
CONTRIBUCIONES CIENTÍFICAS
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Resumen. La estabilidad de sistemas Hamiltonianos es una parte esencial en

el estudio de un amplio número de problemas en varias ramas de la Ciencia,
tales como Mecánica Clásica, Mecánica Celeste, F́ısica Atómica, etc. Además,

es un tema de alto interés para las Matemáticas. No obstante, el problema
es dif́ıcil de abordar, incluso para sistemas con dos grados de libertad, donde

existen algunas situaciones especiales que deben ser resueltas.

En este trabajo se presentan algunos de los resultados clásicos sobre es-
tabilidad en sistemas Hamiltonianos con dos grados de libertad y cómo éstos

se pueden unificar en un enunciado sencillo. Esto se consigue atendiendo a

la geometŕıa del problema cuando se ha reducido éste a uno más simple,
manteniendo las propiedades esenciales del sistema original.

Abstract. Stability of Hamiltonian systems is an essential piece in the study
of a number of problems in various scientific branches, such as Classical Me-

chanics, Celestial Mechanics, Atomic Physics, etc. Furthermore, it is a sub-

ject of high mathematical interest. Nevertheless, the problem is difficult to
tackle even for systems with two degrees of freedom where there are some

special situations to be solved.

In this work we present some of the classical results on the stability ques-
tion for two degrees of freedom Hamiltonian systems and how they can be

unified in a very simple statement. This is done paying attention to the
geometry of the problem when it is reduced to a simpler one, retaining the
essential properties of the original system.

1. Introduction

The stability of equilibrium positions of mechanical systems is an old question
and can be traced back to the 17th century, just after the publication of Newton’s
Principia. One of the problems in touch was the stability of the solar system,
which astronomers and mathematicians studied under the name of the n-body
problem. This problem showed to be very difficult to handle and even a precise
concept of stability was not clear and different definitions were used.
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The usual concept of stability is due to Lyapunov [15] and, for an equilibrium
solution, reads as

Definition 1. The equilibrium solution x0 of ẋ = f(x, t) is said to be stable in
the sense of Lyapunov (or Lyapunov stable) if for each ε > 0 there exists δ0 such
that if x(t) is any solution satisfying ‖x(t0) − x0‖ < δ, then ‖x(t) − x0‖ < ε for
all t ≥ t0. If the equilibrium is not stable it is said to be unstable.

For a linear differential equation, ẋ = Ax, the stability of the trivial solution
x = 0 follows from the eigenvalues of the matrix A. Indeed, if all the eigenvalues
of A have zero or negative real part and the corresponding Jordan blocks of the
zero real part eigenvalues are diagonal, the equilibrium is stable. Otherwise the
equilibrium is unstable.

Thanks to this result, it is possible to establish the stability of an equilibrium
point in the first approximation, that is to say of its linear approximation. The
next step is whether linear stability implies Lyapunov stability. In this way, let us
consider a system of differential equations

(1) ẋ = f(x) = Ax + . . . ,

where f is a sufficient differentiable function satisfying f(0) = 0 andA the Jacobian
matrix at x = 0. Then, if all the eigenvalues of A have negative real part, the
equilibrium x = 0 is Lyapunov stable. On the contrary, if at least one of the
eigenvalues has positive real part, the equilibrium is unstable.

The case when all the eigenvalues have zero real part is a critical one and more
sophisticated results are needed. One of them is due to Dirichlet [7], although the
idea was original of Lagrange, who proved that if the system (1) has a first integral
and x = 0 is an extremum of that integral, then the equilibrium is stable. This
result is specially interesting in the case of Hamiltonian systems.

Let us consider a canonical system of differential equations

(2)
dqj
dt

=
∂H
∂pj

,
dpj
dt

= −∂H
∂qj

(j = 1, 2)

System (2) is called a two degrees of freedom Hamiltonian system and the function
H is called the Hamiltonian function.

We suppose thatH is analytic in a neighborhood of the equilibrium qj = pj = 0.
Thus, it can be written as

(3) H = H2 +H3 + · · ·+Hk + . . . ,

where Hk (k ≥ 2) are homogeneous polynomials of order k with respect to qj , pj
with constant coefficients.

By virtue of Liouville theorem, if λ is an eigenvalue of the linear part, also
−λ and λ̄ are eigenvalues. Thus, in order to have Lyapunov stability, a necessary
condition is that all eigenvalues have zero real part. In this way, the stability of the
origin in the sense of Lyapunov depends on properties of the Hamiltonian function
H. As (2) is autonomous, then H is a first integral and if H is definite then, by
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Dirichlet’s theorem, the origin is stable. In fact it is enough that the quadratic
form H2 be definite.

When H2 is not definite, Arnold [3] and Moser [19, 23] proved that the equi-
librium position is stable if certain non-degeneracy conditions are fulfilled. This
criterion works in the so called general elliptic case, when the eigenvalues are
purely imaginary, ±ω1i, ±ω2i. However, it is necessary that ω1/ω2 6∈ Q, which
means that ω1 and ω2 do not satisfy a resonant condition.

Definition 2. ω1 and ω2 are said to be resonant if there exist a pair of integers n
and m such that nω1 −mω2 = 0. The number |n|+ |m| is called the order of the
resonance.

There are well known examples for which the origin is unstable in the presence
of resonances despite of its stability in the linear approximation [6, 14]. The first
one who obtained rigorous results of stability in the presence of resonances was
Markeev [16, 17], but for concrete resonance values. A general result for resonant
cases is due to Cabral and Meyer [5], which also accounts for the classical result
of Arnold and Moser.

All these stability and instability criteria are established with the help of tech-
nical theorems, like Moser’s invariant curve theorem, KAM theory and Chetaev’s
instability theorem. However, a geometric approach to these results is also possi-
ble as it was shown by Alfriend [1, 2] when he studied the stability of Lagrangian
points in the circular restricted three-body problem, for certain resonant cases.
Later on, Elipe et al. [10] gave a different geometric approach that was general-
ized in [11, 21]. The study of stability under a geometric point of view has been
one of our research lines along the last years, while Mirian was a staff member at
our Department. In what follows, we will give a summary of the classical results
and some geometric counterparts we have derived.

2. Classical results

The key idea in the derivation of stability criteria lies on the reduction of sys-
tem (2) to another one expressed in a simpler way; the new system retaining the
essential properties of the original one in a small neighborhood of the equilibrium
point. This was one of the tasks in Poincaré’s thesis [22], who tried to reduce
the system to a linear one. Unfortunately, this is not possible for a Hamiltonian
system and we have to satisfy ourselves with a new system derived from a nor-
malized Hamiltonian function. This new Hamiltonian is obtained step by step by
constructing a new formal first integral which, in the general elliptic case, is the
term H2 in (3). In this way, we arrive to the so called Birkhoff-Gustavson normal
form, after Birkhoff [4] and Gustavson [12].

Theorem 1 (Birkhoff). Let H be given by (3), where

H2 =
1
2
ω1(p12 + q12)± 1

2
ω2(p22 + q22),
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and ω1/ω2 6∈ Q. Then, there exists a canonical change of variables (qk, pk) =
w(ξk, ηk) in such a way that

H(w(ξk, ηk)) = Γ(ξ12 + η12, ξ22 + η22)

is a formal power series of ξk2 + ηk2, k = 1, 2.

Based on this theorem, we have the first stability result, due to Arnold, we
reproduce in a more readable version given by Meyer and Schmidt [18].

Theorem 2 (Arnold). Let us consider a two degrees of freedom Hamiltonian
system H expressed in the Poincare’s variables (Ψ1,Ψ2, ψ1, ψ2), as

H = H2 +H4 + · · ·+H2n + H̃,

where
1. H is a real analytic function in a neighborhood of the origin.
2. H2k, 1 ≤ k ≤ n, is a homogeneous polynomial of degree k in Ψ1,Ψ2, with

real coefficients and independent of ψ1, ψ2. In particular,

H2 = ω1Ψ1 − ω2Ψ2, ω1, ω2 > 0;

H4 = 1
2 (AΨ12− 2BΨ1Ψ2 + CΨ22) .

3. H̃ has a power expansion in Ψ1,Ψ2 which starts with terms at least of order
2n+ 1 and whose coefficients are real trigonometric sums in ψ1, ψ2.

Under these assumptions, the origin is Lyapunov stable if there exists some k,
2 ≤ k ≤ n such as H2 does not divide H2k, likewise if D2k = H2k(ω2, ω1) 6= 0.

Several things must to be noted about this theorem. The first one is the use
of a sort of polar coordinates, the Poincaré variables, accounting for the toroid
structure of phase space. Ψk are radial distances defining the two radius of the
torus, whereas ψk are the two angular coordinates on the torus. The second
thing is that H is supposed to be in Birkhoff normal form up to order 2n. As
a consequence, the two fundamental frequencies ω1 and ω2 do not satisfy any
resonant condition, that is ω1/ω2 6∈ Q.

To handle resonant cases, Markeev provided some specialized theorems [16] for
third and fourth order resonances, that is, when ω1 = 2ω2 and ω1 = 3ω2. The
most important difference is that in resonant cases the normal form is no longer like
the Birkhoff normal form. It retains some terms containing the angular variables,
in such a way that the normal form looks like different depending on the order of
the resonance. These theorems are presented below.

Theorem 3 (Markeev, 1:2 resonance). Let us consider a Hamiltonian system
under a 1:2 resonance whose normal form is written in terms of the Poincaré
variables as

H = 2ω2Ψ1 − ω2Ψ2 + δΨ1/2
1 Ψ2 cos(ψ1 + 2ψ2) +H,

with H = H(Ψ1,Ψ2, ψ1, ψ2) = O((Ψ1+Ψ2)2). If δ 6= 0, the equilibrium is unstable.
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Theorem 4 (Markeev, 1:3 resonance). Let us consider a Hamiltonian system
under a 1:3 resonance whose normal form is written in terms of the Poincaré
variables as

H = 3ω2Ψ1−ω2Ψ2 + δΨ1/2
1 Ψ3/2

2 cos(ψ1 +3ψ2)+
1
2

(AΨ12+2BΨ1Ψ2 +CΨ22)+H,

where H = H(Ψ1,Ψ2, ψ1, ψ2) = O((Ψ1 + Ψ2)5/2). We denote D = A+ 6B + 9C.
If 6
√

3|δ||D|, the equilibrium is unstable and if 6
√

3|δ| < |D|, the equilibrium is
stable.

In addition to these results, there are stability criteria for low order resonances
[13, 24, 25], when the normal form does not fit with the Birkhoff-Gustavson case.
Now, the formal integral to be constructed is related with the decomposition of the
linear part in its semisimple and nilpotent components [20]. Excluding low order
resonances, Cabral and Meyer formulated a very general theorem to give stability
conditions for both resonant and nonresonant cases. Its statement is very similar
to that of Arnold’s theorem, and it reads as follows:

Theorem 5 (Cabral & Meyer). Let us consider the Hamiltonian H whose normal
form up to order r is expressed as

H = H2(Ψ1,Ψ2) +H4(Ψ1,Ψ2) + · · ·+H2l(Ψ1,Ψ2) +Hr(Ψ1,Ψ2, nψ1 +mψ2) + · · ·
where r = 2l + 1 or r = 2l + 2, and

1. H is a real analytic function in a neighborhood of the origin and 2π–periodic
in nψ1 +mψ2.

2. H2k (1 ≤ k ≤ l) is a homogeneous polynomial of degree k in Ψ1, Ψ2 with
real coefficients independent of ψ1, ψ2. In particular,

H2 = ω1Ψ1 − ω2Ψ2.

3. ω1 and ω2 satisfy a resonance condition nω1 −mω2 = 0. If n = m = 1, we
assume that the corresponding linear system is diagonalizable.

4. Hr(Ψ1,Ψ2, nψ1 + mψ2) is a homogeneous polynomial of degree r in
√

Ψ1,√
Ψ2, with coefficients which are finite Fourier series in the angle nψ1 +

mψ2.
5. The dots denote terms of degree bigger than r in the variables

√
Ψ1,
√

Ψ2.
Let us define D2k = H2j(ω2, ω1) (1 ≤ k ≤ l) and

Ψ(ψ) = Hr(ω2, ω1, ψ),

where
ψ = nψ1 +mψ2.

Under these assumptions,
If D2k 6= 0 for some k = 2, . . . , l, then the origin is Lyapunov stable.
If D2k = 0 for all 2 ≤ k ≤ l, and
• Ψ(ψ) 6= 0 for all ψ, the origin is Lyapunov stable.
• Ψ has a simple zero, that is, if there exists ψ∗ such that Ψ(ψ∗) = 0 and

Ψ′(ψ∗) 6= 0, the origin is unstable.
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As in Arnold’s theorem there is an implicit assumption in the hypothesis of
this theorem. Indeed, it is supposed that r is the first term in the normal form
containing angular variables. Thus, r is the order of the resonance. However, this
assumption can be weakened as we will see in the geometric approach.

The proof of theorem 5 strongly lies on a basic lemma, due to Sokolsky [25], that
reduces the problem to the computation of real roots of an appropriate function.

Lemma 1. Let K(s, ψ, t) = Ψ(ψ)sn + O(sn+ 1
2 ), where n = m/2 with m ≥ 3, an

integer. Let us assume that K is an analytic function of
√
s, ψ, t, τ -periodic in

ψ and T -periodic in t. If Ψ(ψ) 6= 0, for all ψ, then the origin s = 0 is a stable
equilibrium for the Hamiltonian system

ṡ =
∂K

∂ψ
, ψ̇ = −∂K

∂s
,

in the sense that given ε > 0, there exists δ > 0 such that if s(0) < δ, then the
solution is defined for all t and s(t) < ε. If Ψ(ψ) has a simple zero, i.e., if there
exists ψ∗ such that Ψ(ψ∗) = 0 and Ψ′(ψ∗) 6= 0, then the equilibrium s = 0 is
unstable.

Now we are in position to give a geometric counterpart of the stability criteria,
focusing on resonant cases. To this end, we proceed to identify the structure of the
phase space after normalization and study the shape of the orbits on the reduced
phase space. Indeed, after normalization, a new formal integral is introduced
(namely H2 = ω1Ψ1−ω2Ψ2) and the phase space can be considered as a foliation
of two dimensional surfaces in terms of the value of H2. Taking this into account,
we do not follow the standard procedure of the isoenergetic reduction and consider
the motion at the energy level H = 0 (this is the basis of the proof given by Cabral
& Meyer). On the contrary, we consider the motion at the surface H2 = 0 where
the origin lies.

3. The reduced phase space and the geometric criterion

A normalization is a step by step procedure where in each step a canonical
change of variables is made to kill, order by order, those monomials in the Hamil-
tonian function which are incompatible with the formal integral H2. Thus, the
new Hamiltonian is generated by a set of invariant monomials that act as new
variables of the system.

Thanks to the new formal integral these invariants are not independent. They
are linked by a functional relation which is different depending on the order of the
resonance. There are several ways to construct the invariants. We will use that
given in [11], based on an alternative set of polar variables, specially designed to
handle resonant oscillators [8, 9]. Using these variables, we denote by M1, M2, C,
S, and assuming nω1−mω2 = 0 (ω1/m = ω2/n = ω), the normalized Hamiltonian,
up to order N , can be written as

H = H2 +
N∑
j=3

Hj
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The formal integral is H2 = 2ωM2 and

Hj =
∑

2(γ1+γ2)+(n+m)(γ3+γ4)=j

aγ1γ2γ3γ4M
γ1
1 Mγ2

2 Cγ3Sγ4 , 3 ≤ j ≤ N.

The invariants are not independent and they satisfy the equation

(4) C2 + S2 = (M1 +M2)n(M1 −M2)m,

together with the relation

(5) M1 ≥ |M2|.

Equations (4) and (5) define the reduced phase space as a revolution surface for
each constant value of M2, with a vertex at the point M1 = |M2|, C = S = 0. In
particular, the origin is the vertex of the surface corresponding to M2 = 0. Figure
1 shows different surfaces of revolution for a 1:3 resonance depending on the value
of M2.
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Figure 1. The reduced phase space for a 1:3 resonance and dif-
ferent values of M2. From left to right M2 = 0, M2 > 0 and
M2 < 0.

Once the reduced phase space is determined, it is possible to know the flow of
the normalized system, when it is truncated to a prescribed order. Indeed, the
flow results as the intersection of the normalized Hamiltonian function with the
surface defined by the reduced phase space (see figure 2).

Now, a geometric criterion based on how the phase portrait looks like in a
neighborhood of the origin can be stated, on the basis we are only interested on
the flow in the manifold M2 = 0. In this sense, if the orbits are closed trajectories,
then the origin will be stable, whereas if there are asymptotic orbits to the origin,
it will be unstable. In fact, this comes down to determining the zero level energy
curves on the surface (4) for M2 = 0, that is, the intersection of the surfaces (4)
and H = 0 (for M2 = 0).

Let us assume that the Hamiltonian is normalized up to a certain order N ≥ r,
with HN the first term in the normal form does not vanish for M2 = 0. Under
these conditions, we get the following result.
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Figure 2. Orbits and projections, when M2 = 0, in stable and
unstable cases respectively.

Theorem 6 (Geometric criterion). Let us consider the two surfaces G1 ≡ C2 +
S2 = Mr

1 and G2 ≡ H(C, S,M1;M2 = 0) = 0. If their only common point is the
origin, then it is stable. If they intersect each other transversally, then the origin
is unstable.

This result is a bit more general than previous results, as it is not implicit that
the normal form is given up to the order of the resonance. Even more, it can
be generalized to include all kind of resonances, not only those of order greater
than 3, but also low order resonances. In this way, we must take into account
the structure of the phase space, after normalization, and the new formal integral.
Thus, we have a very general result

Theorem 7 (Geometric criterion II). Let be I the formal integral introduced in
the normalization procedure and let be G1 and G2 the following two surfaces

G1, defined by the first term in the normal form does not vanish for I = 0.
G2, the manifold of the reduced phase space for I = 0.

Under these assumptions, if the two surfaces have the origin as an isolated inter-
section point, the origin is stable. Otherwise, if they are not tangent, the origin is
unstable.

A remarkable thing is the fact that G1 is a definite function in the neighborhood
of the origin in the case of stability, whereas it is not sign defined if the equilibrium
is unstable. In the last case, the non trivial level set H = 0 acts as a separatrix
and, since the origin is an equilibrium point, asymptotic orbits must appear.

4. The geometry of the 1:3 resonance

In order to exemplify the geometric criterion, we consider the case of a 1:3
resonance. Now, the normal form, up to fourth order can be written as

H = 2ωM2 + a4M12 + b4M1M2 + c4M22 + αS + βC,
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where a4, b4, c4, α and β are known parameters for a specific problem, such that
a42 + α2 + β2 6= 0. On the other hand, the reduced phase space is given by

(6) C2 + S2 = (M1 +M2)(M1 −M2)3.

It can be proved that a rotation about the M1 axis leaves invariant the structure
of the phase flow. In this way, it is possible to reduce the number of parameters
in the normal form and it can be expressed as

(7) H = 2ωM2 + a4M12 + b4M1M2 + c4M22 + γS.

Taking into account (6) and (7), the two surfaces appearing in the geometric
criterion are, after doing M2 = 0,

G1 = {(C, S,M1) ∈ R3; a4M12 + γS = 0},

and
G2 = {(C, S,M1) ∈ R3; C2 + S2 = M14}.

The intersection of these two surfaces is given by

(8) G1 ∩ G2 = {(C, S,M1) ∈ R3; S = −a4M12
γ

, C2 = (1− a42
γ2

)M14}

if γ 6= 0. If γ = 0, the origin is the only intersection point. As the variables C,
S and M1 are real values, from the intersection given by (8) two cases must be
distinguished. On the one hand, if a42 > γ2 it must be M1 = 0 and so, S and
C, then the only common point of G1 and G2 is the origin and it is stable. On
the other hand, if a42 < γ2 there is an intersection curve, defining an asymptotic
orbit, and therefore the origin is unstable.

It is easy to visualize the two cases by means of a projection of the two surfaces
onto the plane C = 0. If the projection of G1 lies in the region defined by S2 −
M14 > 0, the origin is unstable. Otherwise, if the projection is not one of the
two sheets of S2 −M14 = 0, the origin is stable. Figure 3 shows the two cases,
depending if the projection of G1 lies inside or outside the projection of the conic
surface G2.
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-15
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Figure 3. Surfaces G1 and G2 projected onto the plane C = 0 in
two cases: stable (solid line) and unstable (dashed line).
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