mineral soil (0-10 cm topsoil) samples were analysed for pH measured in H₂O, plantavailable nutrient element (P, K, Ca, Mg) concentrations (mg kg⁻¹) using the Mehlich III method (Mehlich, 1984; Zbíral, 1995), humus (carbon) content (% by the Springel-Klee method), and N content (% by the Kjeldahl procedure). Mean values were calculated from particular samples taken in both variants (different land-use origin sites) at all localities in order to avoid pseudo-replications. Data were standardized (i.e. the mean of a variable was subtracted from a given value of that variable and the value thus obtained was divided by the standard deviation). For purposes of analysis, we used PCA (principal component analysis) and RDA (redundancy analysis) methods. Calculated significance level (p-value, see Fig. 3) were obtained using a Monte Carlo permutation test. Data was analysed using CANOCO 4.5 software. The data were also analysed by two-sided paired t-test (Zar, 2009) using UNISTAT software.

Results

Analysis of forest-floor humus showed a positive correlation between concentrations of base nutrients (Ca, Mg) and pH in both formerly agricultural and long-term forest sites (Fig. 2). However, humus of firstgeneration forests was found to have significantly higher pH and calcium concentration compared to humus of long-term origin. In addition to these characters, we also found the first-generation humus to be significantly higher in concentration of plant-available phosphorus (Table 1).

Concentrations of magnesium, calcium and potassium (Fig. 2) showed a strong correlation in formerly agricultural soil, whereas those nutrients in forest soil showed only weak correlation. Calcium and pH showed significantly increased values in formerly cultivated soil (Table 1). There was also a significantly lower C/N ratio compared to soil covered with long-term spruce forest. In addition to the other analyses, the RDA method confirmed the importance of pH, Ca and P as soil properties in telling us how the formerly cultivated soil differs from the long-term forest soil (Fig. 3).

Among the eight localities investigated, six of the afforested 50-year-old stands had lower amounts of forest floor dry mass compared to old-growth spruce stands (Fig. 4). One locality showed the same trend but the difference was not found to be significant. Just one locality had nearly the same values for both the afforestation and neighbouring old-growth forest.

Discussion

Preparing soil for agricultural purposes means chiefly optimizing nutrient supply and pH by means of such

Figure 2. PCA of forest-floor (LFH) and mineral topsoil (A) samples of both variants. Captions: AFF, 50-year-old afforestation; FOR, long-term 100-year-old forest; LFH [L, fibric material, relatively undecomposed, F, hemic material, moderately decomposed, H, sapric material, highly decomposed amorphous humus (*source:* Briggs, 2004)]; 1-8 denote eight sampled localities.

Layer	Variable	AFF	FOR	AFF-FOR	p-value
LFH	$P (mg kg^{-1})$	44.85	33.10	11.75	0.0035
	$Ca (mg kg^{-1})$	1,447.21	1,144.21	303.00	0.0062
	$K (mg kg^{-1})$	318.63	325.06	-6.44	0.7209
	$Mg (mg kg^{-1})$	135.10	140.96	-5.85	0.4345
	pН	3.78	3.60	0.18	0.0129
	C/N	21.01	19.09	1.92	0.3471
A	$P (mg kg^{-1})$	16.50	5.02	11.48	0.1604
	Ca (mg kg ⁻¹)	253.85	212.80	41.05	0.0475
	$K (mg kg^{-1})$	63.02	63.04	-0.02	0.9967
	$Mg (mg kg^{-1})$	33.92	35.80	-1.89	0.2912
	pН	4.00	3.78	0.22	0.0023
	Ĉ/N	14.21	18.58	-4.38	0.0165

 Table 1. P-values for two-sided paired t-test, without correction for multiple testing; eight replications were considered

Captions: LFH, forest floor; L, fibric material, relatively undecomposed; F, hemic material, moderately decomposed; H, sapric material, highly decomposed amorphous humus (source: Briggs 2004); A, mineral topsoil (0-10 cm); AFF, afforested agricultural land; FOR, long-term forest.

ameliorative measures as adding both natural and manmade amendments. For instance, optimizing phosphorus content is considered a principal worldwide cultivation practice since almost all soils have naturally low contents of plant-available phosphorus. Therefore, increased content of this nutrient in soil can be attributed to deliberate ameliorative efforts in the past (Bedrna, 2002). Formerly agricultural soils (Koerner *et al.*, 1997; Falkengren-Grerup *et al.*, 2006; Armolaitis *et al.*, 2007; Oheimb *et al.*, 2008; Valtinat *et al.*, 2008) and contemporarily cultivated soils (Ellert and Gregorich, 1996; Smal and Olszewska, 2008, Podrázský *et al.*, 2009) have been shown to be better supplied with phosphorus relative to uncultivated soils. In measuring phosphorus concentrations in forest floor at our study sites, we found increased values also for formerly cultivated sites. The trend of increased phosphorus was found also in topsoil, though the difference was not significant. In our study, both forest floor and topsoil of afforestation origin were also higher in calcium compared to those of old-growth forest and showed a trend similar to that reported by Wall and Hytönen (2005), who had investigated Norway spruce afforestations in Finland. One of the most important characteristics indicating restoration of a forest-soil environment is pH, which is to say that pH decreases following afforestation (Grieve, 2001; Thuille and Schulze, 2006). Norway spruce is considered to be the most important species contributing to increased soil acidification (Binkley and Valentine, 1991; Brandtberg *et*

Figure 3. RDA of forest floor (LFH) and mineral topsoil (A 0-10 cm) samples. Captions: FOR, long-term forest (100 years old); AFF, afforested agricultural soil (50 years old); L, fibric material, relatively undecomposed; F, hemic material, moderately decomposed; H, sapric material, highly decomposed amorphous humus (*source:* Briggs, 2004).

Figure 4. Mean quantity of forest floor dry mass (L, F and H horizons altogether) of spruce origin. Captions: AFF, afforested agricultural land; FOR, long-term forest; L, fibric material, relatively undecomposed; F, hemic material, moderately decomposed; H, sapric material, highly decomposed amorphous humus (*source*: Briggs, 2004); error bars denote standard deviation. 1-8 denote eight sampled localities.

al., 2000; Podrázský and Štěpáník, 2002; Augusto et al., 2002, 2003; Hagen-Thorn et al., 2004). For our study sites, a certain trend of higher pH in both forest floor and topsoil on former agricultural land was found compared to neighbouring old forests. Stand age may also be a factor here. Alriksson and Olsson (1995), Ritter et al. (2003), Wall and Hytönen (2005), Cerli et al. (2006), and Smal and Olszewska (2008) all had confirmed an important role of age in relation to increasing acidification, as they had found lower pH in forest floor and soil of older stands origin compared with younger afforestation. Keersmaeker et al. (2004) had found no correlation between age and pH, however, even though pH's variability was greater in soil of longterm forest origin. The higher pH in our study seems attributable to former liming, as reported by Ritter et al. (2003).

The C/N ratio appears to be a very good indicator as to degree of humus decomposition and soil organic matter quality (Batjes 1996). The raw forest floor humus of young, initial-stage accumulation has high C/N values since the organic layer covering the soil is composed mainly of assimilatory tissues, flowers, twigs and bark (Briggs, 2004; Thuille and Schulze, 2006) high in carbon. As this almost intact plant matter decomposes, the C/N value decreases and conditions as to nitrogen supply improve (Singer and Munns, 1996). As carbon is turned into carbon dioxide during decomposition, the CO₂ is released and the remaining nitrogen decreases the C/N ratio of organic matter forming humus (Šimek, 2003). We therefore can estimate the rate of forest floor humification using the C/N ratio. Comparing topsoil C/N ratios for continuous and afforested sites, many authors (Ellert and Gregorich, 1996; Koerner *et al.*, 1997; Compton *et al.*, 1998; Jussy *et al.*, 2002; Ritter *et al.*, 2003; Prévosto *et al.*, 2004; Oheimb *et al.*, 2008; Smal and Olszewska, 2008; Valtinat *et al.*, 2008) have found significantly lower values in formerly agricultural soil in comparison with forest soil. In agreement with information from the literature, we found significantly lower C/N ratios in 0-10 cm of topsoil of formerly agricultural soil compared to adjacent long-term forest soil.

A carpet of organic matter layers forming forest floor is likely to be the principal visible feature of forest soils (Torreano, 2004). The forest floor covering soil develops as litterfall occurs in young forest stands. Such initially accumulated organic material cannot yet be considered a completely formed forest floor, because this layer consists mainly of non-altered dead plant material. The organic layer occurs in Norway spruce stands roughly ten years after afforestation. Ouimet et al. (2007) reported the beginning of forest floor accumulation at a similar age. A certain trend of quanttative increase in the amount of surface humus (carbon) has been found in relation to increased age (Keersmaeker et al., 2004; Cerli et al., 2006, 2008; Niu and Duiker, 2006; Ouimet et al., 2007) for forest stand or in comparing both younger forest stands situated on formerly agricultural soil with old-growth forest on at least semi-natural sites (in terms of weight of dry mass: Podrázský and Remeš, 2007, Podrázský and Procházka,

2009; as to thickness of forest floor, storage of carbon and nitrogen: Alriksson and Olsson, 1995; Thuille and Schulze, 2006; Oheimb *et al.*, 2008; Ritter *et al.*, 2003). Except for two comparative sites, we also found significant differences between 50-year-old afforestation and adjacent long-term forest in terms of their having different amounts of forest floor.

Conclusions

The study reported in this paper has shown that it was still possible to recognize a legacy of former deliberate cultivation in soils covered with first-generation Norway spruce stands. It can be concluded that formerly agricultural soil can be distinguished from soil covered with long-term stands in terms of higher nutrient concentrations (of calcium and phosphorus), pH and lower C/N ratio. These higher values are likely to reflect artificial fertilization in the past. The formerly cultivated mineral soil was higher in calcium (254 mg kg⁻¹) compared to forest soil (213 mg kg⁻¹). Soil pH was also higher (4.00) in afforested soil compared to long-term forest soil (3.78). Forest floor under firstgeneration forest was also higher in both calcium and pH. In addition to calcium and pH, the new forest floor was higher in phosphorus (45 mg kg⁻¹) compared to non-cultivated forest soil (33 mg kg⁻¹).

Acknowledgements

The study was undertaken with financial support from the Ministry of Agriculture of the Czech Republic within projects QH91072 and MZe 0002070203. We also thank Mr. Gale Allen Kirking for editing the language.

References

- ALRIKSSON A., OLSSON M.T., 1995. Soil changes in different age classes of Norway spruce [*Picea abies* (L.) Karst.] on afforested farmland. Plant and Soil 168/169, 103-110.
- ARMOLAITIS K., ALEINIKOVIENĖ J., BANIŪNIENĖ A., LUBYTĖ J., ŽĖKAITĖ V., 2007. Carbon sequestration and nitrogen status in Arenosols following afforestation or following abandonment of arable land. Baltic Forestry 13, 169-178.
- AUGUSTO L., RANGER J., BINKLEY D., ROTHE A., 2002. Impact of several common tree species of European

temperate forests on soil fertility. Annales of Forest Science 59, 233-253.

- AUGUSTO L., DUPOUEY J.L., RANGER J., 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annales of Forest Science 60, 823-831.
- BATJES N.H., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47, 151-163.
- BEDRNA Z., 2002. Environmentálne pôdoznalectvo, 1st ed. Veda, Bratislava. 352 pp. [In Slovakian].
- BINKLEY D., VALENTINE D., 1991. Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecology and Management 40, 13-25.
- BRANDTBERG P.O., LUNDKVIST H., BENGTSSON J., 2000. Changes in forest-floor chemistry caused by a birch admixture in Norway spruce stands. Forest Ecology and Management 130, 253-264.
- BRIGGS R.D., 2004. The Forest Floor. In: Encyclopedia of Forest Sciences, Vol. 3 (Burley J. *et al.*, eds). Elsevier, Oxford. pp. 1223-1227.
- CERLI C.H., CELI L., JOHANSSON M.B., KÖGEL-KNABNER I., ROSENQVIST L., ZANINI E., 2006. Soil organic matter changes in a spruce chronosequence on Swedish former agricultural soil. I. Carbon and lignin dynamics. Soil Science 171, 837-849.
- CERLI C.H., CELI L., KAISER K., GUGGENBERGER G., JOHANSSON M.B., CIGNETTI A., ZANINI E., 2008. Changes in humic substances along an age sequence of Norway spruce stands planted on former agricultural land. Organic Geochemistry 39, 1269-1280.
- COMPTON J.E., BOONE R.D., MOTZKIN G., FOSTER D.R., 1998. Soil carbon and nitrogen in pine-oak sand plain in central Massachusetts: role of vegetation and land-use history. Oecologia 116, 536-542.
- DOMŻAŁ H., HODARA J., SŁOWIŃSKA-JURKIEWICZ A., TURSKI R., 1993. The effects of agricultural use on the structure and physical properties of three soil types. Soil & Tillage Research 27, 365-382.
- DUPOUEY J.L., DAMBRINE E., LAFFITE J.D., MOARES C., 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83, 2978-2984.
- ELLERT B.H., GREGORICH E.G., 1996. Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forested soils of Ontario. Soil Science 161, 587-602.
- FALKENGREN-GRERUP U., BRINK D.J. TEN, BRUNET J., 2006. Land use effects on soil N, P, C and pH persists over 40-80 years of forest growth on agricultural soils. Forest Ecology and Management 225, 74-81.
- GRIEVE I.C., 2001. Human impacts on soil properties and their implications for the sensitivity of soil systems in Scotland. Catena 42, 361-374.
- HAGEN-THORN A., CALLESEN I., ARMOLAITIS K., NIHLGÅRD B., 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management 195, 373-384.

- JUSSY J.H., KOERNER W., DAMBRINE É., DUPOUEY J.L., BENOÎT M., 2002. Influence of former agricultural land use on net nitrate production of forest soils. European Journal of Forest Science 53, 367-374.
- KEERSMAEKER L. DE, MARTENS L., VERHEYEN K., HERMY M., SCHRIJVER A. DE, LUST N., 2004. Impact of soil fertility and insolation on diversity of herbaceous woodland species colonizing afforestations in Muizen forest (Belgium). Forest Ecology and Management 188, 291-304.
- KOERNER W., DUPOUEY J.L., DAMBRINE E., BENOÎT M., 1997. Influence of past land use on the vegetation and soils of present day forest in the Vosges Mountains, France. Journal of Ecology 85, 351-358.
- LOŽEK V., 1999. Zemědělská kolonizace a její dopad. Ochrana přírody 54, 227-233. [In Czech, with English Summary].
- MEHLICH A., 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15, 1409-1416.
- MORRIS L.A., 2004. Soil organic matter forms and functions. In: Encyclopedia of Forest Sciences (Burley J. *et al.*, eds). Elsevier, Oxford. pp. 1201-1207.
- NIU X., DUIKER S.W., 2006. Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern US Forest Ecology and Management 223, 415-427.
- OHEIMB G. VON, HÄRDTLE W., NAUMANN P., WESTPHAL C.H., ASSMANN T., MEYER H., 2008. Long-term effects of historical heathland farming on soil properties of forest ecosystems. Forest Ecology and Management 255, 1984-1993.
- OLOFSSON J., HICKLER T., 2008. Effect of human landuse on the global carbon cycle during the last 6,000 years. Vegetation History and Archaeobotany 17, 605-615.
- OPLETAL M., DOMEČKA K. (eds), 1983. Synoptic geological map of the Orlické hory Mts. Geological Survey, Prague.
- OUIMET R., TREMBLAY S., PÉRIÉ C., PRÉGENT G., 2007. Ecosystem carbon accumulation following fallow farmland afforestation with red pine in southern Quebec. Canadian Journal of Forest Research 37, 1118-1133.
- PODRÁZSKÝ V., ŠTĚPÁNÍK R., 2002. Vývoj půd na zalesněných zemědělských plochách – oblast LS Český Rudolec. Zprávy lesnického výzkumu 47, 53-56. [In Czech, with English Abstract].
- PODRÁZSKÝ V., REMEŠ J., 2007. Humus form status in close-to-nature forest parts in comparison with afforested agricultural lands. Lesnícky časopis – Forestry Journal 53, 99-106.
- PODRÁZSKÝ V., PROCHÁZKA J., 2009. Effects of the reforestation of agricultural lands on the humus form development in the middle altitudes. Scientia Agriculturae Bohemica 40, 41-46.
- PODRÁZSKÝ V., REMEŠ J., HART V., MOSER W.K., 2009. Production and humus form development in forest stands established on agricultural lands – Kostelec nad Černými lesy region. Journal of Forest Science 55, 299-305.

- PRÉVOSTO B., DAMBRINE E., MOARES C., CURT T., 2004. Effects of volcanic ash chemistry and former agricultural use on the soils and vegetation of naturally regenerated woodlands in the Massif Central, France. Catena 56, 239-261.
- RICHTER D.D., MARKEWITZ D., HEINE P.R., JIN V., RAIKES J., TIAN K., WELLS C.G., 2000. Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. Forest Ecology and Management 138, 233-248.
- RITTER E., VESTERDAL L., GUNDERSEN P., 2003. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant and Soil 249, 319-330.
- SCHAETZL R.J., JOHNSON D.L., BURNS S.F., SMALL T.W., 1989. Tree uprooting: review of terminology, process, and environmental implications. Canadian Journal of Forestry Research 19, 1-11.
- SINGER J.S., MUNNS D.N., 1996. Soils: an introduction. Prentice Hall, New Jersey. 480 pp.
- SMAL H., OLSZEWSKA M., 2008. The effect of afforestation with Scots pine (*Pinus sylvestris* L.) of sandy postarable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant and Soil 305, 171-187.
- SZUJECKI A., 1996. Ekologiczne aspekty odtwarzania lasu na glebach porolnych. Prace IBL ser B, No. 27, 47-55. [In Polish].
- ŠIMEK M., 2003. Základy nauky o půdě, 1. Neživé složky půdy. Jihočeská univerzita, České Budějovice. 131 pp. [In Czech].
- THUILLE A., SCHULZE E.D., 2006. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology 12: 325-342.
- TORREANO S., 2004. Soil development and properties. In: Encyclopedia of Forest Sciences (Burley J *et al.*, eds). Elsevier, Oxford. pp. 1208-1216.
- VALTINAT K., BRUUN H.H., BRUNET J., 2008. Restoration of oak forest: effects of former arable land use on soil chemistry and herb layer vegetation. Scandinavian Journal of Forest Research 23, 513-521.
- VERHEYEN K., BOSSUYT B., HERMY M., TACK G., 1999. The land use history (1278-1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. Journal of Biogeography 26, 1115-1128.
- WALL A., HYTÖNEN J., 2005. Soil fertility of afforested arable land compared to continuously forested sites. Plant and Soil 275, 247-260.
- WALL A., WESTMAN C.J., 2006. Site classification of afforested arable land based on soil properties for forest production. Canadian Journal of Forest Research 36, 1451-1460.
- WILIAMS M., 2000. Dark ages and dark areas: global deforestation in the deep past. Journal of Historical Geography 26, 28-46.
- ZAR J.H., 2009. Biostatistical analysis. Pearson Prentice Hall, New Jersey. 943 pp.
- ZBÍRAL J., 1995. Analýza půd I (Jednotné pracovní postupy). Státní kontrolní a zkušební ústav zemědělský, Brno. 177 pp. [In Czech].