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ABSTRACT 
 

The current article provides a guideline for conducting factor analysis, a technique used to estimate the population-
level factor structure underlying the given sample data. First, the distinction between exploratory and confirmatory factor 
analyses (EFA and CFA) is briefly discussed; along with this discussion, the notion of principal component analysis and 
why it does not provide a valid substitute of factor analysis is noted. Second, a step-by-step walk-through of conducting 
factor analysis is illustrated; through these walk-through instructions, various decisions that need to be made in factor 
analysis are discussed and recommendations provided. Specifically, suggestions for how to carry out preliminary 
procedures, EFA, and CFA are provided with SPSS and LISREL syntax examples. Finally, some critical issues concerning 
the appropriate (and not-so-appropriate) use of factor analysis are discussed along with the discussion of recommended 
practices. 
 

Key words: Confirmatory and Exploratory Factor Analysis – LISREL - Parallel Analysis - Principal Component 
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RESUMEN 
 

El presente artículo provee una guía para conducir análisis factorial, una técnica usada para estimar la estructura de 
las variables a nivel de la población que subyacen a los datos de la muestra. Primero, se hace una distinción entre análisis 
factorial exploratorio (AFE) y análisis factorial confirmatorio (AFC) junto con una discusión de la noción de análisis de 
componentes principales y por qué este no reemplaza el análisis de factores. Luego, se presenta una guía acerca de cómo 
hacer análisis factorial y que incluye decisiones que deben tomarse durante el análisis factorial. En especial, se presentan 
ejemplos en SPSS y LISREL acerca de cómo llevar a cabo procedimientos preliminares, AFE y AFC. Finalmente, se 
discuten asuntos clave en relación con el uso apropiado del análisis de factores y practicas recomendables. 
 

Palabras clave: Análisis factorial confirmatorio y exploratorio, LISREL, análisis paralelo, análisis de componentes 
principales, SPSS. 
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Factor analysis is a broad term representing a 
variety of statistical techniques that allow for estimating the 
population-level (i.e., unobserved) structure underlying the 
variations of observed variables and their interrelationships 
(Gorsuch, 1983; Kim & Mueller, 1978). As such, it is 
“intimately involved with questions of validity . . . [and] is 
at the heart of the measurement of psychological 
constructs” (Nunnally, 1978, pp. 112-113). In other words, 
factor analysis provides a diagnostic tool to evaluate 
whether the collected data are in line with the theoretically 
expected pattern, or structure, of the target construct and 
thereby to determine if the measures used have indeed 
measured what they are purported to measure.  

 
Despite its importance, factor analysis is one of the 

most misunderstood and misused techniques. Although an 
increasing number of scholars have come to realize and 
take this issue seriously, evidence suggests that an 
overwhelming proportion of the research presented and 
published across fields still harbors ill-informed practices 
(Fabrigar, Wegener, MacCallum, & Strahan, 1999; Henson 
& Roberts, 2006; Park, Dailey, & Lemus, 2002; see 
Preacher & MacCallum, 2003, for a review). In hopes of 
making a difference in this trend, the current article 
provides a guideline for the “best practice” of factor 
analysis, along with illustrations of the use of widely 
available statistical software packages. 

  
More specifically, this article first discusses the 

broad distinction among techniques called factor analysis—
exploratory and confirmatory—and also notes the 
importance to distinguish factor analysis from principal 
component analysis, which serves a fundamentally different 
function from that of factor analysis. The next section 
illustrates a “hybrid” approach to factor analysis, where 
researchers initially run an exploratory factor analysis and 
follow-up on its results using a confirmatory factor analysis 
with separate data. This part provides detailed instructions 
of software usage (e.g., which pull-down menu in SPSS 
should be used to run an exploratory factor analysis or how 
to command LISREL to examine one’s CFA model) in a 
step-by-step walk-through for factor analysis. Finally, a 
brief discussion on recommended “do’s and don’ts” of 
factor analysis is presented. 
 

IDENTIFYING TWO SPECIES OF FACTOR 
ANALYSIS 

 
There are two methods for “factor analysis”: Exploratory 
and confirmatory factor analyses (Thompson, 2004). 
Whereas both methods are used to examine the underlying 
factor structure of the data, they play quite different roles in 
terms of the purpose of given research: One is used for 
theory-building, whereas the other is used primarily for 
theory-testing.  

 
Exploratory factor analysis (EFA) is used when 

researchers have little ideas about the underlying 
mechanisms of the target phenomena, and therefore, are 
unsure of how variables would operate vis-à-vis one 
another. As such, researchers utilize EFA to identify a set 
of unobserved (i.e., latent) factors that reconstruct the 
complexity of the observed (i.e., manifest) data in an 
essential form. By “essential form,” it means that the factor 
solution extracted from an EFA should retain all important 
information available from the original data (e.g., between-
individual variability and the covariance between the 
construct under study and other related constructs) while 
unnecessary and/or redundant information, as well as noises 
induced by sampling/measurement errors, are removed. 
Stated differently, EFA is a tool intended to help generate a 
new theory by exploring latent factors that best accounts for 
the variations and interrelationships of the manifest 
variables (Henson & Roberts, 2006).  

 
Note that this type of factor analysis is used to 

estimate the unknown structure of the data. This is a critical 
point that distinguishes EFA from principal component 
analysis (PCA), which is often confused with EFA and 
therefore misused as its substitute or variant (Henson & 
Roberts, 2006). PCA, however, is fundamentally different 
from EFA because unlike factor analysis, PCA is used to 
summarize the information available from the given set of 
variables and reduce it into a fewer number of components 
(Fabrigar et al., 1999); see Figure 1 for a visual image of 
this distinction.  

 
An important implication is that, in PCA, the 

observed items are assumed to have been assessed without 
measurement error. As a result, whereas both PCA and 
EFA are computed based on correlation matrices, the 
former assumes the value of 1.00 (i.e., perfect reliability) in 
the diagonal elements while the latter utilizes reliability 
estimates. Thus, PCA does not provide a substitute of EFA 
in either theoretical or statistical sense. 

 
 On the other hand, confirmatory factor analysis 
(CFA) is used to test an existing theory. It hypothesizes an 
a priori model of the underlying structure of the target 
construct and examines if this model fits the data 
adequately (Bandalos, 1996). The match between the 
hypothesized CFA model and the observed data is 
evaluated in the light of various fit statistics. Using those 
indices, researchers determine if their model represents the 
data well enough by consulting accepted standards (for 
discussions on the standards for CFA model evaluation, see 
Hu & Bentler, 1999; Kline, 2005, pp. 133-145; Marsh, Hau, 
& Wen, 2004). 
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Figure 1. Conceptual distinction between factor analysis and principal component analysis. Note. An oval represents a 
latent (i.e., unobserved) factor at the population level, whereas a rectangle represents an observed variable at the sample 

level. An arrow represents a causal path. Note that the observed items in factor analysis are assumed to have been 
measured with measurement errors (i.e., εs), whereas those in principal component analysis are not. 

 
 

 
 
 
 
 

WALKING THROUGH FACTOR ANALYSIS: FROM 
PRE-EFA TO CFA 

 
The EFA-CFA distinction discussed just above suggests a 
certain approach to identifying the target construct’s factor 
structure. This approach utilizes both EFA and CFA, as 
well as PCA, at different steps such that: (a) an initial set of 
items are first screened by PCA, (b) the remaining items are 
subjected to EFA, and (c) the extracted factor solution is 
finally examined via CFA (Thompson, 2004). This 
“hybrid” approach is illustrated below. In so doing, the 
current article features computer software packages of 
SPSS 17.0 and LISREL 8.55; the former is used for PCA 
and EFA, where as the latter is for CFA.  
 
Step 1: Generating and Screening Items  

 
Item-generating procedures. First, researchers need 

to generate a pool of items that are purported to tap the 
target construct. This initial pool should be expansive; that 
is, it should include as many items as possible to avoid 
missing important aspects of the target construct and 
thereby maximize the face validity of the scale under study 
(for discussions of face validity, see Bornstein, 1996; Nevo, 
1985). Having redundant items that appear to tap the same 
factor at this point poses little problem, while missing 
anything related to the target construct can cause a serious 
concern. Items may be generated by having a sample of the 

relevant population provide examples of manifest behaviors 
or perceptions caused by the target construct, or by the 
researchers based on the construct’s conceptualization. 

 
Next, researchers use the generated pool of items 

to collect quantitative data (i.e., interval data or ordinal data 
with a sufficiently large number of scale points; see Gaito, 
1980; Svensson, 2000). Guadagnoli and Velicer (1988) 
suggest that the stability of component patterns (i.e., the 
likelihood for the obtained solution to hold across 
independent samples) is largely determined by the absolute 
sample size; although the recommended “cutoff value” 
varies widely, scholars appear to agree that a sample size of 
200 or less is perhaps not large enough (and an N of 100 or 
less is certainly too small) in most situations (for reviews, 
see Bobko & Schemmer, 1984; Guadagnoli & Velicer, 
1988). 

Screening items. Once data are collected with a 
sufficiently large sample size, the next step is item-
screening—to reduce the initial pool to a more manageable 
size by trimming items that did not emerge as expected. For 
this item-reduction purpose, PCA provides an effective 
tool, for it is a technique designed exactly to that end (i.e., 
reduce a pool of items into a smaller number of components 
with as little a loss of information as possible). To run this 
procedure, load the data into SPSS; then select “Analyze” 
from the top menu-bar and go “Dimension Reduction” → 
“Factor”; because the SPSS default is set to run PCA, no 
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change is needed here except re-specifying the rotation 
method to be “Promax” (see Figure 2). 

 

Figure 2. SPSS screen-shot for specifying PCA/EFA with the promax rotation method 
 
 

 
 
 

Promax” is one of the rotation methods that 
provide solutions with correlated components/factors 
(called oblique solutions).1 The SPSS default is set to 
“Varimax” rotation method, which classifies items into 
components in such a way that the resultant components are 
orthogonal to each other (i.e., no correlations among 
components) (Pett, Lackey, & Sullivan, 2003). This option, 
however, has at least three problems: (a) in almost all fields 
of social science, any factor/construct is to some extent 
related to other factors, and thus, arbitrarily forcing the 
components to be orthogonal may distort the findings; (b) 
even if the dimensions or sub-factors of the construct under 

study are indeed uncorrelated, such patterns should emerge 
naturally (not as an artifact of the researcher’s choice) out 
of the promax rotation anyhow; and (c) although 
orthogonally rotated solutions are considered less 
susceptible to sampling error and hence more replicable, 
utilizing a large sample should address the concern of 
replicability (Hetzel, 1996; Pett et al., 2003). Therefore, it is 
suggested that the rotation method be specified to 
“promax,” which begins with a varimax solution and then 
raise the factor loadings to a stated power called kappa (κ), 
typically 2, 4, or 6; as a result, loadings of small 
magnitude—.20, say—will become close to zero (if κ is set 
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at 4, the loading of .20 will be .0016), whereas large 
loadings, although reduced, remain substantial; the higher 
the κ, the higher the correlations among 
factors/components. In computation, the promax method 
operates to obtain the solution with the lowest possible 
kappa so that the resultant factors/components are 
maximally distinguishable (Comrey & Lee, 1992). 

 
With thus generated PCA output, researchers 

examine factor loadings; the purpose at this step is to 
identify items that have not loaded on to any of the major 
components with sufficiently large factor loadings and 
remove those items. Obliquely rotated solutions come along 
with two matrices, in addition to the unrotated component 
matrix: A pattern matrix and a structure matrix. The pattern 
matrix represents the variance in an observed item 
accounted for by the components identified via PCA, 
whereas the structure matrix contains coefficients made by 
both such “common” components/factors and an 
idiosyncratic factor that uniquely affects the given item; for 
this reason, although it often appears easier to interpret the 
results of PCA (and EFA) based on the pattern matrix 
alone, it is essential to examine both matrices to derive an 
appropriate interpretation (Henson & Roberts, 2006). 

 
The next question to be answered in the item-

screening procedure is a controversial one; that is, how 
large should an item’s factor loading be to retain that item 
in the pool? Unfortunately, there seems no one set answer 
in the literature (Comrey & Lee, 1992; Gorsuch, 1983). 
Ideally, researchers should retain items that load clearly and 
strongly onto one component/factor while showing small to 
nil loadings onto other components/factors. More often than 
not, however, researchers find themselves in a situation to 
make some delicate, and in part subjective, decision. For 
example, an item may cross-load (i.e., having large factor 
loadings onto multiple components/factors), or its primary 
loading is not as large to call it “clearly loaded”; thus, there 
is a certain degree of judgment-call involved in this 
procedure. 

 
One widely utilized approach is to focus on the 

highest loading with a cutoff. If an item’s highest factor 
loading is greater than an a priori determined cutoff value, 
then researchers retain that item in the pool. On a 
conventional liberal-to-conservative continuum, setting the 
cutoff at .40 (i.e., items with a factor loading of .40 or 
greater is retained) is perhaps the lowest acceptable 
threshold, whereas .60 or.70 would be the limit of the 
conservative end. Another approach is to examine both the 
highest and second highest factor loadings. For example, in 
many social scientific studies, the .5/.2 or .6/.3 rule seems 
to constitute a norm, though studies employing a .6/.4 
criterion are not uncommon (Henson & Roberts, 2006; Park 
et al., 2002). That is, an item is retained if its primary 

loading is greater than .5-.6 and also if its second highest 
factor loading is smaller than .2-.3. This approach is more 
sophisticated than the first one in that it considers the larger 
pattern of factor loadings and partly addresses the issue of 
cross-loadings. The last approach is to focus on the 
discrepancy between the primary and secondary factor 
loadings, and retain items if their primary-secondary 
discrepancy is sufficiently large (usually .3-.4). Whichever 
approach researchers decide to take, it is important that they 
clearly state the approach they have taken in reporting the 
findings for both research fidelity and replicability’s sake. 

 
At this point, the initial pool of items should be 

reduced in size. Before moving on to EFA, however, it is 
strongly recommended that researchers take a moment to 
review the remaining items and examine if it indeed makes 
theoretical sense to retain each item. By “making sense 
theoretically,” it is intended that for each item, researchers 
must be able to provide a conceptual explanation for how 
the target construct drives the variation in the 
behavior/perception described by the respective item 
(Bornstein, 1996). 
 
Step 2: Exploring the Underlying Structure of the Data 
 

Having completed the item-generation and item-
screening procedures illustrated above, the next major step 
for researchers to take is to conduct an exploratory factor 
analysis (EFA). Main purposes of this step include (a) 
determining the number of factors underlying the variation 
in and correlations among the items, (b) identifying the 
items that load onto particular factors, and (c) possibly 
removing items that do not load onto any of the extracted 
factors (Thompson, 2004). Before discussing how to 
achieve these goals in EFA, however, it is due to illustrate 
some preliminary considerations and procedures. 

 
Collecting data for EFA. First, an entirely new set 

of empirical data should be collected for EFA. Although it 
for sure is enticing to subject a data set to PCA and then use 
the same data (with a reduced number of items) to EFA, 
such a “recycling” approach should be avoided because it 
capitalizes on chance. On the other hand, if similar 
component/factor structure patterns are obtained across 
multiple samples, it provides strong evidence that supports 
thus obtained solution (MacCallum, Widaman, Zhang, & 
Hong, 1999). 

 
The question of sample size is to be revisited here. 

Gorsuch (1983) maintains that the sample size for an EFA 
should be at least 100. Comrey and Lee (1992) suggest that 
an N of 100 is “poor,” 200 is “fair,” 300 is “good,” 500 is 
“very good,” and 1,000 or more is “excellent.” In a related 
vein, Everitt (1975) argued that the ratio of the sample size 
to the number of items (p) should be at least 10. These 
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recommendations are, however, ill-directed ones, according 
to MacCallum et al. (1999). Those authors suggest that the 
appropriate sample size, or N:p ratio, for a given 
measurement analysis is actually a function of several 
aspects of the data, such as how closely items are related to 
the target construct; if the items squarely tap the construct, 
the required sample size would be small, whereas a greater 
N would be needed if the correlations between items and 
the construct were small. According to MacCallum et al., if 
there are a good number of items per latent factor (i.e., 
preferably five or more items tapping the same factor) and 
each of those items are closely related to the factor in 
question, a sample size of 100-200 may be sufficient; as 
these conditions become compromised, larger samples 
would be necessary to obtain a generalizable factor 
solution. 

 
Determining the number of factors. After 

collecting a new sample, researchers run an EFA. To do so, 
the “extraction” method needs to be changed from 
“principal component” to “principal axis”; in addition, the 
rotation method should be specified to the “promax.” 
Unlike PCA, principal-axis factoring zeros in on the 
common variance among the items and delineates the latent 
factors underlying the data (Fabrigar et al., 1999; see also 
Figure 1). 

 
Once the EFA output is generated, researchers 

need to determine how many factors should be retained. In 
any factor analysis, the total number of possible factors is 
equal to that of the items subjected to the analysis (e.g., if 
10 items are factor-analyzed, the total number of factors is 
10). Most of those factors, however, would not contribute 
appreciably to account for the data’s variance or not be 
readily interpretable; generally, those insubstantial factors 
represent spurious noise or measurement error. Thus, it is 
critical to sieve those non-essential noises/errors out while 
extracting factors that are indeed theoretically meaningful. 

 
There are a number of rules/criteria introduced in 

the literature that help determine the number of factors to 
retain (see Zwick & Velicer, 1986, for a review). The most 
frequently used strategy (and SPSS default) is to retain all 
factors whose computed eigenvalue is greater than 1.0. This 
rule—also known as Kaiser-Guttman criterion—is, 
however, not an optimal strategy to identify the true factor 
structure of data, because it is known to overestimate the 
number of latent factors (Hayton, Allen, & Scarpello, 
2004). Other factor-retention strategies include scree test 
(Cattell, 1966), minimum-average partial correlation 
(Velicer, 1976), Bartlett’s χ2 test (Bartlett, 1950, 1951), 
RMSEA-based maximum-likelihood method (Park et al., 
2002), and parallel analysis (Horn, 1965; Turner, 1998). 

 

Unfortunately, these rules and criteria often lead to 
different conclusions regarding the number of factors to 
retain, and many of them have been criticized for one 
reason or another. For example, scree test relies on the 
researcher’s subjective decision and eyeball interpretation 
of the scree plot; in addition, similar to the Kaiser-Guttman 
criterion, it often results in overextracting factors. Bartlett’s 
χ2 test is based on the chi-square significance test, which is 
highly susceptible to the sample size; if the N is large 
enough, almost any analysis produces statistically 
significant results and therefore provides little information 
(see Zwick & Velicer, 1986). RMSEA-based maximum-
likelihood method, although relatively accurate, is available 
only if the maximum-likelihood estimator is used. 

 
Fortunately, research suggests that, among the 

rules/criteria mentioned above, parallel analysis (PA) 
provides the most accurate approach (Henson & Roberts, 
2006). Basic procedures of PA are as follows: First, 
researchers run an EFA on their original data and record the 
eigenvalues of thus extracted factors; next, “parallel data” 
are generated—this is an artificial data set which contains 
the same number of variables with the same number of 
observations as the researchers’ original data, but all 
variables included in this “parallel data” set are random 
variables; the “parallel data” are factor-analyzed and 
eigenvalues for factors are computed; this procedure of 
generating “parallel data” and factor-analyzing them is 
repeated, usually 500-1000 times, and the eigenvalues of 
each trial are recorded; then, the average of those 
eigenvalues are compared to those for the factors extracted 
from the original data; if the eigenvalue of the original 
data’s factor is greater than the average of the eigenvalues 
of the “parallel factor” (i.e., factor of the same rank 
extracted from the “parallel data”), that factor is retained; if 
the eigenvalue of the original data’s factor is equal to or 
smaller than the average, that factor is considered no more 
substantial than a random factor and therefore discarded 
(see Hayton et al., 2004, for a more detailed discussion). 

 
Reviews of previous studies suggest that PA is one 

of the—if not the—most accurate factor-retention method 
(e.g., Hayton et al., 2004; Henson & Roberts, 2006; 
Fabrigar et al., 1999). On this ground, it is recommended 
that researchers running an EFA should utilize PA as the 
primary method to determine the number of factors 
underlying the variance in given data, along with qualitative 
scrutiny such as examination of the interpretability of 
factors and  theoretical expectations regarding the construct 
under study. In performing PA, researchers should consult 
the Hayton et al. (2004) article, which provides a template 
of SPSS syntax to run PA. As an alternative, there is a free 
software program developed by Watkins (2008). After 
downloading and starting the program, users enter the 
number of variables and subjects of their original data, 
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specify the number of replications of the “parallel data” 
generation, and click the “calculate” button; the program 
output shows the average of the eigenvalues of “parallel 
data” as specified in the previous step (see Figure 3). 
Researchers then compare those computed averages of 

eigenvalues and those for their original data to determine 
which factors are to be retained and which are to be 
discarded. 

 
 

Figure 3. A screen-shot of an outcome of Watkins’ (2008) Monte-Carlo-based program for parallel analysis  
 

 
 
 

Determining the factor-loading patterns and 
trimming items (if necessary). Now that researchers have 
identified the number of factors to retain, they are ready to 
take the final step for an EFA, which is to determine which 
items load onto those factors. Similar to the item-trimming 
procedure in PCA, researchers examine both pattern and 
structure matrices of factor loadings. Then, the items to 
retain are determined based on some criteria (see the earlier 
discussion on various criteria to evaluate an item’s factor 
loading). The resultant pool should contain only items that 
tap theoretically meaningful and interpretable factors, but 
not those that reflect insubstantial noises or 
measurement/sampling errors. 

 
Step 3: Confirming the Factor Structure of the Data  
 

After the PCA and EFA steps discussed just above, 
the third and final step is a confirmatory factor analysis 

(CFA), by which researchers construct an explicit model of 
the factor structure underlying the given data and 
statistically test its fit (Russell, 2002). To run a CFA, 
researchers need to choose a software program, because 
there are several commercially-available programs 
specialized for CFA (or more generally, SEM). In this 
article, explanations and illustrations, as well as syntax 
templates, are provided based on LISREL, for it is: (a) one 
of the most widely utilized CFA/SEM software programs; 
(b) less expensive than other commercially-available 
programs (e.g., AMOS costs nearly $1,000 for the 1-yesr 
license of academic package, whereas the regular version of 
LISREL is available for $495); and (c) evaluated as 
superior to some of its rival software in terms of standard 
error calculation and parameter estimation (see, e.g., Byrne, 
1998; von Eye & Fuller, 2003). 
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Specifying the model. Unlike EFA (which works 
best when researchers have little ideas about how the items 
are structured), in CFA, researchers must have an a priori 
theory on the factor structure underlying the given data (see 
Levine, 2005, for a more detailed discussion regarding the 
distinction between EFA and CFA). As such, researchers 
running a CFA need to specify a number of parameters to 
be estimated in the model.  

 
First, the number of latent factors needs to be 

determined. This decision should be informed both by the 
results of the EFA, particularly that of the parallel analysis 
(Hayton et al., 2004), at the prior step of the analysis and 
the theory or conceptualization regarding the construct 
under study (i.e., whether it is conceptualized as a 
monolithic, unidimensional construct or as a multifaceted 
construct that embraces multiple interrelated sub-factors). 

 
Second, researchers need to specify the patterns in 

which each item loads onto a particular factor. In CFA, 
there usually is an a priori expectation about how each item 

loads onto the hypothesized factor(s) such that each item 
has its unique pattern of non-zero factor loadings and zero 
loadings; this is a critical difference between CFA and 
EFA, because in the latter, all items load onto all factors 
(see Figure 4). Note in the CFA model in Figure 4 (left 
panel), no arrows are drawn from Factor A to Items 5, 6, 
and 7; likewise, Factor B is specified to underlie only Items 
5-7 and not Items 1-4. This specification reflects 
researchers’ expectation that: (a) there are two interrelated 
factors underlying the data under study; (b) the first four 
items included in the data tap Factor A and the remaining 
ones tap Factor B; and (c) any correlations between Items 
1-4 with Factor B, as well as those between Items 5-7 with 
Factor A, are null at the population level (hence, the zero-
loadings) and therefore should be ignored. Stated 
differently, in CFA, not drawing the factor-loading path 
between an item and a factor is as important and 
meaningful in terms of theoretical weight as specifying 
which items should load onto particular latent factors 
(Bandalos, 1996; Kline, 2005). 

 
 
Figure 4. Conceptual distinction between confirmatory factor analysis (left) and exploratory factor analysis with an 

oblique rotation (right). Note. Ovals represent unobservable latent factors, whereas the rectangles represent observed items. 
Double-headed arcs indicate correlations. Arrows represent factor loadings 
 

 
 
 
A third step to follow after researchers have 

specified the number of latent factors and factor-loading 
patterns (including the specification of zero loadings) is to 
execute the analysis. In so doing, researchers use the 
syntax. The current article provides a simple walk-through 
of a LISREL syntax based on the model shown in Figure 4, 
which features seven items and hypothesizes four of them 
(Items 1-4) tap a latent factor (Factor A) while the other 
three items (Items 5-7) load onto another factor (Factor B); 
additionally, those two latent factors are specified to be 
related to each other and no cross-loadings are allowed 
(readers interested in learning LISREL syntax more fully 
than what this article covers should be directed to Byrne, 
1998). Figure 5 provides a LISREL syntax that specifies 

such a model; several key points of this syntax are 
illustrated below. 

 
Walk-through of LISREL syntax. The command in 

the first line of the syntax (“TI”) specifies the title of the 
analysis. Although this command is optional, it often helps 
to put an easily identifiable title to each analysis in back-
referencing the results of multiple analyses. The command 
in the second line (“DA”) is more important, as it feeds key 
features of the data into LISREL; “NI” specifies the number 
of items included in the data, while “NO” refers to the 
number of observations. “NG” refers to the number of 
groups to be analyzed; unless researchers are interested in 
analyzing multiple discrete groups, this should be the 
default (i.e., “NG=1”). “MA” specifies the type of matrix to 
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be analyzed; typically, a covariance matrix (“CM”) is 
analyzed in CFA/SEM, so this part should be specified as 
“MA=CM.” 

 
The command in the third line, “LA,” specifies the 

label of the items read into LISREL. It should be noted that, 
depending on the version of LISREL, there is a restriction 
to the number of letters that can be used for an item (e.g., 
only up to eight letters can be used in LISREL version 
8.55). It is generally a desirable practice to use simple and 
systematic labels. 

The command in the next lines (“CM”) specifies 
the location of the data file to be used in the analysis. Note 
that the extension of the file (“.COV”) indicates that it is a 
covariance-matrix file, which can be extracted from an 
SPSS data file using a function of LISREL called PRELIS 
(see Byrne, 1998, for more detailed instructions regarding 
the use of PRELIS). The next command (“SE”) specifies 
the sequence for the items to be read in the analysis; 
because model parameters are specified by matrix numbers 
(see below), it is advisable that researchers organize the 
items in a sensible manner at this point. 

 
The “MO” command specifies the key features of 

the model to be analyzed. “NX” indicates the number of 
observed variables used in the analysis (which is specified 
as “NX=7” as there are seven items in the hypothetical 
model used as an example in this article), whereas “NK” 
command refers to the number of latent factors to be 
modeled. The next three commands (“LX,” “PH,” and 
“TD”) specify how various parameters of CFA/SEM should 
be estimated; “LX” indicates the matrix of lambda 
parameters, or factor loadings; “PH” indicates the phi 
matrix, or the matrix of the latent factors’ variances and 
covariances; and “TD” indicates the matrix of error 

variances and covariances (for more detailed discussions of 
these different parameter matrices, see Byrne, 1998; Kline, 
2005). 

 
 
The next command, “LK,” specifies the labels put 

on the latent factors. The same restriction of the number of 
letters as that for the “LA” command applies (see above), 
and again, it is recommendable to put easily recognizable 
and meaningful labels. 

The next series of commands (“FR,” “FI,” and 
“VA”) provide the heart of LISREL syntax, as they specify 
how the parameters should be estimated and thereby 
determine how the analysis should be executed. “FR” 
command specifies the parameters to be freely estimated; in 
a CFA context, these parameters represent the non-zero 
factor-loadings, or arrows drawn from a latent factor to 
observed items. Factor-loading pattern is specified in 
LISREL by matrix. As noted above, “LX” refers to the 
matrix of factor loadings (i.e., lambda parameters); under 
the “FR” command, each “LX” command indicates a 
particular element in the lambda matrix. For example, 
LX(2,1) indicates the factor loading of the second item in 
the given data (Item 2, in this article’s example) onto the 
first factor hypothesized in the model (Factor A). Note in 
Figure 5, only Items 1-4 are specified to load onto Factor A, 
while Items 5-7 load onto Factor B alone. Recall it is as 
meaningful not to draw a factor-loading arrow from one 
factor to an item as drawing an arrow, because it equally 
impacts the model results. In other words, in the CFA 
context, zero loadings (which are not specified explicitly by 
researchers in the given syntax) are as essential as the non-
zero loadings. 

 

Figure 5. An example LISREL syntax. 
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In contrast, “FI” command specifies the 

parameters that are fixed to a certain value and not 
estimated in the analysis; the value to be fixed at is 
specified by the “VA” command. Note that in the example 
syntax (Figure 5), two of the factor loadings—factor 
loading of Item 1 to Factor A (“LX(1,1)”) and that of Item 
5 to Factor B (“LX(5,2)”)—are fixed at the value of 1.0. In 
CFA, one factor loading per factor needs to be fixed at a 
certain value to determine the scale of the respective factor 
and thereby identify it (see Kline, 2005, for a more detailed 
explanation of identification of latent factors).3 

 

The last section in the LISREL syntax specifies the 
information to be included in the output. If the “PD” 
command is included in the syntax, a path diagram will be 
produced. The “OU” command specifies the type of 
information that will be contained in the output: “PC” is the 
request for the parameter correlations; the “RS” command 
invokes the fit-related information such as the residuals, 
QQ-plot, and fitted covariance matrix; the “SC” command 
is the request for completely standardized solutions of 
model parameters; the “MI” command adds to the output 
the information of modification indices regarding all 
estimated parameters; finally, the “ND” command specifies 
the number of decimal places displayed in the output. 

 
Evaluating the model and parameter estimates. 

Having made these specifications, researchers are ready to 
run a CFA using LISREL (for instructions regarding the use 
of other major software programs, see Byrne, 1994, 2001). 
Next, they need to examine the analysis output; first the fit 
of the overall model to the data, and then the direction, 
magnitude, and statistical significance of parameter 
estimates. The initial step in this model-evaluation 
procedure is to examine if the model under the test fits the 
data adequately (Kline, 2005). 

 
There are a number of fit indices and evaluation 

criteria proposed in the literature, and most of the software 
programs, such as AMOS, LISREL, or EQS, produce more 
than a dozen of those indices; and yet evaluation of the fit 
of a given CFA model marks one of the most hotly debated 
issues among scholars (e.g., Fan, Thompson, & Wang, 
1999; Hu & Bentler, 1998, 1999; Hu, Bentler, & Kano, 
1992; Marsh et al., 2004). Therefore, it is critical that 
researchers not only know what each of the major fit 
indices represents but also have the ability to interpret them 
properly and utilize them in an organic fashion to evaluate 
the model in question (for reviews of CFA/SEM fit indices, 
see Hu & Bentler, 1998; Kline, 2005). 

 
The chi-square statistic provides the most 

conventional fit index; it is called “exact fit index” and 
indicates the degree of discrepancy between the data’s 
variance/covariance pattern and that of the model being 

tested. Although conceptually simple and easy to interpret 
(i.e., if the computed χ2 value is statistically significant, the 
model is considered discrepant from the population’s true 
covariance structure), the practice of drawing solely on this 
index has been criticized because the χ2 test is highly 
susceptible to the impact of sample size: The larger the 
sample size, the more likely the results of the test become 
significant, regardless of the model’s specific features 
(Russell, 2002). Additionally, research has shown that the 
results of a χ2 test are vulnerable to the violation of some 
assumptions (e.g., non-normality). 

 
To compensate this problem associated with the 

exact fit index, Hu and Bentler (1999) suggest that 
researchers using a CFA/SEM should employ what they 
call “two criteria” strategy. That is, in addition to the 
information regarding the exact fit of a model (i.e., χ2 
value), researchers should examine at least two different 
types of fit indices and thereby evaluate the fit of the 
model. There are several “clusters” of fit indices such that 
all indices included in a cluster reflect some unique aspect 
of the model, while different clusters help examine the 
model from different angles (Kline, 2005). Root mean 
square error of approximation (RMSEA; Steiger, 1990) 
“estimates the amount of error of approximation per model 
degree of freedom and takes sample size into account” 
(Kline, 2005, p. 139) and represents the cluster called 
“approximate fit index.” Unlike the exact fit index, this type 
of fit index evaluates the model in terms of how close it fits 
to the data. Hu and Bentler recommend that RMSEA 
should be .06 or lower, though Marsh et al. (2004) suggest 
that.08 should be acceptable in most circumstances (see 
also Thompson, 2004). 

 
The second cluster of fit index is called 

“incremental fit index,” which represents the degree to 
which the tested model accounts for the variance in the data 
vis-à-vis a baseline model (i.e., a hypothetical model that 
features no structural path, factor loading, or inter-factor 
correlations at all). Major incremental fit indices include 
comparative fit index (CFI; Bentler, 1990), Tucker-Lewis 
index (TLI; Tucker & Lewis, 1973), and relative 
noncentrality index (RNI; McDonald & Marsh, 1990). Hu 
and Bentler (1999) suggest that, for a model to be 
considered adequate, it should have an incremental fit index 
value of .95 or higher, although the conventional cutoff 
seen in the literature is about .90 (Russell, 2002). 

 
A third cluster of model fit index, called residual-

based index, focuses on covariance residuals, or 
discrepancies between observed covariances in the data and 
the covariances predicted by the model under study. The 
most widely utilized residual-based index is the 
standardized root mean square residual (SRMR), which 
indicates the average value of the standardized residuals 
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between observed and predicted covariances. Hu and 
Bentler (1999) and Kline (2005) both suggest that SRMR 
should be less than .10. 

 
DISCUSSION 

 
The current article has discussed the notion of 

factor analysis, with a note on the distinction between 
exploratory and confirmatory factor analyses (as well as 
principal component analysis). A step-by-step walk-through 
that leads interested readers from the preliminary 
procedures of item-generation and item-screening via PCA 
to EFA and CFA was provided. To complement these 
discussions, this final section provides general 
recommendations concerning the use of exploratory and 
confirmatory factor analyses, followed by some concluding 
remarks on the importance of conducting EFA/CFA 
properly. 
 
General Recommendations 

 
There are a number of issues concerning the use of 

EFA/CFA. Some of them already have been discussed 
earlier in this article; but all recommendations mapped out 
below should be noted nonetheless, should researchers wish 
to factor-analyze their data properly. 

 
Sample size. As repeated several times in the 

current article, researchers using factor analysis, either EFA 
or CFA or both, should strive to gather as large data as 
possible. Based on his review of the back numbers of 
Personality and Social Psychology Bulletin, Russell (2002) 
points to “a general need to increase the size of the 
samples” (p. 1637). Similarly, MacCallum and his 
colleagues caution that the sample size of the factor 
analyses reported in the psychology literature is often too 
small and it suggests a considerable risk of misspecification 
of the model and bias in the existing measurement scales 
(MacCallum et al., 1999). In view of the results of these 
and other quantitative reviews of the literature (e.g., 
Fabrigar et al., 1999), it is strongly suggested that 
researchers using factor analysis should make every effort 
to increase their study’s sample size. 

 
Factor extraction method. In running an EFA, it is 

still not uncommon to see PCA used as a substitute. PCA is, 
however, fundamentally different from factor analysis, as it 
has been designed to summarize the observed data with as 
little a loss of information as possible, not to identify 
unobservable latent factors underlying the variations and 
covariances of the variables (Kim & Mueller, 1978; Park et 
al., 2002). PCA should only be used in reducing the number 
of items included in the given scale (i.e., item-screening). 

 
Determination of the number of factors. For both 

EFA and CFA, the number of latent factors should be 

determined primarily on the ground of theoretical 
expectations and conceptualization of the target construct. 
At the same time, in cases where the construct’s true nature 
is uncertain or debated across scholars, empirical 
exploration via EFA is duly called for. In such cases, 
researchers should not rely on the Keiser-Guttman (i.e., 
eigenvalue ≥ 1.0) rule; although this is set as the default 
criterion of factor extraction in most statistical software 
packages, including SPSS and SAS, it is known to produce 
inaccurate results by overextracting factors (Fabrigar et al., 
1999; Gorsuch, 1983). Instead, this article recommends that 
researchers running an EFA should utilize parallel analysis 
(PA; Turner, 1998). Research shows that PA often provides 
one of the most accurate factor-extraction methods; 
although it has long been underutilized partly due to the 
complexity of computation, recent development of freely 
available computer programs and SPSS tutorials greatly 
have reduced the burden to conduct a PA (Hayton et al., 
2004; Watkins, 2008). 

 
Rotation methods. The “orthogonal-versus-

oblique” debate marks one of the most hotly debated issues 
among scholars (see Comrey & Lee, 1992; Fabrigar et al., 
1999; Henson & Roberts, 2006; Park et al., 2002; Preacher 
& MacCallum, 2003). This article suggests that any EFA 
should employ an oblique-rotation method, even if the 
conceptualization of the target construct suggests that 
factors should be unrelated (i.e., orthogonal to one another) 
for three reasons. First, as noted earlier, almost all 
phenomena that are studied in social sciences are more or 
less interrelated to one another and completely orthogonal 
relationships are rare; therefore, imposing an orthogonal 
factor solution is likely to result in biasing the reality. 
Second, if the construct under study indeed features 
unrelated factors, this orthogonality should be empirically 
verified (i.e., if factors are indeed unrelated, it should be 
revealed via EFA employing an oblique-rotation method). 
Third, because in most CFAs latent factors are specified to 
be interrelated (cf. Figure 4), employing an oblique-rotation 
method helps maintain conceptual consistency across EFA 
and CFA within the hybrid approach introduced in the 
current article (i.e., exploring the data via EFA first, 
followed by CFA). 

 
Estimation methods. Similar to the factor-

extraction method in EFA, what estimator should be used in 
CFA marks a controversial topic (Kline, 2005). 
Nevertheless, the literature appears to suggest that the use 
of maximum-likelihood (ML) estimation method provides 
the de facto standard (Bandalos, 1996; Russell, 2002). 
Although there are a number of estimators proposed and 
utilized in the literature, the vast majority of the published 
CFA studies employ ML and research suggests that it 
produces accurate results in most situations (Fan et al., 
1999; Levine, 2005; Thompson, 2004; see Kline, 2005, for 
a review of various estimation methods). 
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Model fit evaluations. Whereas the specific 

standards employed to evaluate a given CFA model differs 
across fields and influenced by numerous factors (e.g., 
development of the theory/construct in question), 
researchers seem to agree at least that multiple criteria 
should be used to evaluate a model (Fan et al., 1999; Hu & 
Bentler, 1999). The current article suggests that a CFA 
model should be evaluated in the light of its exact fit (i.e., 
χ2 value), RMSEA, one of the incremental fit indices (CFI, 
TLI, or RNI), and SRMR (see also Kline, 2005). If the 
model exhibits an adequate fit with regard to all of those 
indices—that is, the computed χ2 value is not statistically 
significant, RMSEA is smaller than .06, CFI/TLI/RNI is 
greater than .95, and SRMR is smaller than .10—then, 
researchers can confidently claim that it represents the 
latent factor structure underlying the data well. Perhaps 
some criteria may be loosened without causing overly 
drastic consequences; for example, RMSEA smaller than 
.08 should be considered acceptable under most 
circumstances and so is CFI/TLI/RNI greater than .90 (see 
Fan et al., 1999; Marsh et al., 2004). In a related vein, it 
seems noteworthy that the number of items being analyzed 
in a given CFA is negatively associated with the model’s 
goodness of fit. In other words, generally speaking, the 
more the items, the worse the model fit (Kenny & 
McCoach, 2003). This finding points to the importance of 
the item-generating and item-screening procedures, because 
it illuminates that not only selecting quality items helps the 
model to fit well, but also failing to sieve unnecessary items 
out eventually results in harming the model and therefore 
impedes the analysis. 

 
Concluding Remarks 

 
Invented in the first decade of the 20th century 

(Spearman, 1904), factor analysis has been one of the most 
widely utilized methodological tools for quantitatively 
oriented researchers over the last 100 years (see Gould, 
1996, for a review of the history of the development of 
factor analysis). This article illuminated the distinction 
between two species of factor analysis: exploratory factor 
analysis (EFA) and confirmatory factor analysis (CFA). As 
a general rule, it is advisable to use CFA whenever possible 
(i.e., researchers have some expectations or theories to draw 
on in specifying the factor structure underlying the data) 
and, as Levine (2005) maintains, the conditions required for 
the use of CFA are readily satisfied in most cases where 
factor analysis is used. After all, researchers should have at 
least some idea about how their data are structured and 
what factors underlie their observed patterns. Thus, 
researchers interested in identifying the underlying 
structure of data and/or developing a valid measurement 
scale should consider using CFA as the primary option 
(Thompson, 2004). 

 

At the same time, readers should keep in mind that 
there are times and places wherein the use of EFA is most 
appropriate. Unfortunately, however, reviews of the 
literature suggest that in many cases where EFA is used, 
researchers tend to make inappropriate decisions; they may 
use PCA instead of EFA, enforce an orthogonally-rotated 
solution, draw on the Keiser-Guttman rule by uncritically 
using the default setting of the software package, or simply 
collecting too few samples (see, e.g., Fabrigar et al., 1999; 
Gorsuch, 1983; Hetzel, 1996; Park et al., 2002; Preacher & 
MacCallum, 2003). These ill-informed practices (and other 
mistakes discussed in this article and also in its cited 
references) can severely harm the analysis by inducing bias 
and distorting results. It is hoped that the walk-through 
illustrated in the current article and the discussions 
provided therein will give young scholars an idea about 
how to factor-analyze their data properly and break the 
cycle of reproducing malpractices that have been repeatedly 
made and critiqued in the literature of factor analysis. 
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