Winding motion in a spiral-like trajectory

Akio Saitoh
Department of Civil Engineering, Kinki University, 8-23-1, Shinke-cho, Yao-shi, Osaka 581-0811, Japan.
E-mail: phsaitoh@m5.kcn.ne.jp

(Received 11 October 2011; accepted 25 March 011)

Abstract

In this article I shall describe an easily constructed apparatus for an experiment on winding motion in a spiral-like trajectory in three dimensions. The experimental results show how the total time of the process depends on the initial speed, and the total time has its maximum value of 16.3 s for a speed of $2.67 \mathrm{~m} / \mathrm{s}$. The experimental results were in good agreement with the theoretical predictions. The analytical solution of the problem is original.

Keywords: Winding motion, conservation of energy, angular velocity.

Resumen

En este artículo se describe un aparato de fácil construcción para un experimento sobre el movimiento de aire en una espiral en tres dimensiones. Los resultados experimentales muestran cómo el tiempo total del proceso depende de la velocidad inicial y el tiempo total que tiene su valor máximo de $16,3 \mathrm{~s}$ para una velocidad de $2,67 \mathrm{~m} / \mathrm{s}$. Los resultados experimentales se encuentran en buena concordancia con las predicciones teóricas. La solución analítica del problema es original.

Palabras clave: Liquidación de movimiento, conservación de la energía, velocidad angular.
PACS: 45.20.dc, 45.20.dh,

I. INTRODUCTION

Many texts [1, 2, 3] contain conical pendulum whose ball travels in a horizontal circle. The ball is suspended by a string. If a pole suddenly stands upright into the circle, the string winds around the pole until the ball ultimately hits the pole. Let us consider the total time of the process for a initial speed of the ball theoretically. We can guess the total time will be short when the initial speed is very low or very high. Then, let us calculate the initial speed when the total time has its maximum value, and compare it the experimental result. This problem has not been published yet.

II. EXPERIMENTAL PROCEDURE AND RESULTS

Let us assume that the angular velocity of the pole is the same as that of the ball, which is allowed to swing in a horizontal circle and so has a circular path of radius r_{0} with a constant speed v_{0}. If we look at the apparatus from above, we can measure r_{0} using a scale (a ruler or similar on the bench below). Then, using the value of r_{0}, the value of v_{0} is given by the formula:

$$
\begin{equation*}
v_{0}=\sqrt{r_{0} \mathrm{~g}\left(r_{0}-a\right)} /\left\{l_{0}^{2}-\left(r_{0}-a\right)^{2}\right\}^{1 / 4} . \tag{1}
\end{equation*}
$$

Here $l_{0}=1.0 \mathrm{~m}, a=8.0 \times 10^{-3} \mathrm{~m}$ and g is the acceleration due to gravity, $9.8 \mathrm{~m} / \mathrm{s}^{2}$. The mass of the ball is 6.4×10^{-2} kg and its diameter is $2.4 \times 10^{-2} \mathrm{~m}$. The length of the pole is about 1.3 m .

In this apparatus only the top of the pole can rotate. A hand - drill can be used to rotate the top using a long metal rod (to which the top is firmly attached) which passes through a tube: the lower end of the rod is held in the chuck of the hand - drill. The tube and the drill are clamped to the edge of the bench to keep the rod upright and to ensure it is able to rotate smoothly. The handle of the drill is turned by hand at a steady rate so that the top of the pole rotates with a constant speed.

If the top stops abruptly, the ball moves almost along a quadrant with the same constant speed of v_{0}, since a is very small compared with $l_{0}\left(a \ll l_{0}\right)$. The ball takes time t_{1} to move along the quadrant, and t_{1} is a quarter of period of conical pendulum. Then, t_{1} is given by the following formula:

$$
\begin{equation*}
t_{1}=\pi\left\{l_{0}^{2}-\left(r_{0}-a\right)^{2}\right\}^{1 / 4} / 2 \sqrt{\mathrm{~g}} . \tag{2}
\end{equation*}
$$

After this quarter revolution, the ball travels (during time t_{2}) in a spiral -like trajectory as the string winds around the pole until the ball ultimately hits the pole. The total time, t_{0} $=t_{1}+t_{2}$, is measured by a stopwatch, which can be read accurately to within 0.1 s .

The purpose of this experiment is to show how t_{0} depends on the initial speed v_{0}. The experiment was
carried out many times at different initial velocities less than $3.8 \mathrm{~m} / \mathrm{s}$ (which correspond to the maximum speed required to keep this particular pole from swinging due to tension).

In Fig. 2, the circles indicate experimental points. Fig. 3 is a stroboscopic photograph for an initial velocity of $1.4 \mathrm{~m} / \mathrm{s}$.

FIGURE 1. The apparatus for measuring the time t_{0}. Only the top of the pole can rotate.

FIGURE 2. t_{0} as a function of v_{0}. The solid line is calculated, and circles (O) are experimental points.

FIGURE 3. Stroboscopic picture of winding motion.

III. THEORY

Let us consider the time t_{2} for a given velocity of the ball v_{0} theoretically, assuming bulk of the ball, mass of the string and air resistance are negligible. As shown in Fig.4, the string is fastened at a point A .

At time t_{1}, right after the quarter revolution, the string is tangent to the side of the pole, and it makes an angle φ_{0} below horizontal line. At an arbitrary time $t_{1}+t$, the position of the ball is B^{\prime}, and the string makes an angle φ with respect to the horizontal. If the point of contact between the string and the pole moves from B to C in a very small interval of time $d t$, the ball moves from B^{\prime} to C ' in the same time and its incremental change of height is $d h$; at the same time the angle φ is changed by $d \varphi$. We can then write

$$
\begin{equation*}
d h=-l \cos \varphi \cdot d \varphi \quad(d \varphi<0) . \tag{3}
\end{equation*}
$$

The pull of the string, T, does not work, since the displacement is perpendicular to T at all times. Hence, using the principle of conservation of energy, $m g h+\frac{1}{2} m v^{2}=$ constant, we obtain

$$
\begin{equation*}
m \mathrm{~g} \cdot d h+m v \cdot d v=0 \tag{4}
\end{equation*}
$$

The instantaneous speed v of the ball is defined as

$$
\begin{equation*}
v=\frac{d s}{d t} \tag{5}
\end{equation*}
$$

where $d s$ is the increment of displacement which the ball has during the short time interval $d t$. This speed can be separated into horizontal and vertical elements represented by $l \cos \varphi \cdot d \theta$ and $-l \cos \varphi \cdot d \varphi$, respectively (see Fig.
5); where θ is the angle $A^{\prime \prime} \mathrm{OB}^{\prime \prime}$ subtended by arc $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime}$ (as shown in the plane figure of Fig. 4), and $d \theta$ is the angular displacement in the time interval $d t$. Hence, $d s=\ell \cos \varphi \sqrt{(d \theta)^{2}+(d \varphi)^{2}}$, and Eq. (5) can be rewritten as

$$
\begin{equation*}
v=l \cos \varphi \sqrt{\left(\frac{d \theta}{d t}\right)^{2}+\left(\frac{d \varphi}{d t}\right)^{2}} . \tag{6}
\end{equation*}
$$

From the geometry of the situation (Fig. 4), it is seen that the distance with $-d l(d l<0)$ from B to C is given by the relation

$$
\begin{equation*}
-d l=\frac{a \cdot d \theta}{\cos \varphi} \tag{7}
\end{equation*}
$$

FIGURE 4. The string is fastened at point A , and it leaves the pole at point B and C at time $t_{1}+t$ and $t_{1}+t+d t$, respectively.

From Eqs. (6) and (7)

$$
\begin{aligned}
\frac{v}{\cos \varphi} & =\frac{-l \cos \varphi \sqrt{\left(\frac{d \theta}{d t}\right)^{2}+\left(\frac{d \varphi}{d t}\right)^{2}}}{a \frac{d \theta}{d l}} \\
& =-\frac{l \cos \varphi}{a} \cdot \frac{d l}{d t} \sqrt{1+\left(\frac{d \varphi}{d \theta}\right)^{2}}
\end{aligned}
$$

Since a is very small as compared with l_{0}, the value of $d \varphi$ will also be very small as compared with the value of $d \theta$. Hence we can neglect the term $(d \varphi / d \theta)^{2}$. This approximation leads us to the following formula,

$$
\begin{equation*}
\frac{v}{\cos \varphi}=-\frac{l \cos \varphi}{a} \cdot \frac{d l}{d t} \tag{8}
\end{equation*}
$$

FIGURE 5. The resultant of mg and T is the centripetal force $m v^{2} / l \cos \varphi$ approximately.

On the other hand, when the ball is at the point B^{\prime}, the two forces acting through the common point B^{\prime} are the weight of the ball mg and the string tension T, as shown in Fig. 5. The resultant of $m \mathrm{~g}$ and T is the centripetal force $m v^{2} / l \cos \varphi$, approximately. Therefore,

$$
\begin{equation*}
\tan \varphi=\frac{m \mathrm{~g}}{m v^{2} / l \cos \varphi} . \tag{9}
\end{equation*}
$$

In Eq. (9), we also have neglected a very small force $m g \cdot(\mathrm{~d} \varphi / \mathrm{d} \theta)$ that tends to retard the motion. Differentiating Eq. (9), we find

$$
\begin{equation*}
\cot \varphi \cdot d \varphi+2 \tan \varphi \cdot d \varphi=\frac{1}{l} d l-2 \frac{1}{v} d v . \tag{10}
\end{equation*}
$$

We therefore get the following formula from Eqs. (3), (4), (9) and (10)

$$
\begin{equation*}
\frac{1}{l} d l=4 \tan \varphi \cdot d \varphi+\cot \varphi \cdot d \varphi \tag{11}
\end{equation*}
$$

Integration of both sides of equation (11) gives

$$
\begin{equation*}
l=\frac{l_{0} \cos ^{4} \varphi_{0}}{\sin \varphi_{0}} \cdot \frac{\sin \varphi}{\cos ^{4} \varphi} \tag{12}
\end{equation*}
$$

Eq. (12) gives a relationship between l and φ.
In the case of a true point particle, we find that the final value of φ is zero by setting $l=0$ in this formula. By differentiating Eq. (12) with respect to time $t_{1}+t$, we find that

Akio Saitoh

$$
\begin{equation*}
\frac{d l}{d t}=\frac{l_{0} \cos ^{4} \varphi_{0}}{\sin \varphi_{0}} \cdot \frac{\left(\cos ^{5} \varphi+4 \sin ^{2} \varphi \cdot \cos ^{3} \varphi\right)}{\cos ^{8} \varphi} \cdot \frac{d \varphi}{d t} \tag{3}
\end{equation*}
$$

On the other hand, from Eqs. (8), (9) and (12), we find

$$
\begin{equation*}
\frac{d l}{d t}=-\sqrt{\frac{a^{2} \mathrm{~g} \sin \varphi_{0}}{l_{0} \cos ^{4} \varphi_{0}}} \cdot \frac{\cos \varphi}{\sin \varphi} \tag{14}
\end{equation*}
$$

Combining Eqs. (13) and (14), we get

$$
\begin{equation*}
d t=-\sqrt{\frac{l_{0}^{3} \cos ^{12} \varphi_{0}}{a^{2} g \sin ^{3} \varphi_{0}}}\left(\frac{\sin \varphi}{\cos ^{4} \varphi}+4 \frac{\sin ^{3} \varphi}{\cos ^{6} \varphi}\right) d \varphi \tag{15}
\end{equation*}
$$

Integration of both sides of Eq. (15), and using the fact that at the final time $t_{0}=t_{1}+t_{2}$ and the angle $\varphi=0$, we obtain

$$
\begin{equation*}
t_{2}=\sqrt{\frac{l_{0}^{3}}{a^{2} g \sin ^{3} \varphi_{0}}}\left(\frac{1}{5} \cos ^{6} \varphi_{0}-\cos ^{3} \varphi_{0}+\frac{4}{5} \cos \varphi_{0}\right) \tag{16}
\end{equation*}
$$

Using following equation, $l_{0} \sin \varphi_{0}=\sqrt{l_{0}^{2}-\left(r_{0}-a\right)^{2}}$, we can rewrite Eq. (2) into

$$
\begin{equation*}
t_{1}=\frac{\pi}{2} \sqrt{\frac{l_{0} \sin \varphi_{0}}{\mathrm{~g}}} . \tag{17}
\end{equation*}
$$

Then, the total time t_{0} is given by

$$
\begin{align*}
& t_{0}=t_{1}+t_{2} \\
& \quad=\frac{\pi}{2} \sqrt{\frac{l_{0} \sin \varphi_{0}}{g}}+\sqrt{\frac{l_{0}^{3}}{a^{2} g \sin ^{3} \varphi_{0}}} \\
& \left(\frac{1}{5} \cos ^{6} \varphi_{0}-\cos ^{3} \varphi_{0}+\frac{4}{5} \cos \varphi_{0}\right) . \tag{18}
\end{align*}
$$

Furthermore from Eq. (9), the relationship between v_{0} and φ_{0} is given,

$$
\begin{equation*}
v_{0}=\sqrt{\frac{l_{0} g}{\tan \varphi_{0} \sec \varphi_{0}}} \tag{19}
\end{equation*}
$$

Using Eqs. (18) and (19), and the computer software "Mathematica"[4], we can calculate numerical values of the time t_{0} for different initial velocities v_{0}. The program is as follows:

$$
l_{0}=1.0 ; \mathrm{g}=9.8 ; \quad a=8.0 \times 10^{-3} ;
$$

$$
\begin{aligned}
& f\left[v_{0}-\right]:=\frac{\pi}{2}\left(-\frac{v_{0}{ }^{2}}{2 \mathrm{~g}^{2}}+\frac{1}{2 \mathrm{~g}} \sqrt{\left(\frac{v_{0}^{2}}{\mathrm{~g}}\right)^{2}+4 l_{0}}\right)^{1 / 2}+ \\
& \left(a^{2} \mathrm{~g}\left(-\frac{v_{0}^{2}}{2 \mathrm{~g}}+\frac{1}{2} \sqrt{\left(\frac{v_{0}{ }^{2}}{\mathrm{~g}}\right)^{2}+4 l_{0}}\right)^{3}\right)^{-1 / 2} * \\
& \left(\frac{1}{5}\left(1-\left(-\frac{v_{0}^{2}}{2 \mathrm{~g}}+\frac{1}{2} \sqrt{\left(\frac{v_{0}{ }^{2}}{\mathrm{~g}}\right)^{2}+4 l_{0}}\right)^{2}\right)^{3}-\right. \\
& \left(1-\left(-\frac{v_{0}{ }^{2}}{2 \mathrm{~g}}+\frac{1}{2} \sqrt{\left(\frac{v_{0}{ }^{2}}{\mathrm{~g}}\right)^{2}+4 l_{0}}\right)^{2}\right)^{3 / 2}+ \\
& \left(1-\left(-\frac{v_{0}{ }^{2}}{2 \mathrm{~g}}+\frac{1}{2} \sqrt{\left(\frac{v_{0}^{2}}{\mathrm{~g}}\right)^{2}+4 l_{0}}\right)^{2}\right)^{1 / 2} ; \\
& \frac{4}{5}(15\}, \text { AxesOrigin } \rightarrow\{0,0\}, \\
& \text { Plot }\left[f\left[v_{0}\right],\left\{v_{0}, 0,15,\right.\right. \\
& \text { PlotRange } \rightarrow\{0,18\}]
\end{aligned}
$$

Where $f\left[v_{0}\right]$ is the total time t_{0}.

IV. CONCLUSION

In Fig. 2, the solid curve is the calculated curve which is based on Eqs. (18) and (19), and it shows how the time t_{0} depends on v_{0}. We can see from this figure that t_{0} has its maximum value of 16.3 s for a speed of $2.67 \mathrm{~m} / \mathrm{s}$, and the experimental results were in good agreement with the calculated values. The analytical solution of the problem is original.

In the future, we will construct an apparatus to keep the vertical pole from swinging due to tension at high speed.

REFERENCES

[1] Gambhir, D., Introductory Physics Vol. 1 (Mc GrawHill, USA, 1976), p. 23.
[2] Shortley, G. and Williams, D., Principles of College Physics (Prentice-Hall, USA, 1959), p. 268.
[3] Sokolnikoff, I. S. and Redheffer, R. M., Mathematics of Physics and Modern Engineering, $2^{\text {nd }}$ ed. (Mc GrawHill, Japan, 1966), p. 127.
[4] Shiraishi, S., Mathematica (Morikita, Japan, 1995), p. 108 .

