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Abstract

Payment for Ecosystem Services programs offer financial com-
pensation to farmers in exchange for environmental services. Farm-
ers typically differ with respect to the opportunity costs of pro-
viding such services, and unless the donor has perfect informa-
tion about each individual farmer’s opportunity cost function, the
amounts paid are larger for some (or even many) farmers than
strictly necessary. Incentive-compatible contracts can be used to
reduce the total amount of compensation paid, but despite their
theoretical appeal, such contracts are not used often in practice.
The main reasons are that (i) information requirements are large,
and (ii) the net savings on subsidies paid is always (much) smaller
than in the first-best (complete information) case. We contribute
to this literature by not only focusing on variable conservation
costs but also on fixed costs. We find that if high fixed cost farm-
ers have low variable costs and vice versa, the first-best savings
on subsidies spent can actually be achieved. We identify the
conditions under which these maximum savings can be obtained,
and conclude that in those circumstances the net savings of pro-
viding incentive-compatible contracts may be sufficiently large to
warrant gathering all information needed.
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1 Introduction

Over the past decade, so—called Payment for Ecosystem Services (PES)

programs have become increasingly popular as a means to induce landown-

ers to undertake environmentally beneficial activities on their private

lands, which they would not have undertaken otherwise. Such activi-

ties include, among others, implementing measures to conserve soils or

to protect biodiversity, and these programs have been implemented in

developed and developing countries alike (see for example OECD 1997

and Ferraro 2001). PES programs usually take the form of contracts be-

tween the donor (or regulator) and individual landowners, which specify

the type and level of conservation activities the landowner is required

to undertake on her land, as well as the amount of money she receives

in compensation. Participation is in most instances voluntary, and that

means that in order for the landowner to sign the contract, the amount

of money offered in compensation should at least cover the extra costs

she incurs.

The problem is that in many instances (i) some landowners can pro-

vide conservation services at lower costs than others, and (ii) landowners

have better information about these costs than the donor (cf. Ferraro

2005). That means that the more efficient landowners have an incentive

to overstate the costs of providing specific levels of conservation activity

in order to secure more generous compensation payments. Overgenerous

payments are typically costly to the donor or regulator either because

the available funds are limited (in case of a fixed conservation budget)

or because there are non—zero costs to raising funds (cf. for example

Smith and Tomasi 1999). Hence, the donor or regulator has a stake in

separating the low— from the high—cost landowners.

In essence, this is a classical mechanism design problem, and over
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the past years many papers have been published that build on the sem-

inal work of, among others, Mirrlees (1971), Groves (1973), Dasgupta

et al. (1979), Harris and Townsend (1981), and Guesnerie and Laffont

(1984). Early papers include Smith (1995) who analyzed how mecha-

nism design theory could be applied to the US Conservation Reserve

Program, aiming to return a specific amount of agricultural land to na-

ture while minimizing the total amount of compensation payments paid;

Smith and Tomasi (1995) who analyzed the problem of limiting pollu-

tion runoff from farm land when compensation payments are funded by

means of distortionary taxation; and Wu and Babcock (1995 and 1996)

who looked at the problem of reducing polluting input use when land

quality differs across farmers and where raising funds for compensation

is socially costly.

The general conclusion of this literature is that if the donor has full

information about the economic characteristics of the various farm types

(specifically, those characteristics that affect the farmer’s opportunity

cost of providing conservation services, such as their agricultural pro-

duction functions, their land quality, etc.) but is unable to identify

what type each individual farmer is, offering a menu of contracts speci-

fying management prescriptions and associated compensation payments

can indeed result in higher social welfare than, for example, a uniform

policy applicable to all farmers —but not always (see for example Wu

and Babcock 1996: 943).

Despite the fact that these incentive—compatible contracts can be

welfare—enhancing, their use is all but widespread (Ferraro 2005). Two

reasons may explain this lack of application: (i) the information require-

ments for the donor are substantial, and (ii) the savings in payments (or

subsidies) achieved are fairly small. The first reason is obvious, but the
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second needs somewhat more explanation. The theoretical literature on

this topic indeed shows that separating the low— from the high—cost farm-

ers is possible at least in some circumstances, but that this separating

policy under asymmetric information coincides with the first—best (com-

plete information) solution only under very restrictive conditions.1 That

means that in practice the optimal policy is nearly always a second—best

policy, and separation is achieved at a double cost. To ensure incentive—

compatibility, contracts targeted at low—cost farmers pay informational

rents to these types (that is, the low—cost farmers receive more money in

compensation than the extra costs they incur when complying), and the

contracts intended for high—cost farmers impose a level of conservation

effort that is below the first—best level. Because of these considerations,

the net benefits of designing incentive—compatible contracts are likely to

be low, and attention seems to have shifted towards alternative instru-

ments, such as for example procurement auctions for PES contracts (cf.

Ferraro 2005: 7; Latacz—Lohmann 2004, Latacz—Lohmann and Schilizzi

2006).

The double cost of incentive—compatible contracts materializes be-

cause of one key characteristic of the models developed in the PES liter-

ature, and that is their focus on variable conservation costs. Typically,

agents are assumed to differ with respect to a certain characteristic, and

this characteristic is assumed to affect the marginal benefits (or costs)

of the input to be regulated. For example, in case of Wu and Bab-

cock (1996), the regulated input is the amount of polluting inputs used

in agriculture, and farmers differ with respect to the quality of their

1For example, Wu and Babcock (1996) find that the first-best level of reduction
in polluting input use can only be implemented under asymmetric information if the
deadweight loss of providing subsidies are zero. In that case, subsidies are effectively
straightforward (zero-cost) transfers from the regulator to the farmer, and hence
paying too much subsidies is not socially costly.
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land. The higher a farmer’s land quality, the larger her marginal pro-

ductivity of polluting input use. That means that farmers with high

(low) quality land are high—cost (low—cost) producers of conservation

services. The presence of these variable costs of conservation services

implies that the first—best (i.e., complete information) solution is typi-

cally not incentive—compatible. The first—best allocation of conservation

effort across farmers is that the amount of land conserved is a decreasing

function of land quality; high—cost conservers should conserve less. This

should also be the case in the presence of asymmetric information. But

whereas in the first best the associated compensation payments would

be increasing in land quality (implying that high—cost farmers receive

more money in compensation than low—cost farmers), the second—best

contracts under asymmetric information require payments to fall with

land quality. Indeed, under asymmetric information the first—best so-

lution is not incentive compatible because it gives low—cost farmers a

double incentive to report themselves as high—cost farmers: they would

not just be offered less stringent management practices (i.e., less reduc-

tion in input use), but larger compensation payments as well (Wu and

Babcock 1996: 939).

This paper contributes to this literature by not only taking into ac-

count heterogeneity regarding variable conservation costs but also with

respect to fixed costs. While these fixed compliance costs can be sub-

stantial in practice, they have been largely ignored by researchers and

policy makers alike (cf. European Commission 2005: 22). Examples of

fixed costs (in addition to variable costs) in conservation programs are

not difficult to find. Soil conservation on steeply sloped land can be

improved by intercropping the main crop with crops that have a root

structure that better retains soils. Here, costs vary with the amount of
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services provided; the larger the share of the latter crop type in the area

cultivated, the better soils are retained but also the higher the farmer’s

opportunity costs in terms of output foregone of her preferred crop. But

farmers can also invest in constructing terraces. Then, less land needs

to be allocated to growing the crops with the better root structure to

achieve the same amount of soil conservation. And fixed costs (in addi-

tion to variable costs) play a role in biodiversity conservation programs

too. For example geese management schemes require farmers to delay

the moment at which farmers bring out their cattle to the pastures to

allows these migratory birds to feed on their land (cf. MacMillan et al.

2004). Delaying implies having to feed the herd in the stables. Hence,

the costs of complying depend on the length of the delay as well as on the

size of the herd while the damage inflicted by the geese only depends on

the number of birds stopping by. Therefore, the delay costs are variable

in nature, while the damage inflicted is largely fixed.

We find that accounting for both fixed and variable conservation

costs has important consequences for the efficiency of offering a menu

of management requirements and compensation payments targeted at

the various farmer types. We find that separating contracts always re-

sult in lower subsidy costs than uniform policies, and that the first—best

contract can even be incentive compatible —under circumstances that

may well occur in practice. Our policy conclusion is therefore contrary

to the one drawn by Ferraro (2005). Even though the information re-

quirements may be quite substantial, the benefits of implementing sep-

arating policies may be sufficiently large after all because the incentive—

compatible outcome may not always involve the double costs identified

above. Therefore, our main conclusion is that incentive—compatible con-

tracts deserve a second look.
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Our approach is admittedly simplified in several respects. First, we

abstract from the moral hazard problem that is inherently present in

real world situations —that compliance is hard to detect (but see among

others Ozanne et al. 2001 and White 2002). Second, we assume that

the donor has perfect information about the (economic) characteristics

of the various farmer types but does not know which farmer is of what

type, and that the individual farmers have perfect information about

their compliance costs. We therefore focus on an asymmetry in status

information but not in information collection ability (cf. Goeschl and

Lin 2003). Third, we assume that the donor just knows the distribution

of types, but does not have any farmer—specific information on the basis

of which she could assign prior believes regarding the farmer’s type (but

see Moxey et al. 1999). Fourth, our model is such that even under asym-

metric information, the amount of conservation effort is always higher

in case of a PES scheme than in its absence because we assume that the

privately optimal level of conservation effort is zero (but see Motte et al.

2004 and di Corato 2006).

The setup of this paper is as follows. We present the model in sec-

tion 2, and provide the solution to the complete information problem

(that is, the first—best solution) in section 3. In section 4 we analyze

whether the least—cost incentive—compatible contract under asymmetric

information is uniform or separating, and in section 5 we address the

question under what circumstances the first—best solution is incentive

compatible. Section 6 concludes.

2 The model

The objective of the donor is to induce a group of farmers to undertake a

certain amount of biodiversity conservation effort. There are two types

of farmers, indexed i = 1, 2, where ni > 0 denotes the total number of
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farmers of type i. Conservation effort of a farmer of type i is denoted

by bi. The minimum aggregate level of conservation effort required is

B > 0. Therefore, the donor wants to ensure that B ≤
∑2

i=1 nibi.

To provide positive levels of conservation services (i.e., bi > 0), the

farmer needs to incur both fixed and variable costs. These two types of

costs are denoted by Fi and ci(b), respectively, and hence total private

conservation costs are Ci (b) = Fi + ci (b). Here, Fi ≥ 0, and ci (b) is

assumed to be increasing and convex in b with ci (0) = c
′

i (0) = 0. Also,

without loss of generality, we assume that c′2 (b) > c
′

1 (b) for all b > 0.

Participation is voluntary, which means that farmers of type i need

to receive compensation payments (or subsidies, Si) that are at least

as large as the amount of conservation costs incurred for the effort pre-

scribed (Si ≥ Ci(bi)). Subsidies are costly in the sense that money spent

on the current project cannot be spent elsewhere. Therefore, the objec-

tive of the donor is to achieve total conservation effort B at minimum

budget.

If the donor has perfect information about each particular farmer,

the problem is to find the menu {(S1, b1) , (S2, b2)} which satisfies the

following:

min S̃=n1S1 + n2S2, (1a)

s.t. B ≤ n1b1 + n2b2, (1b)

Fi + ci (bi)− Si ≤ 0, i = 1, 2. (1c)

However, in case of asymmetric information, the donor has to take

into account the incentive compatibility constraints. This means that

the menu offered by the donor has to be such that each farmer actually

prefers the particular policy targeted at its type. That is, the donor
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needs to ensure that

ci (bi)− Si ≤ ci (bj)− Sj , (2)

where i = 1, 2 and i 	= j.

The donor can design a uniform policy, that is a single combination

of b and S that is offered to all farmers. Such a uniform policy, (Su, bu),

is trivially incentive compatible and that means that one of the partici-

pation constraints will not be binding. Since the donor wants to achieve

B, the uniform policy is straightforward:

bu =
B

n1 + n2
; Su = max {C1 (b

u) , C2 (b
u)} . (3)

The donor may also offer a menu of policies consisting of specific

combinations of S and b targeted at the different farmer types. In case

of two farmer types, a separating policy would thus consist of two combi-

nations of subsidies and management requirements, (Ss1, b
s
1) and (Ss2, b

s
2).

The key question is whether such a separating scheme can be welfare—

improving as compared to the uniform policy, that is to achieve the same

level of aggregate conservation effort at lower aggregate subsidies.

3 Complete Information

Let us first determine the menu of subsidies and management require-

ments {(Sc1, b
c
1) , (S

c
2, b

c
2)} which yields the first—best (i.e., complete infor-

mation) solution to problem (??) . The Lagrangian is the following:

L = n1S1 + n2S2 + µ
[
B − n1b1 − n2b2

]
+

2∑

i=1

λi [Fi + ci (bi)− Si] ,

where µ ≥ 0, λi ≥ 0 are the Kuhn—Tucker multipliers associated with the

conservation objective and the participation constraints, respectively.
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The first—order conditions are:2

λic
′

i (bi) + µni = 0; (4)

ni − λi = 0; (5)

µ
[
B − n1b1 − n2b2

]
= 0; B − n1b1 − n2b2 ≤ 0; (6)

λi [Fi + ci (bi)− Si] = 0; Fi + ci (bi)− Si ≤ 0. (7)

where i = 1, 2. From (5), we obtain λi = ni > 0. This implies Fi+ci (b
c
i)−

Sci = 0 (see (7)) and µ = c′1 (b
c
1) = c

′

2 (b
c
2) (see (4)). In words, the required

conservation efforts are such that marginal costs are equal, and subsidies

are paid to exactly cover conservation costs. Since c′2 (b) > c
′

1 (b) for all

b > 0, we trivially have bc1 > b
c
2. Thus, the effort level required from type

1 farmers is larger than that of type 2 farmers. However, there is no

trivial ranking with respect to the required subsidy levels because of the

presence of fixed costs. Clearly, c1 (b
c
1) > c2 (b

c
2).

3 Therefore, Sc1 > (<)S
c
2

iff F2 − F1 < (>) c1 (b
c
1)− c2 (b

c
2).

4 Asymmetric Information: Uniform versus Sepa-

rating Policies

Before being able to determine whether the first—best solution is ever

incentive compatible (in the next section), we first determine whether

the least—cost solution under asymmetric information is separating, or

uniform. We assume that each individual farmer knows her type, but

that the donor only knows the characteristics of the two types (Fi and

ci(b), i = 1, 2) and the total number of farmers (n1 and n2) but does

not know which farmer is of what type. Hence, the donor needs to take

2Our assumptions ensure that these are necessary and sufficient conditions for an
optimum.

3This can be seen as follows. The first order condition is that (µ =) c′1 (b
c
1) =

c′2 (b
c
2), and hence dbc1/db

c
2 = c

′′
2/c

′′
1 > 1. Now for any level of bc2 (with corresponding

bc1), we have d(c1 (b
c
1 (b

c
2))−c2 (b

c
2))/db

c
2 = c

′
1 (b

c
1) db

c
1/db

c
2− c

′
2 (b

c
2) = µ[db

c
1/db

c
2−1] >

0. Straightforward integration yields c1 (b
c
1)− c2 (b

c
2) > 0 for all bc2 > 0.
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into account the incentive compatibility constraints given in (2), and

the problem is to find the menu {(S1, b1) , (S2, b2)} which satisfies the

following:

min S̃ = n1S1 + n2S2,

s.t. B ≤ n1b1 + n2b2,

Fi + ci (bi)− Si ≤ 0, i = 1, 2, (8)

ci (bi)− Si ≤ ci (bj)− Sj , i, j = 1, 2, i 	= j (9)

The full analysis of this optimization problem is provided in the ap-

pendix; in the main text we resort to a graphical analysis. Here, isocost

functions are a useful tool to evaluate farmer preferences when compar-

ing multiple policy combinations. Isocost functions represent the sets of

policy combinations (S, b) such that total (net) costs for farmer type i

are constant: ki = Fi + ci(b) − S. Since db
dS

∣∣
ki
= 1

c′
i
(b)

, isocost functions

are upward—sloping and concave in (S, b) space; see Figure 1. Because

c′2(b) > c
′

1(b), the isocost function of a type 1 farmer is strictly steeper in

any policy combination (S, b) than that of a type 2 farmer; db
dS

∣∣
k1
> db

dS

∣∣
k2

.

Finally, costs decrease whenever the required effort level is lower and the

subsidy is larger, and hence isocost functions located to the south—east

are preferred to those located to the north—west (as is illustrated in Fig-

ure 1 for type 1 farmers, where k̄′1 > k̄1). Or, put differently, for a

given isocost function, all policy combinations located to the south—east

(north—west) of this function result in lower (higher) costs.

This figure allows us to show the intuition behind the result that the

second—best policy is never a uniform policy. Recall that the optimal

uniform policy is the combination of S and b where the target level of

conservation is achieved (B̄), where all farmers implement the same level

of conservation (bu) and where the amount of subsidies provided is equal
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b

S

k1 = k1

(Su, bu)•

k2 = k2

k1 = k1’

Figure 1: A subsidy-saving deviation from the least-cost uniform policy.
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to the total costs (Ci(b
u)) of the type for which meeting the bu target is

most expensive (see equation ( 3)). Depending on the levels of fixed costs

incurred, this may be type 1 or type 2. If we assume that the optimal

uniform policy is (Su, bu) as depicted in Figure 1, we have either k̄1 = 0

(if C1(b
u) > C2(b

u), implying k̄2 < 0) or k̄2 = 0 (if C1(b
u) < C2(b

u),

implying k̄1 < 0).

Let us proceed by proving that the total amount of subsidies can

always be decreased (as compared to the uniform case) by designing a

menu of policy combinations. We do this by showing that the aggregate

amount of subsidies offered falls if the donor sets the policy combination

targeted at type 1 farmers on the k1 = k̄1 line to the north—east of

(Su, bu), and the combination targeted at type 2 farmers on the k2 = k̄2

line to the south—west of (Su, bu).4 Such a set of combinations is both

incentive—compatible and decreases the total amount of subsidies paid.

The analysis is as follows. First note that decreasing b2 implies

increasing b1 as the aggregate conservation objective B̄ remains un-

changed. Totally differentiating the conservation constraint yields db1/db2 =

− (n2/n1). Next, we can infer the required increases in subsidies (dSi)

for the amount of dbi imposed; this equals ∂Si(b
u)/∂b = c′i(b

u). The

aggregate amount of subsidies required (S̃) varies with b2 as follows:

dS̃/db2 = n1
∂S1(bu)
∂b1

db1
db2
+ n2

∂S2(bu)
∂b2

= n2(c
′

2(b
u) − c′1(b

u)) > 0. Therefore,

starting from (Su, bu), marginally decreasing b2 (and concomitantly in-

creasing b1) reduces the total amount of subsidies paid. Finally, when

moving along the two ki = k̄i lines (to the north—east for type 1 and to

the south—west for type 2), each farmer strictly prefers the new policy

4Note that this is just the proof that separating policies exist and are preferred to
the least-cost uniform policy. Moving the policy combinations along ki = k̄i (i = 1, 2)
in opposite directions reduces aggregate subsidies but does not necessarily yield the
least—cost policy menu.
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combination targeted at her type.

Hence, the uniform policy is never socially optimal; independent of

the number of farmers being of type 1 or type 2 (n1 and n2), it is always

cheaper to induce the low—cost (high—cost) farmers to undertake slightly

more (less) conservation effort. Also note that incentive compatible poli-

cies are then characterized by higher (lower) effort levels and subsidies

intended for the low (high) variable cost type. Note that this result is

independent of the level of the fixed costs.

5 The Optimal Policy under Asymmetric Informa-

tion

Let us now address the question whether the first—best (complete infor-

mation) can be incentive compatible in the presence of fixed costs. The

first—best policy is incentive compatible if and only if (8) holds with strict

equality for i = 1, 2, and (9) is met for (i, j) is (1, 2) and (2, 1) simul-

taneously. Combining these four equations, we find that the first—best

solution is incentive—compatible if and only if

c2 (b
c
2)− c1 (b

c
2) ≤ F1 − F2 ≤ c2 (b

c
1)− c1 (b

c
1) . (10)

A necessary condition for (10) to hold is that F1 > F2 ≥ 0. The

reason is that c′2(b) > c′1(b) for all b > 0, and hence c2(b) − c1(b) > 0.

That means that when F2 ≥ F1 ≥ 0, the first inequality in condition

(10) never holds. In case F1 > F2 ≥ 0, the condition is met for at least

some values of F1 and F2: because bc1 > b
c
2 and c′2(b) > c

′

1(b) for all b > 0,

we have c2 (b
c
2)− c1 (b

c
2) < c2 (b

c
1)− c1 (b

c
1).

5

The reason why the two fixed costs appear in the incentive compat-

ibility constraint is that their levels affect the amount of subsidies pro-

5Note that together with c′1(b) > c′2(b) for all b > 0, the cases F2 ≥ F1 and
F1 > F2 exhaust all possible combinations of levels of fixed costs being high or low,
and the levels of variable costs being high or low.
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vided. This result is clear when analyzing the two inequalities in (10) sep-

arately. The first inequality can be rewritten as c2 (b
c
2)+F2 ≤ F1+c1 (b

c
2) ,

and hence 0 ≤ F1 + c1 (b
c
2) − S

c
2. In words, this inequality is about the

incentives for type 1 farmers to misrepresent their type under the first—

best solution. Their net costs are zero if they choose the policy com-

bination aimed at their type, and this is incentive compatible if their

net costs are positive if they misrepresent themselves. So, even though

c1 (b
c
2) < c1 (b

c
1), type 1 farmers may still prefer the policy targeted at

their type if Sc2 is sufficiently small compared to Sc1, and this is the case if

F2 is sufficiently small compared to F1. And a similar analysis applies to

the second inequality, which can be rewritten as c1 (b
c
1)+F1 ≤ c2 (b

c
1)+F2

so that 0 ≤ F2+c2 (b
c
1)−S

c
1. Type 2 farmers have an incentive to choose

the combination aimed at their type because c2 (b
c
2) < c2 (b

c
1), but they

will only do so if Sc1 (Sc2) is sufficiently low (high), which is the case if

F1 (F2) is sufficiently small (large).6

This can also be shown graphically. Let us first consider the case

where F2 ≥ F1 ≥ 0, so that C2(b) > C1(b) for all b > 0. This case

is represented graphically in Figure 2. Here, the k1 = 0 line is strictly

located to the north—west of the k2 = 0 line. Therefore, type 1 farmers

prefer the contract intended for type 2 farmers. For b = 0, the minimum

amount of subsidies required when farmers are forced to invest is equal

to Si = Fi, and F2 ≥ F1 implies that the horizontal intercept of the

k1 = 0 is (weakly) to the left of that of the k2 = 0 line. Next, because

db
dS

∣∣
k1
> db

dS

∣∣
k2

for all b > 0, the k1 = 0 line is located strictly to the north

of the k2 = 0 line. Therefore, in this case the first—best solution is never

incentive compatible, and the second—best policy is always separating

(as shown in section 4).

6Note that this case includes F1 = F2 = 0; the first best is never incentive
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b

SF1 F2

k1 = 0

k2 = 0

k1 < 0

(Su, bu)•

•

(S1
c, b1

c)

(S2
c, b2

c)
•

Figure 2: Incentive compatibility of the first-best policy if F2 ≥ F1 ≥ 0.
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This (second—best) optimal policy when F2 ≥ F1 ≥ 0 is characterized

by the following conditions (for a formal proof see the Appendix):

n1 [c
′

2 (b
s
2)− c

′

1 (b
s
2)] = n2 [c

′

1 (b
s
1)− c

′

2 (b
s
2)] , (11a)

B = n1b
s
1 + n2b

s
2, (11b)

Ss2 = F2 + c2 (b
s
2) , (11c)

c1 (b
s
1)− S

s
1 − c1 (b

s
2) + S

s
2 = 0. (11d)

In this case, type 1 farmers have an incentive to misrepresent their

type under the complete information solution, but type 2 farmers do

not. Therefore, the farmers of the latter type receive a subsidy that

just covers their conservation costs (11c), whereas the second—best pol-

icy gives the former type an informational rent so that their incentive

compatibility constraint is binding (11d). Therefore, the optimal policy

is that the subsidy intended for type 1 farmers (Ss1) more than cov-

ers their private costs of exerting the effort level bs1, and the informa-

tional rent equals R1 ≡ S1 − F1 − c1 (b1) ≥ 0. The question is then

what levels of conservation effort should be imposed on the two farmer

types. Substituting (11c) into (11d), adding and subtracting F1 and

rewriting yields R1 = c2(b2) − c1(b2) + F2 − F1 > 0. Changing b1 af-

fects R1 and, using db2/db1 = − (n1/n2) (because of (11b)), we have

dR1/db1 = [c
′

2(b2)− c
′

1(b2)](db2/db1) = −(n1/n2)[c
′

2(b2)− c
′

1(b2)] < 0. In-

creasing the amount of conservation effort required from type 1 farmers

increases their conservation costs and thus lowers the informational rent

they receive. Therefore, the ‘golden rule’ of c′1 (b1) = c
′

2 (b2) needs to be

modified by adding dR/db1 to the LHS, which yields:

c′1 (b
s
1)−

n1
n2
[c′2 (b

s
2)− c

′

1 (b
s
2)] = c

′

2 (b
s
2) , (12)

compatible if there are only variable conservation costs.
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and this is identical to (11a). The net marginal cost of type 1 farmers are

larger than those of type 2 farmers: c′1 (b
s
1) > c

′

2 (b
s
2). Therefore, bs1 > b

c
1

and bs2 < bc2 and, consequently, Ss1 > Sc1 and Ss2 < Sc2. Since there is a

fixed aggregate conservation objective, B, both individual effort levels

are adjusted to satisfy the optimality condition and the constraint B.

Now, let us consider the case where F1 > F2 ≥ 0, so that the total

costs incurred by type 2 farmers are not always larger than those incurred

by type 1 farmers. This case implies that k2 = 0 and k1 = 0 intersect

at one particular level of b, labelled b̃ in Figure 3. We know from the

previous section that the optimal solution is always a separating policy,

and we show that in this case the first—best separating policy may even

be incentive compatible. Here, the outcome depends on the relative

values of the fixed costs incurred, the aggregate conservation objective

and on the variable cost functions.

Suppose that the first—best solution is such that either bc2 < bc1 <

b̃, or b̃ < bc2 < bc1. That means that in either case, one of the two

policy combination is located on the dotted part of either of the two

isocost functions in Figure 3, and the first—best policy is not incentive

compatible. If b̃ < bc2 < b
c
1, the situation is analogous to the one depicted

in Figure 2 and hence here type 1 farmers strictly prefer the contract

intended for type 2 farmers. In fact, condition b̃ < bc2 < b
c
1 is equivalent

to F1 − F2 < c2 (b
c
2) − c1 (b

c
2), which violates (10). In that case, the

optimal separating policy is again (11), that is an informational rent

must be given to type 1 farmers.

If, however, bc2 < b
c
1 < b̃, type 2 farmers strictly prefer the contract

intended for type 1 farmers. Here, condition bc2 < b
c
1 < b̃ is equivalent

to F1 − F2 > c2 (b
c
1) − c1 (b

c
1) . The second—best policy is then again a

18
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Figure 3: Incentive compatibility of the first-best policy if F1 > F2 ≥ 0.
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separating contract, characterized now by the following conditions:

n2 [c
′

2 (b
s
1)− c

′

1 (b
s
1)] = n1 [c

′

1 (b
s
1)− c

′

2 (b
s
2)] , (13a)

B = n1b
s
1 + n2b

s
2, (13b)

Ss1 = F1 + c1 (b
s
1) , (13c)

c2 (b
s
2)− S

s
2 − c2 (b

s
1) + S

s
1 = 0. (13d)

The interpretation is analogous to that of (11). Type 1 farmers

have no incentive to misrepresent their type when facing the first-best

policy menu, but type 2 farmers do. Therefore, type 1 farmers are

just compensated for their extra costs (13c), but type 2 farmers re-

ceive an informational rent such that their incentive compatibility con-

straint (13d) is binding. These rents are R2 ≡ S2 − F2 − c2 (b2) ≥

0. Using (13c) and (13d) and adding and subtracting F2, we have

R2 = c1(b1) − c2(b1) + F1 − F2 > 0. Differentiating yields dR2/db2 =

[c′1(b1) − c
′

2(b1)](db1/db2) = (n2/n1)[c
′

2(b1) − c
′

1(b1)] > 0; the donor can

save on the amount of subsidies paid by decreasing b2 and increasing b1,

rendering the policy combination aimed at type 1 farmers less attrac-

tive to type 2 farmers. Modifying the ‘golden rule’ of c′1(b1) = c
′

2(b2) by

adding dR2/db2 to the RHS, we obtain (13a). In this case, we also have

bs1 > b
c
1, b

s
2 < b

c
2, S

s
1 > S

c
1 and Ss2 < S

c
2.

If, however, bc2 ≤ b̃ ≤ bc1 (with at least one of the two inequalities

being strict), the first—best solution is incentive—compatible, since con-

dition (10) holds. For type 2 farmers the difference in subsidies (Sc1−S
c
2)

is always smaller than the increase in variable costs they incur when rep-

resenting themselves as type 1 farmers; for type 1 farmers the change in

subsidies is always larger than the variable cost savings they obtain be-

cause of having to meet less strict management requirements (bc2 versus

bc1).
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Figure 4: The range of differences in fixed costs (ABCD and A’B’C’D’)
for which the first—best solution is incentive—compatible, as a function
of the minimum required level of conservation.

Next, we address the question how likely it is that bc2 ≤ b̃ ≤ bc1.

Or, equivalently, how likely is it that condition (10) holds in practice?

As seen before, a necessary condition is that the farmer type with low

marginal conservation costs has larger fixed costs, i.e., F1 > F2. For a

certain level of aggregate conservation, B̄, the difference F1 − F2 > 0

must lie between two bounds, as shown in (10).

Consider Figure 4, where we depict the complete information solu-

tion. If the Kuhn—Tucker multiplier associated with the aggregate con-

servation objective (1b) is equal to µ, the left—hand side of (10) equals
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area 0AB, while its right—hand side equals 0CD. If F1−F2 is larger than

0AB but smaller than 0CD, the first—best solution is incentive compati-

ble. Now assume an increase in the required level of conservation effort,

B, increasing the corresponding Kuhn—Tucker multiplier to µ′. Graph-

ically, it is easy to see that both the left— and right—hand side bounds

of (10) increase, but that the increase in the right—hand side bound is

larger (as dbc1/db
c
2 > 1).

7

This analysis shows that, on the one hand, the interval for the ‘al-

lowable’ difference in fixed costs (i.e., the range of differences in fixed

costs that result in the first best being incentive compatible) increases if

aggregate conservation effort B increases. On the other hand, a higher

B also implies that the lower bound of the interval is increased, so that

smaller differences in fixed costs are no longer incentive compatible. As

a consequence, when F1 > F2, only intermediate levels of aggregate

conservation can be implemented without any informational distortions.

Obviously, this range of intermediate aggregate conservation levels is di-

rectly related to the difference in farmers’ marginal costs. Therefore,

the larger this difference, the larger the range of aggregate conservation

levels which are implementable by the first—best.

6 Conclusions

This paper revisits the conclusions of the literature on incentive—compatible

contracts and finds that, when taking into account the presence of fixed

conservation costs, the dual cost of separation do not necessarily oc-

cur. While in the case of just variable costs the low—cost farmers al-

ways obtain an informational rent whereas the high—cost farmers are

7Mathematically, the bandwidth for F1− F2 is given by Z ≡ [c2 (bc1)− c1 (bc1)]−
[c2 (b

c
2) − c1 (b

c
2)]. If B̄ increases by dB̄, then db2 = dB̄/[n1(c

′′
2/c

′′
1) + n2] > 0,

and db1 = (c′′2/c
′′
1)db2 > db2 > 0. Hence, dZ/dB̄ = 1

[n1(c′′2 /c
′′

1
)+n2]

[c′2 (b
c
1) −

c′1 (b
c
1)](c

′′
2/c

′′
1)− [c′2 (b

c
2)− c′1 (b

c
2)] > 0.
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confronted with less strict management requirements than in the first—

best, this is not necessarily the case when conservation entails fixed costs

too. Then, if farmers with lower variable conservation costs face higher

fixed costs (and vice versa), the first best can be incentive compatible.

Given the relevance of fixed costs in conservation issues, we conclude

that incentive—compatible contracts should be given a second chance as

a policy measure to induce conservation.

7 Appendix 1

The Lagrangian of the problem is the following

L=n1S1 + n2S2 + µ
[
B − n1b1 − n2b2

]
+
∑

i

λi [Fi + ci (bi)− Si] +

γ1 [c1 (b1)− S1 − c1 (b2) + S2] + γ2 [c2 (b2)− S2 − c2 (b1) + S1] ,

where µ ≥ 0, λi ≥ 0, γi ≥ 0 are the corresponding Kuhn—Tucker multi-

pliers.

The corresponding conditions for an optimum are:

λ1c
′

1 (b1)− µn1 + γ1c
′

1 (b1)− γ2c
′

2 (b1) = 0, (14)

λ2c
′

2 (b2)− µn2 − γ1c
′

1 (b2) + γ2c
′

2 (b2) = 0, (15)

n1 − λ1 − γ1 + γ2 = 0, (16)

n2 − λ2 + γ1 − γ2 = 0, (17)

µ
[
B − n1b1 − n2b2

]
= 0; B − n1b1 − n2b2 ≤ 0, (18)

λi [Fi + ci (bi)− Si] = 0; Fi + ci (bi)− Si ≤ 0, i = 1, 2, (19)

γ1 [c1 (b1)− S1 − c1 (b2) + S2] = 0; c1 (b1)− S1 − c1 (b2) + S2 ≤ 0,(20)

γ2 [c2 (b2)− S2 − c2 (b1) + S1] = 0; c2 (b2)− S2 − c2 (b1) + S1 ≤ 0.(21)

The case where λ1 ≥ 0, λ2 ≥ 0, γ1 = γ2 = 0 corresponds to the

first—best solution, where µ = c′1 (b
c
1) = c′2 (b

c
2) > 0, B = n1b

c
1 + n2b

c
2

and Fi + ci (b
c
i) − Sci = 0 for all i, and has been discussed already in
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section 3. The first—best policy is incentive compatible if and only if

(20) and (21) hold, that is, when c1 (b
c
1) − Sc1 − c1 (b

c
2) + S

c
2 ≤ 0 and

c2 (b
c
2) − Sc2 − c2 (b

c
1) + S

c
1 ≤ 0. Since Sci = Fi + ci (b

c
i) for all i, the

two conditions reduce, respectively, to F1 − F2 ≥ c2 (b
c
2) − c1 (b

c
2) and

F1 − F2 ≤ c2 (b
c
1) − c1 (b

c
1) . Since c′1 (b

c
1) = c

′

2 (b
c
2) and c′2 (b) > c

′

1 (b) for

all b > 0, we then have bc1 > b
c
2. Integrating over the relevant range, we

can conclude that c2 (b
c
1) − c1 (b

c
1) > c2 (b

c
2) − c1 (b

c
2). Therefore, there

exists a range of values for F1 − F2 such that the first—best policy is

incentive compatible, which is the following:

c2 (b
c
2)− c1 (b

c
2) ≤ F1 − F2 ≤ c2 (b

c
1)− c1 (b

c
1) . (22)

Now assume that F1−F2 < c2 (b
c
2)−c1 (b

c
2). Then, condition c1 (b

c
1)−

Sc1 − c1 (b
c
2) + S

c
2 ≤ 0 does not hold. In the first—best solution, type 1

prefers the policy targeted at type 2. By (20), the incentive compatibility

constraint for type 1 must be binding and γ1 > 0. Note that λ1 = λ2 = 0

is not possible since (16) and (17) then yield n1 = − n2. Therefore, we

can have either (i) λ1 > 0, λ2 = 0 or (ii) λ1 = 0, λ2 > 0.

Consider case (i) where λ1 > 0 and λ2 = 0. There are two subcases,

(ia) γ1 > 0 and γ2 > 0 and (ib) γ1 > 0 and γ2 = 0. Clearly, subcase

(ib) is not possible because, by (17), n2 = − γ1 < 0, which is a con-

tradiction. Subcase (ia) corresponds to the uniform policy described in

(3), where both incentive compatibility constraints are binding. In that

case, conditions (14) and (15) reduce to:

λ1c
′

1 (b
u)− µn1 + γ1c

′

1 (b
u)− γ2c

′

2 (b
u)= 0, (23)

−µn2 − γ1c
′

1 (b
u) + γ2c

′

2 (b
u)= 0. (24)

Combining both conditions we obtain µ = c′1 (b
u) . From (16) and

(17), we have λ1 = n1 + n2 and γ1 = γ2 − n2. Substituting these

expressions in (23), we then obtain γ2 [c
′

2 (b
u)− c′1 (b

u)] = 0, which is
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only possible when γ2 = 0, since we assume that c′2 (b) > c′1 (b) for

all b > 0. But we were assuming γ2 > 0, and therefore we obtain a

contradiction. Thus, subcase (ia) is impossible either.

Now consider case (ii) where λ1 = 0, λ2 > 0. Again, two subcases

are possible: (iia) γ1 > 0, γ2 > 0 and (iib) γ1 > 0, γ2 = 0. Subcase

(iia) corresponds again to the possibility of a uniform policy. A similar

procedure to the one described for subcase (ia) lead us to conclude that

γ1 = 0, which is a contradiction. Finally, we explore case (iib) γ1 >

0, γ2 = 0. The combination of equations (14) to (17) lead us to the

optimality condition:

n1 [c
′

2 (b
s
2)− c

′

1 (b
s
2)] = n2 [c

′

1 (b
s
1)− c

′

2 (b
s
2)] ,

which characterizes the optimal separating policy, together with the con-

ditionsB = n1b
s
1+n2b

s
2, S

s
2 = F2+c2 (b

s
2) and c1 (b

s
1)− S

s
1−c1 (b

s
2)+S

s
2 = 0.

Now, consider the case where F1 − F2 > c2 (b
c
1) − c1 (b

c
1) . Then,

condition c2 (b
c
2)− Sc2 − c2 (b

c
1) + S

c
1 ≤ 0 does not hold and, by (21), the

incentive compatibility constraint for type 2 must be binding and γ2 > 0.

Now, in the first—best solution, type 2 prefers the policy targeted at type

1. A similar proof as the one described before lead us to conclude that

the optimum in this case is characterized by γ1 = 0, λ1 > 0 and λ2 = 0.

Thus, combining equations (14) to (17), we now obtain the following

optimality condition:

n2 [c
′

2 (b
s
1)− c

′

1 (b
s
1)] = n1 [c

′

1 (b
s
1)− c

′

2 (b
s
2)] ,

together with the conditions B = n1b
s
1 + n2b

s
2, S

s
1 = F1 + c1 (b

s
1) and

c2 (b
s
2) − Ss2 − c2 (b

s
1) + S

s
1 = 0. So, again, the optimal policy is a

separating one.

Summarizing, the optimal policy under incomplete information is al-

ways separating. If F1 − F2 is sufficiently small, there is a distortion:
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the complete information policy is not incentive compatible, and an in-

formational rent is needed for type 1 farmers. Conversely, if F1 − F2

is sufficiently large, an informational rent is needed for type 2 farmers.

Only for intermediate values of F1 − F2, the first—best solution can be

implemented.
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