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ABSTRACT 

 

Bayesian methods have become increasingly popular in social sciences due to its flexibility in accommodating 

numerous models from different fields. The domain of item response theory is a good example of fruitful research, 

incorporating in the lasts years new developments and models, which are being estimated using the Bayesian approach. This 

is partly because of the availability of free software such as WinBUGS and R, which has permitted researchers to explore 

new possibilities. 

 

In this paper we outline the Bayesian inference for some IRT models. It is briefly explained how the Bayesian 

method works. The implementation of Bayesian estimation in conventional software is discussed and sets of codes for 

running the analyses are provided. All the applications are exemplified using simulated and real data sets. 
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RESUME" 

 

Los métodos Bayesianos se han vuelto populares en las ciencias sociales debido a su flexibilidad para acomodar 

varios modelos provenientes de distintas áreas. El área de la teoría de respuesta al ítem (TRI) ejemplifica como operan los 

métodos Bayesianos. En particular, la existencia de paquetes estadísticos gratuitos como WinBUGS y R le permite al 

investigador explorar varias posibilidades.  

 

En este artículo se presentan las inferencias Bayesianas para algunos modelos de TRI y se explica concisamente 

cómo funcionan los métodos Bayesianos. Se discute la implementación de estos métodos en paquetes estadísticos 

convencionales y se presentan algunas sintaxis computacionales para hacer análisis Bayesianos. Todas las aplicaciones aquí 

expuestas se ejemplifican usando datos simulados y reales. 
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The use of psychological tests to measure the level 

that a person has of certain unobservable trait is a common 

practice in different areas of the social sciences. These traits 

or properties can be interpreted, for instance, as 

intelligence, ability for some subject in the school, and 

certain physical skill. It is possible to find examples of 

observable human behavior indicating that a person has 

more or less of such a general trait. Psychological 

measurement aims to quantify the amount or magnitude of 

individual’s characteristics by using mathematical 

(statistical) models. In this context, the family of Item 

Response Theory models (IRT; Fisher and Molenaar, 1995; 

De Boeck and Wilson, 2004) is a good example of 

statistical models that have been successfully utilized in 

various domains of social sciences. These models relate the 

probability of observing a certain result (answer to an item, 

behavior or reaction to a stimulus, number of times a 

physical activity is performed, etc) to individual parameters 

and stimulus parameters. On the basis of observations from 

a population of individuals reacting to a set of stimulus, 

these parameters are estimated and subsequent inferences 

are carried out. From a classical inferential point of view, 

the interest is put in finding the parameter values 

(estimates) that maximize the likelihood of the data that has 

been observed. The standard likelihood-based approach 

seeks for the parameters that are more likely to have 

generated the observed data, yielding maximum likelihood 

estimates of the parameters of interest.  

 

The Bayesian approach is an alternative to the 

standard statistical inference techniques. Its main feature is 

the capacity to incorporate prior knowledge in the statistical 

analysis by using prior distributions on the parameters of 

interest, in a way that will be explained later in the paper. 

Inferences are then based on samples from the posterior 

distributions, which can be used to summarize all the 

necessary information about the parameters of interest. 

Advances in computational aspects, especially in the 

implementation of numerical algorithms that permits for 

sampling from the posterior distributions, and the 

availability of software to implement them, have increased 

the popularity of Bayesian inferences in the social sciences 

community. Recently, Lee and Wagenmakers (2005) 

argued that Bayesian methods have an important role to 

play in many psychological problems where standard 

techniques are difficult or impossible to apply.  

 

The aim of this paper is to serve as a tutorial for the 

Bayesian estimation of some IRT models. Although IRT 

models were primary conceived for educational 

measurement, in which the trait to be measured is the 

ability an individual has to answer items from a test; its use 

is nowadays more widespread. In Stockman (1977), for 

example, the person’s parameters are really resolutions 

regarding decolonization, the test items are delegations at 

the General Assembly of the United Nations, and the item 

answers are votes in favor or against those resolutions.  In 

the field of emotions, the constructs measured are anger, 

irritation, or any other feeling and the stimulus are items in 

which persons are asked about what would be his/her 

reaction in different situations. In this paper, examples in 

both the fields of education and emotions will be given.  

 

The remaining of the paper is organized as follows: 

first the IRT models are introduced and the standard 

likelihood-based methods of estimation are briefly 

discussed. Next, the main ideas behind the Bayesian 

method are explained, as well as the main advantages of its 

use. Subsequently, the implementation of Bayesian 

estimation of IRT models in conventional software is 

discussed and sets of codes for running the analyses are 

provided. The paper finalizes with some conclusions and a 

discussion.  

   

IRT MODELS: MODEL SPECIFICATIO" A"D 

PARAMETER ESTIMATIO" 

 

The basic idea behind IRT models is to connect the 

probability of observing an individual’s response to a 

certain stimulus, to both stimulus characteristics and 

person’s characteristics. In the case of educational 

measurement, which will be the example used in this paper 

to introduce the models, the ability one individual has to 

answer a test item is considered the persons’ characteristics. 

The set of items in a test are considered the stimulus that 

individuals are confronted to, and the difficulty of theme 

can be considered as an item characteristic. As it was 

mentioned, feelings, behaviors or other constructs can be 

considered in psychological research, in which case the 

stimulus can be different situations or questionnaires with 

items asking for feelings one would have under different 

situations. De Boeck and Wilson (2004) use data on verbal 

aggression to illustrate several IRT models. This data set is 

publicly available at http://bear.soe.berkeley.edu/EIRM/ 

and will be used in this paper to exemplify the Bayesian 

estimation of IRT models. 

 

In order to make clear the presentation of the 

models, let us introduce some notation. Suppose that a total 

of n  individuals are confronted to a test composed of 

k items. Let 
ij
Y be the random variable denoting the answer 

of person i  to item j . When items are dichotomously 

scored (correct, incorrect) the observed data can take the 

values 1
ij
y = , for a correct answer, and 0

ij
y =  otherwise. 

For example 
41

1y =  indicates that the fourth person 

answered correctly item 1. The probability of a correct 

answer is denoted by
ij
p . As pointed out earlier, IRT 
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models link the probability of a correct answer to persons’ 

and items’ parameters, which will be denoted by 
i

θ and 

j
β , respectively, so that Pr( 1| ) ( , )

ij ij i i j
p Y fθ θ β= = = for 

some function (.). Thus, conditional on the ability, 

ij
Y follows a Bernoulli distribution with parameter

ij
p . The 

function (.) is typically chosen to be the logistic or the 

standard normal distribution function.We consider here 

logistic models, in which case ( ) exp( ) /1 exp( )f t t t= + .  

 

The Rasch model 

 

When the difficulty of the item is the assumed item’s 

characteristic, the resulting IRT model is the Rasch model 

(Rasch, 1960). The Rasch model is also called the one-

parameter logistic (1PL) model because it uses only one 

parameter per item, the difficulty. The probability of a 

correct answer is modeled as  

 

exp( )
Pr( 1| )

1 exp( )

i j

ij ij i

i j

p Y
θ β

θ
θ β
−

= = =
+ −

                    (0.1) 

 

Other models that consider more than one item 

parameter are the two-parameter logistic model (2PL), 

which incorporates an item discriminating parameter to 

differentiate better between different levels of ability, and 

the three-parameter logistic model (3PL), which, besides 

the difficulty and discriminating parameters, includes a 

guessing parameter which accounts for the possibility to 

answer the item by guessing. These models will not be 

considered in this paper, but the codes presented to run the 

analysis can be easily accommodated to fit them.  

 

The detailed explanation and uses of the above 

mentioned models are beyond the scope of this paper. For 

an introduction of IRT models oriented to the 

psychologists, the reader is refereed to Embretson and 

Reise (2000). 

 

The Linear Logistic Test Model (LLTM) 

 

Consider a Rasch model in which the difficulty 

parameters 
j

β are a linear combination of certain item 

properties. For instance, in a mathematics test, in order to 

solve an item like 2 3 5+ ×  one needs to master the 

following three sub-tasks: i) the product is performed 

before the sum, ii) knowledge of how to 

multiply3 5 15× = , iii) knowledge of how to sum  

2 15 17+ = . The difficulty of the item is then decomposed 

as a linear combination of the three item properties. This 

type of model is known as the Linear Logistic Test Model 

(LLTM; Fisher, 1973). The probability of a correct answer 

is modeled as  
*

*

exp( )
Pr( 1| )

1 exp( )

i j

ij ij i

i j

p Y
θ β

θ
θ β
−

= = =
+ −

             (0.2) 

where *

0

K

j k jk

k

Xβ β
=

=∑ . Following the previous example, 

when three item properties are considered 
*

0 1 1 2 2 3 3j j j j
X X Xβ β β β β= + + + , where 1jkX =  if sub-

task k is needed to solve item j and 0jkX =  otherwise. 

The value of 
0j

X is typically chosen to be 1, acting as an 

intercept term.  

 

Likelihood function 

 

Both the Rasch and the LLTM models link the 

probability of a correct answer,
ij
p , to persons’ and items’ 

parameters. Assuming that for each person, their answers to 

all items in the test are independent given his/her ability, 

and that the people’s responses are independent from each 

other, the likelihood function reads as   

 

1

1 1

( , | ) (1 ) .ij ij

n k
y y

ij ij

i j

L y p pθ β −

= =

= −∏∏                (0.3) 

Likelihood-based estimation methods are then used to 

maximize the likelihood function in order to obtain 

maximum likelihood estimates of the parameters of interest. 

The idea is simple: look for the values of θ and β  that are 

more likely to have generated the observed data.  

 

In the likelihood function (1.3), two kind of parameters  

are involved; the item parameters, which are assumed to be 

fixed-effects parameters, and the persons parameters. 

Depending on whether the person parameters are 

considered as fixed-effects or random-effects parameters, 

different likelihood-based estimation methods can be 

considered. Well known likelihood estimation methods in 

IRT models are Joint Maximum Likelihood (JML), 

Conditional Maximum Likelihood (CML) and Marginal 

Maximum Likelihood (MML), being the latter the most 

popular and used one. The JML method considers both the 

ability and difficulty parameters as fixed effects, so that the 

likelihood in Equation (1.3) is jointly maximized with 

respect to item and person parameters. In the CML 

approach, after conditioning on the sum raw score (i.e., the 

total number of correct responses one individual obtains), 

the person’s parameters disappear in the conditional 

likelihood, which is maximized only with respect to the 

β parameters. Once the item parameters estimates have 

been obtained, they can be used in a next step to obtain 

estimates of the ability parameters as well. Finally in the 
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MML approach, the person’s effects are considered as 

independent random variables following a probability 

density distribution, which is typically chosen to be a 

normal distribution with mean equal to zero and scale 

parameter 2σ . In this case, the person’s parameters are 

integrated out of the likelihood function, maximizing it with 

respect to item parameters and the scale parameter of the 

normal distribution. Afterwards, predictions of the abilities 

can be obtained using Empirical Bayes techniques (e.g., 

Carlin & Louis, 2000).  

 

The MML estimation approach is the most commonly 

implemented in IRT stand-alone software and it can be 

implemented (see below ) in standard statistical software 

such as SAS (SAS Institute 2000-2004), R (R Development 

Core Team, 2009), and STATA (StataCorp., 2009). The 

estimation methods described above have particular 

features, advantages and weaknesses that we do not discuss 

here. For a detailed description of these methods, the reader 

is referred to Baker and Kim (2004); Embretson and Reise 

(2000); Tuerlinckx et. al (2004); and Molenaar (1995).  

 

SOFTWARE FOR LIKELIHOOD-BASED IRT 

ESTIMATIO" 

 

There are both commercial and free software that 

have implemented the estimation methods mentioned 

above. Descriptions of softwares for IRT can be found, for 

example, in Chapter 13 of Embretson and Reise (2000); and 

Apendix B of Hambleton, Swaminathan, and Rogers 

(1991). Many of these softwares are stand alone packages, 

specifically designed for the estimation of IRT models. 

However, since various IRT models can be conceived as 

part of the family of generalized linear mixed models 

(Rijmen, Tuerlinckx, De Boeck, and Kuppens, 2003), 

conventional statistical software such as R, STATA, and 

SAS can be used to estimate them. Since these are less 

known by users we provide a brief overview of the 

commands/packages that should be used in these general 

statistical softwares. 

 

In R, the lme4 library (Bates, & Sarkar, 2007; 

Pinheiro & Bates, 2000) uses the glmer function to fit 

generalized linear mixed model which in practice means 

that one can fit the Rasch model using the MML approach. 

In addition, there are other R packages which have 

implemented the estimation of various IRT models. An 

updated list of these packages can be found at the web 

address http://cran.r-project.org/web/views/Psychometrics.html 

and in the special issue “Psychometrics in R” of the freely 

available Journal of Statistical Software 

(http://www.jstatsoft.org/v20/).  

 

In STATA, the GLLAMM package (Rabe-Hesketh, 

Skrondal & Pickles, 2004) can estimate Generalized Linear 

Latent and Mixed Model, a general family of models to 

which the Rasch model pertains (see Matschinger, 2006). 

An annotated example of using GLLAMM to fit the Rasch 

model can be found at the web site 

http://www.gllamm.org/aggression.html. In SAS, the 

NLMIXED  procedure (e.g., Sheu, Chen, Su, and Wang, 

2005) can be used to implement the MML estimation 

method. This is the approach taken in De Boeck and Wilson 

(2004), and followed in the application section of this 

paper. We compare the results obtained using the Bayesian 

approach to those obtained using MML estimation as 

estimated by the NLMIXED procedure of SAS. 

 

 

Summary of likelihood-based estimation of IRT models 

 

In any statistical model, the probability distribution that 

is assumed to have generated the data is characterized by a 

parameter. In the present case, the Bernoulli distribution is 

governed by the 
ij
p  parameter which for IRT models is a 

function of the parameters θ  andβ . Likelihood-based 
methods aim to maximize the likelihood function (i.e., look 

for the values of θ  and β that are the most likely to have 

characterized the Bernoulli distribution that has generated 

the data), given the observed data. If the θ ’s are normally 
distributed, the statistical model is obtained after integrating 

out these parameters (i.e., after have averaged with respect 

to the probability distribution of the person parameter). 

Then, the marginal likelihood function is maximized with 

respect to β and the scale parameterσ . 

 

In the next section it will be shown that the Bayesian 

approach assumes that, before observing the data, all the 

parameters involved follow probability distributions that 

are characterized by certain parameters as well. This will 

permit to incorporate a priori information coming, for 

instance, from previous studies, about the parameter of 

interest.  If such information is not available, this will no be 

an impediment to implement the Bayesian approach, as it 

will always be possible to use noninformative priors on the 

parameters (see later). 

 

THE BAYESIA" METHOD 

 

Suppose that, before observing the data, we know that 

the parameters of interest follow a probability distribution 

governed by other parameters. In Bayesian terminology this 

probability distribution is called the “prior” and the 

parameters that characterize it, the “hyperparameters”. 

Once the data have been observed, the prior knowledge 

about the parameter of interest is updated defining what is 

called the posterior distribution.  
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The Bayesian method is based on the idea that we can 

update the prior knowledge about the parameters of interest 

given the information obtained from the data at hand. 

Mathematically, the idea is operationalized using the Bayes 

Theorem or Bayes formula,  

 

Pr( | ) Pr( )
Pr( | )

Pr( )

B A A
A B

B
= . If the probability of the 

event A  isPr( )A , then the formula states that, after 

observing an eventB , the uncertainty about A  can be 

updated toPr( | )A B , based on the information that B  

provides, according to the Bayes formula.  

The formula also holds for probability density 

distributions. If ( )f α  represent the prior knowledge about a 

parameter vectorα , and the data Y has a density 

function ( | )f y α , then the formula becomes  

 

( | ) ( )
( | ) ( | ) ( ).

( )

f y f
f y f y f

f y
= ∝α α

α α α        (0.4) 

 

The symbol ∝   means “proportional to” and in 

this case indicates that the posterior distribution of the 

parameter α  is proportional to the product of the likelihood 

function and the prior. Note that the vector α  contains all 

the parameters involved in the model. For instance, under 

the normality assumption for the person’s parameters one 

has that ( , , )θ β σ=α . It should be pointed out that, as we 

are interested in making inferences aboutα , the term ( )f y  

is a constant in Equation (1.4), and then the inferences can 

be based on the product ( | ) ( )f y fα α . Note also that, for 

simplicity of exposition, we have omitted the 

hyperparameters from (1.4), but it is assumed that the 

distribution of α is also characterized by a parameter δ and 

we would write it as ( | )f δα . 

 

Bayesian inference is based on the posterior 

distribution of the parameters of interest. Instead of looking 

for point values that maximize the likelihood (as it was the 

case of likelihood-based methods), in the Bayesian 

approach the inferences are based in the whole posterior  

distribution of the parameter of interest. In this sense, after 

drawing samples from the posterior distribution, posterior 

mean, standard deviations and any other summary can 

easily be obtained and be more informative than just point 

estimates.  

 

Drawing samples from the posterior distributions is 

sometimes straightforward, especially when conjugate 

priors are used. The prior ( )f α  is said to be conjugate if 

after multiplying it with the likelihood ( | )f y α , the 

resulting posterior distribution has the same distribution as 

the prior. In most cases, there are no conjugate priors and 

one may use numerical algorithms to obtain the samples 

from the posterior distribution. In order to obtain a sample 

from the posterior distribution, different iterative methods 

belonging to the class of Markov Chain Monte Carlo 

(MCMC) techniques (e.g., Gelman, Carlin, Stern, & Rubin, 

2003) have been developed. After the prior distributions are 

specified for all the parameters in the model, these 

algorithms generate a Markov Chain which, following an 

initial burn-in period (often consisting of several thousand 

iterations), converges to the posterior distribution. Thus, on 

the condition that convergence is reached, the current state 

of the chain can be used as a sample from the posterior 

distribution. Graphical and other diagnostic tools to assess 

the convergence of the chains, such as the R̂  diagnostic 

(Gelman & Rubin, 1992) are discussed later in the paper.  

 

The technical exposition of the most commonly 

used MCMC algorithms such as the Gibbs Sampling and 

the Metropolis-Hastings (Chib and Greenberg, 1995) is out 

of the scope of this paper. For detailed explanations, the 

interested reader can consult the books of Gelman et al. 

(2003) and Robert and Casella (2004). A more applied 

book showing how to use MCMC methods to complete a 

Bayesian analysis involving models applied to typical 

social science data is Lynch (2007).  

 

Fortunately, the software that will be introduced 

and used later for the Bayesian estimation of IRT models, 

avoids the explicit programming of the above mentioned 

algorithms (i.e., Gibbs Sampling or Metropolis-Hastings). It 

automatically generates the Markov chains after providing 

the prior distributions and the likelihood function of the 

model to be estimated. 

   

Bayesian estimation of IRT models 

 

The same two IRT models introduced earlier, the 

Rasch model and the Linear Logistic Test model (LLTM), 

will be used to exemplify the Bayesian approach.  

Let us denote the prior distributions of β and 
2σ  as 

( )f β  and 2( )f σ , respectively. The distribution of θ  
follows naturally from the model assumptions and it is a 

normal distribution with mean zero and variance 

parameter
2σ , denoted as 2(0, )� σ . Following Equation 

(1.4), the full posterior distribution is  

 

1 2 2

1 1

( , , | ) (1 ) (0, ) ( ) ( ),ij ij

n k
y y

ij ij

i j

f y p p � f fθ β σ σ β σ−

= =

∝ − × × ×∏∏   (0.5) 

 

where we have assumed independence of priors. Note that 

this form of the posterior distribution holds for both the 

Rasch and the LLTM being the only difference in the form 
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of the probability 
ij
p (see Equations (1.1) and (1.2)). The 

aim is now to obtain samples from the posterior distribution 

(1.5). All type of summaries such as means, standard 

deviations, credible intervals and quantiles, among others, 

can be obtained using these samples. For example, 

estimates of the 
j

β parameter will be taken as the mean of 

its posterior distribution. Thus, after drawing sufficient 

samples from these posterior distributions, one only has to 

average these values to obtain an estimate. Note that in the 

case of the LLTM, under the same distributional 

assumptions for the person parameters, we are interested in 

estimating the item properties *

j
β and the scale parameter 

σ of the normal distribution.  

 

Summary of Bayesian inference for IRT models 

 

Bayesian inference is based on samples from the 

posterior distribution of the parameters. There are three 

inputs that play a role in forming the posterior distribution 

from which we want to draw the samples. First the 

likelihood function, which is exactly the same as in 

classical likelihood-based inference, second, the prior 

distributions for the parameters of interest, third, the 

hyperparameters governing the prior distributions. In 

contrast to the likelihood-based approach in which routines 

converge to a point estimate, using the Bayesian approach 

one has to monitor the convergence of the Markov chain to 

the target density, the posterior distribution, before using 

the samples to conduct inferences.  

 

Software for Bayesian inference 

 

WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 

2003) is a software program for Bayesian analysis of 

statistical models using MCMC techniques. After the user 

provides a likelihood and prior distribution, the program 

automatically draws a sample of all parameters from the 

posterior distribution. Once the convergence and a good 

mixing of the chains have been reached, parameter 

estimates can be obtained and inferences made. The Rasch 

model and the LLTM were fitted using WinBUGS, which 

was called from R (R Development Core Team, 2009) by 

using the R2WinBUGS package (Sturtz, Ligges, & 

Gelman, 2005). Convergence and the mixing of the chains 

were assessed using standard graphical techniques (Gilks, 

Richardson & Spiegelhalter, 1995) and the R̂ diagnostic, to 

be introduced later (Gelman & Rubin, 1992). An alternative 

to monitor the convergence of the Markov chains is to use 

the R package CODA (Plummer, Best, Cowles, & Vines, 

2006), which implements standard convergence criteria 

(e.g., Cowles & Carlin, 1996). The use of CODA is 

explained in Appendix C of Ntzoufras (2009). The main 

R/WinBUGS code that was used to fit the Rasch and the 

LLTM is available from the author upon request and 

described in the Appendix.  

A summary of other software for Bayesian analysis 

can be found in Apendix C of Carlin and Louis (2000). A 

list of R packages exclusively dedicated to Bayesian 

analysis can be found in the web page http://cran.r-

project.org/web/views/Bayesian.html 

 

APPLICATIO" 
 

The Bayesian estimation of IRT models using 

R/WinBUGS will be illustrated using simulated and a real 

data set. An R function to simulate data according to the 

Rasch model is provided in the Appendix. The verbal 

aggression data (De Boeck and Wilson, 2004) is used to 

illustrate the fit of both the Rasch model and the LLTM 

model using the Bayesian approach. Bayesian parameter 

estimates will be compared with those obtained using 

marginal maximum likelihood estimation. 

 

Recovery study using simulated data 

 

As it was seen before, under the Rasch model, the 

answers 
ij
Y conditional on the ability follow a Bernoulli 

distribution with parameter exp( ) /1 exp( )
ij i j i j
p θ β θ β= − + − . 

Thus, we need to specify values for θ andβ , and generate 
samples from a Bernoulli distribution given these values. 

This is exactly what the R function Rasch.Data() described 

in Appendix A does. The artificial data set is generated 

considering 500n = individuals responding to a test 

composed of 11k = items. The real values of the 11 β  

parameters are -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 

2.0, and 2.5. For the ability parameters, a normal 

distribution is assumed with zero mean and variance one. 

The explanation of how to run the code to obtain the 

simulated data set can be found in the appendix.  

 

Once the artificial data has been generated, we 

need to form the posterior distribution in which the 

Bayesian inference is based. In doing so, prior distributions 

need to be specified for all parameters in the model. We set 

as the prior distribution for the difficulty parameter a 

normal distribution with 0 mean and a large variance of 

1000. The huge variance means that this prior represents 

vague information (is non-informative) about the parameter 

and then the posterior distribution is almost proportional to 

the likelihood of the data. Then, when using noninformative 

priors, it should not be surprising to obtain similar results in 

comparison with the traditional likelihood based estimation 

methods. Finally, for theσ parameter, a uniform prior was 

chosen (Gelman, 2006).  

 

Three Markov chains were run starting from 

different randomly selected initial values for the parameters 
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of interest in each of the fitted models. This approach helps 

the researcher monitor convergence and to choose an 

appropriate burn-in period. Each chain was run with 1000 

iterations, and the first half of each chain was discarded as a 

burn-in stage. Thus, the results that are reported are based 

on a final sample of 1500 iterations (500 from each of the 

three chains).  

The R̂diagnostic (Gelman & Rubin, 1992) was used 

to assess convergence. Values of R̂   near 1.0 (say, below 

1.1) are considered acceptable (Gelman et al., 2003, pp. 

296-297). Also, as the inferences will be based in samples 

from the posterior distribution, one has to be sure of a good 

mixing of the chains, so graphical tools were used to check 

the mixing and autocorrelation of the chains. A good 

mixing of the chains means that the values at each iteration 

of the algorithm may be drawn from the whole support (i.e., 

all the possible values the random variable can take) of the 

distribution. In practice, the generation of the chains and the 

monitoring tools for convergence is implemented in the 

software used. The code to implement the above explained 

setting is explained in the Appendix. 

 

Results of simulation study 

 

First, we use graphical techniques to asses the 

convergence and mixing of the chains. One commonly used 

plot shows the history of sampled values at each iteration of 

the MCMC algorithm. In this plot, the x-axis refers to the 

iteration number and the y-axis refers to the sampled value. 

Using this kind of plot, lack of convergence is evidenced if 

one observes a trend in the sampled values, meaning that 

the algorithm has not reached a stationary state. Further, if 

the range of sampled values differs much through different 

intervals of iterations a bad mixing of the chains is 

occurring. For example, the first 500 iteration give sampled 

values between, say, 0.80 and 0.90 whereas iterations 501 

to 1000 cover a different range of values. Figures 1 and 2 

show the history of the chains’ iterations for the first three 

item parameters and the scale parameterσ , respectively. 

 

Figure 1. History of chain iterations for the first three item 

parameters 

 
 

Figure 2. History of iterations for the σ parameter 

 
From the figures it can be seen that the chains 

don’t follow a clear trend meaning that they would have 

converged at a stationary stage. Moreover, the range of 

sampled values throughout the iterations is homogeneous 

meaning that the chains are mixing very well.  

We also used the R̂ diagnostic to assess the 

convergence of the chains. The values of R̂  for all the 

parameters was less than or equal to 1.03 (see R output) for 

all fitted models so we concluded that convergence had 

been established.  

 

Once we are sure that the chains have converged, 

we can use samples from the posterior distribution to obtain 

summaries.  Table 1 shows the recovery results of 

parameter estimates. The values in column WinBUGS 

correspond to the posterior mean of the parameter (i.e, the 

mean of the 1500 values drawn from the posterior 

distribution). 

 

Table 1: Real value and parameter estimates: 

MML and WinBUGS results
(b)
 

 

Item Real β value MML(a) WinBUGS 

1 -2.5 -2.43 (0.16) -2.39 (0.16) 

2 -2.0 -1.83 (0.13) -1.80 (0.13) 

3 -1.5 -1.46 (0.12) -1.43 (0.12) 
4 -1.0 -0.88 (0.11) -0.86 (0.11) 

5 -0.5 -0.44 (0.11) -0.43 (0.10) 

6 0.0 0.04 (0.11) -0.03 (0.11) 

7 0.5 0.42 (0.11) 0.41 (0.10) 
8 1.0 0.91 (0.11) 0.89 (0.11) 

9 1.5 1.44 (0.12) 1.42 (0.12) 

10 2.0 1.91 (0.14) 1.88 (0.13) 
11 2.5 2.34 (0.15) 2.32 (0.15) 

(a) MML estimates were obtained using the rasch() function from 

the R package ltm (Rizopoulos, 2006). 
(b) Standard errors and posterior standard deviations in parenthesis. 
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From the table it can be seen that the recovery is 

very good. The parameter estimates obtained by WinBUGS 

were very close to the real values. Moreover, the 

WinBUGS results are very similar to those obtained with 

MML estimation, the classical likelihood-based approach. 

This shows that when using the Bayesian method 

estimation one can obtain the same level of accuracy as 

traditional likelihood-based methods, provided that non-

informative priors have been used. 

 

Real data application: Rasch model 

 

We use the “verbal aggression” data to exemplify 

the Bayesian estimation of both the Rasch and the LLTM 

model. A full description of the data can be found in De 

Boeck and Wilson (2004). 

The same number of chains as used in the 

simulation study was run and convergence was assessed 

also in same way. The WinBUGS code to fit the Rasch 

model is shown in the Appendix. 

 

History plots of items and the scale parameter (not 

shown) gave evidence of convergence and a good mixing of 

the chains. Also the R̂ values were all less than 1.004, 

meaning that approximate convergence has been reached. 

 

The item parameter estimates and the scale 

parameter of the random effects distribution are shown in 

Table 2. This table contains the results using various 

softwares, and appears in Chapter 11 of De Boeck and 

Wilson (2004). We have added the column “WinBUGS” in 

order to compare the results with the other software. 

 

 

Table 2: Estimates of the item parameters and their standard error, and the scale parameter of the random effects 

distribution and its standard error (taken from De Boeck and Wilson, 2004: the WinBUGS column has been added). 

Reproduced with permission of Springer Science+Business Media, LLC” 

 

Item MLwiN HLM
 

GLIMMIX NLMIXED GLLAMM MIXOR WinBUGS 

1 -1.22 (0.16) -1.17 (0.22) -1.17 (0.16) -1.22 (0.16) -1.23 (0.16) -1.23 (0.19) -1.21 (0.16) 

2 -0.56 (0.15) -0.54 (0.21) -0.54 (0.15) -0.57 (0.15) -0.57 (0.15) -0.57 (0.18) -0.55 (0.16) 

3 -0.08 (0.15) -0.08 (0.21) -0.08 (0.15) -0.09 (0.15) -0.09 (0.15) -0.08 (0.17) -0.07 (0.15) 

4 -1.74 (0.17) -1.67 (0.22) -1.67 (0.17) -1.75 (0.17) -1.76 (0.17) -1.75 (0.20) -1.74 (0.18) 

5 -0.71 (0.15) -0.68 (0.21) -0.68 (0.15) -0.71 (0.15) -0.71 (0.15) -0.71 (0.15) -0.70 (0.15) 

6 -0.01 (0.15) -0.01 (0.21) -0.01 (0.15) -0.02 (0.15) -0.02 (0.15) -0.02 (0.18) -0.01 (0.15) 

7 -0.53 (0.15) -0.51 (0.21) -0.51 (0.15) -0.53 (0.15) -0.54 (0.15) -0.53 (0.17) -0.52 (0.15) 

8 0.69 (0.16) 0.66 (0.21) 0.66 (0.15) 0.68 (0.15) 0.68 (0.15) 0.68 (0.15) 0.71 (0.16) 

9 1.53 (0.17) 1.46 (0.22) 1.46 (0.17) 1.52 (0.17) 1.52 (0.17) 1.52 (0.19) 1.55 (0.18) 

10 -1.08 (0.16) -1.03 (0.21) -1.03 (0.16) -1.09 (0.16) -1.09 (0.16) -1.09 (0.18) -1.07 (0.16) 

11 0.35 (0.15) 0.33 (0.21) 0.33 (0.15) 0.34 (0.15) 0.34 (0.15) 0.34 (0.17) 0.36 (0.15) 

12 1.04 (0.16) 1.00 (0.21) 1.00 (0.16) 1.04 (0.16) 1.04 (0.16) 1.04 (0.19) 1.06 (0.17) 

13 -1.22 (0.16) -1.17 (0.22) -1.17 (0.16) -1.23 (0.16) -1.23 (0.16) -1.23 (0.19) -1.21 (0.16) 

14 -0.39 (0.15) -0.37 (0.21) -0.37 (0.15) -0.40 (0.15) -0.39 (0.15) -0.40 (0.19) -0.38 (0.16) 

15 0.87 (0.16) 0.83 (0.21) 0.83 (0.15) 0.87 (0.16) 0.87 (0.16) 0.87 (0.18) -0.88 (0.15) 

16 -0.87 (0.16) -0.83 (0.21) -0.83 (0.15) -0.87 (0.15) -0.88 (0.16) -0.88 (0.18) -0.87 (0.16) 

17 0.06 (0.15) 0.05 (0.21) 0.05 (0.15) 0.05 (0.15) 0.06 (0.15) 0.05 (0.18) 0.06 (0.15) 

18 1.48 (0.17) 1.42 (0.22) 1.42 (0.16) 1.48 (0.17) 1.48 (0.17) 1.48 (0.17) 1.50 (0.17) 

19 0.21 (0.15) 0.20 (0.21) 0.20 (0.15) 0.21 (0.15) 0.21 (0.15) 0.21 (0.17) 0.22 (0.15) 

20 1.50 (0.17) 1.44 (0.22) 1.44 (0.17) 1.50 (0.17) 1.50 (0.17) 1.50 (0.19) 1.52 (0.16) 

21 2.96 (0.23) 2.84 (0.27) 2.84 (0.22) 2.97 (0.23) 2.97 (0.23) 2.98 (0.25) 3.00 (0.23) 

22 -0.71 (0.15) -0.68 (0.21) -0.68 (0.15) -0.71 (0.15) -0.71 (0.15) -0.71 (0.18) -0.70 (0.16) 

23 0.38 (0.15) 0.37 (0.19) 0.37 (0.15) 0.38 (0.15) 0.38 (0.15) 0.38 (0.18) 0.39 (0.16) 

24 1.99 (0.18) 1.91 (-) 1.91 (0.18) 2.00 (0.18) 2.00 (0.18) 2.00 (0.20) 2.02 (0.18) 

        
Variance Of 

the intercept 
1.87 (0.17) 1.69 (0.15) 1.70 (0.17) 1.98 (0.21) 1.98 (0.21) 1.98 (-) 1.95 (0.20) 
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It can be seen that the results are very similar when 

comparing the Bayesian approach and the more classical 

approaches. As it was mentioned before, this similarity in 

the results is in a way not surprising, since using 

noniformative priors, the posterior distribution is almost 

proportional to the likelihood function, in which the 

likelihood-based method is fully based. 

 

Second example: The LLTM 

 

Chapter 2 of De Boeck and Wilson (2004) shows 

the fit of the LLTM model for the verbal aggression data. 

We fit the model using the WinBUGS program. After 

checking convergence and good mixing of the chains, the 

parameter estimates obtained are show in Table 3. This 

table show the estimates using both the NLMIXED 

procedure from SAS, as reported by De Boeck and Wilson 

(2004) and WinBUGS. 

 

Tabla 3: Item properties parameter estimates for the LLTM 

using 1LMIXED (MML) and WinBUGS 

 

Item property MML
(a) 

WinBUGS 

1  1.33 (0.10) 

2 -0.99 (0.07) -0.99 (0.07) 

3 -2.04 (0.07) -2.05 (0.07) 

4 0.67 (0.06) 0.67 (0.06) 

5 -1.03 (0.06) -1.03 (0.06) 

 

De Boeck and Wilson (2004) used a mixed coding 

scheme, so that the value of item property 1 is not 

comparable to the WinBUGS results. 

 

Again, the values are in good correspondence 

(almost identical). The estimate of the 2σ parameter is 

reported to be 1.86 (0.20) (De Boeck and Wilson, 2004) 

and the corresponding estimated value in WinBUGS is 1.85 

(0.19). It can be seen that the Bayesian estimates are 

practically identical to the ones obtained using MML 

estimation. 

 

CO"CLUSIO"S 

 

This paper intended to serve as a brief introduction to 

the Bayesian method in the field of IRT models and, 

mainly, to be a tutorial for the implementation of estimation 

algorithms using freely available software. The Bayesian 

approach for the estimation of two IRT models (the Rasch 

and the LLTM models) was presented. This estimation 

approach allows drawing samples from the posterior 

distributions of the parameters we are interested on; it 

provides not only the mean of the posterior but the 

complete distribution, permitting to obtain different kinds 

of summary statistics such as quantiles, means, etc. 

 

Besides the advantage of incorporating prior 

knowledge of the parameter, the Bayesian method is a 

computationally more convenient way to estimate IRT 

models. The CML, MML and JML methods have strengths 

and weaknesses but as models are being extended to 

accommodate more random effects (i.e., multidimensional 

traits or random item effects), they become computationally 

infeasible.  

 

The introduction and brief summary of the main ideas 

behind the Bayesian approach given in this paper is not at 

all exhaustive, and this is why many good references were 

cited to guide the reader in some topics.  

 

Although only parametric models were considered 

here, there are methodologies and software for the 

implementation of Bayesian semi-parametric models as 

well. The interested reader is referred to Miyazaki and 

Hoshino (2009), and Jara (2007). 

 

We have not considered here the issue of model 

selection, model checking, and goodness of fit, thought 

there are Bayesian counterparts that account for it. For 

model selection under the Bayesian approach, one may 

calculate Bayes factors (Kass & Raftery, 1995) and select 

the model with the largest posterior probability given the 

data. Other possibility is the use of the deviance 

information criteria (DIC; Spiegelhalter, Best, Carlin & 

Van der Linde, 2002), which is a Bayesian counterpart of 

the more classical measures AIC and BIC. In assessing 

goodness of fit, one may use posterior predictive checks 

(PPC; Gelman et. al, 2003) using samples from the 

posterior distribution. 

 

The Rasch and the LLTM models are only two of 

many other IRT models that can be fitted using the 

Bayesian approach. Examples of more complex models in 

the family of IRT models that have been estimated using 

Bayesian methods can be found in Janssen et al. (2000, 

2004); González, De Boeck, & Tuerlinckx (2008); 

González, Tuerlinckx and De Boeck (2009); among  others. 

These works give evidence that the Bayesian inference 

approach shows to be promising for studying complex 

models in psychological research. 
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Appendix 

 

R code to generate artificial data according to the Rasch model  

Rasch.data<-function(n,k,beta){         #1# 

set.seed(1)           #2# 

theta<-rnorm(n,0,1)          #3# 

probs<-matrix(0,nrow=n,ncol=k)         #4# 

dat<-matrix(0,nrow=n,ncol=k)         #5# 

for(i in 1:n){           #6# 

 for(j in 1:k){           #7# 

  probs[i,j]<-exp(theta[i]-beta[j])/(1+exp(theta[i]-beta[j]))      #8# 

  dat[i,j]<-rbinom(1,1,probs[i,j])         #9# 

}            #10# 

}            #11# 

return(dat)           #12# 

}            #13# 

 

In #1# we assign the name Rasch.data specifying that it is a function of the number of personsn , the number of 

items k , and the real values of the β parameters.  In #3# it is indicated that the values of the abilities are drawn from a 

normal distribution of zero mean and standard deviation 1. In #4# and #5# matrices are created to store the probabilities 

ij
p and the data matrix of zeros and ones, whose elements are the observations

ij
y .  

Once the function has been compiled in R, a call to generate data is as follows 

 

data.set1=Rasch.data(500,11,seq(-2.5,2.5,0.5)) 

where data.set1 is the object in which the data are stored.  

 

R-WinBUGS code to fit the models 

We present the used code to fit the models presented in the paper. This code can easily be adapted to fit other models. 

For a detailed explanation of the R2WinBUGS package the reader is referred to Sturtz, Ligges, and Gelman (2005). 

 

Preliminaries  

1. Install WinBUGS if it is not already installed in your system. The program and all the information for installation 

can be found at http://www.mrc-bsu.cam.ac.uk/bugs/ 

2. Install R and the R2WinBUGS package if they are not already installed. R and all available packages can be found 

at http://www.r-project.org/  

3. Write the WinBUGS code of the model in the file file.txt (see below) 

4. Run the R script to call WinBUGS from R (see below) 

 

WinBUGS code 

Copy and paste the following WinBUGS code to create the Rasch Model rd.txt file. 

model;           #1# 

{            #2# 

for(i in 1:n){          #3# 

theta[i]~dnorm(0,tau)         #4# 

 for(j in 1:k){          #5# 

  p[i,j]<-exp(theta[i]-beta[j])/(1+exp(theta[i]-beta[j]))      #6# 

  x[i,j]~dbern(p[i,j])         #7# 

}            #8# 

}            #9# 

for(j in 1:k){          #10# 

beta[j]~dnorm(0,0.001)         #11# 

}            #12# 

tau<-pow(sigma,-2)         #13# 
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sigma~dunif(0,100)         #14# 

sigma.theta<-1/tau          #15# 

}            #16# 

 

From lines 3 to 9 the likelihood of the model is specified.  From lines 10 to 12, the prior distribution for the 

β parameters is specified. From lines #13# to #15# the prior for the σ parameter is specified 

  

Fitting the Rasch model using ltm to obtain MML estimates to be compared with WinBUGS results 

library(ltm) 

rasch.fit=rasch(data.set1, constraint = cbind(ncol(data.set1) + 1, 1)) 

summary(rasch.fit)[1] 

 

R code to call WinBUGS from R via the R2WinBUGS package 

 

library(R2WinBUGS)           #1# 

dat=read.table("data.set1.txt",header=F)         #2# 

n=nrow(dat)            #3# 

k=ncol(dat)            #4# 

x=as.matrix(dat)            #5# 

data=list("n","k","x")           #6# 

inits=function(){            #7# 

list(theta=rnorm(n,0,1),beta=rnorm(11,0,1),sigma=runif(1))       #8# 

}              #9# 

parameters=c("beta","sigma.theta")         #10# 

mod1<-bugs (data, inits, parameters, "Rasch Model rd.txt",n.chains=3, n.iter=1000,   #11# 

n.thin=1)           #12# 

 

In #1# the R2WinBUGS library which allows to call WinBUGS from R is loaded. In #2# the data set in file “data.set1.txt” 

is loaded. In #3# and #4# the number of rows and columns are specified. Note that these values coincide with the 

number of individuals and the number of items, respectively. From #7# to #9#, initial values for the algorithm are 

generated. In #10# it is specified which are the parameter we want to obtain samples from its posterior distributions. 

In #10# and #11# the bugs function makes call to WinBUGS, using the arguments previously described. The 

n.chains argument indicate that 3 parallel chains are being run, each with n.iter=1000 iterations. By default, half of 

each chain is discarded as a burn-in 

 


