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Abstract

The aim of this paper is to explore the characteristics of the optimal non-linear labor income tax

in dynamic economies with information asymmetries. In particular we analyze environments with

exogenous and endogenous (to fiscal policy) human capital accumulation. The ultimate objective is

to provide a sound basis for the efficiency versus equity debate. To achieve the objective, we develop

a dynamic optimal income tax model in which agent’s productivity evolves in time according to

two different factors: an exogenous component and a learning by doing process endogenous to the

fiscal policy. The latter is determined by the government, maximizing in the initial period a social

welfare function capturing some level of aversion to inequality. We characterize analytically the

first order condition driving the optimal tax schedule in a model in which agents choose in the first

period, for a given tax schedule, the consumption and labor supply patterns that maximize their

lifetime utility function. We show that the inclusion of the endogenous evolution of productivities

into the tax problem changes the results with respect to the static framework à la Mirrlees (1971).

In particular we find that it can be optimal to subsidize (instead of taxing) high productivity

agents.
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†Institut Mediterrani d’Estudis Avançats, IMEDEA (CSIC-UIB), C/ Miquel Marqués, 21, E-07190 Esporles,

Spain, e-mail: salvador@imedea.uib.es.
‡Corresponding author. PSE Paris-Jourdan Sciences Economiques (Joint Research Unit CNRS-EHESS-

ENPC-ENS) Paris and Universitat de les Illes Balears, ctra Valldemossa km 7.5, 07122, Palma de Mallorca,

Spain, e-mail: amedeo.spadaro@uib.es

1



I. INTRODUCTION

The role of income taxes in achieving equity objectives has been highlighted in most of

the economic analysis. However, there is a controversy about the degree of progressivity the

income tax should have. High rates may affect incentives to work and may therefore imply

efficiency losses.

The modern setup for analyzing the equity-efficiency tradeoff using a general nonlinear

income tax was built by Mirrlees (1971). It is a static optimal income tax model that

defines the tax schedule as a function of three key ingredients: the distribution of produc-

tivity in the population, individual preferences for consumption and leisure, and the shape

of the social welfare function. The optimal tax schedule then maximizes this social welfare

functions under some government budget constraint and the constraints born from the la-

bor supply behavior of agents. From this model (and its extensions) we learned that the

lower is the elasticity of labor supply and the higher is the aversion to inequality of the

government, the higher is the optimal marginal tax rate to be imposed on a given class

of abilities/productivities. We know also that, if the distribution is bounded, the optimal

marginal tax rate on the highest-productivity agent is zero. The general intuition is the

following: the non-linear taxation of income (implemented for redistributive purposes) has

a negative effect on the incentives to carry out some activities that, while contributing to

global welfare, also involve a disutility for the individual. The optimal tax schedule balances

the efficiency loss of a marginal increase in taxation with the equity gains obtained by a

high level of redistribution financed with the taxes paid by the most productive agents.

Since the work of Mirrlees, the theory of optimal income taxation has been considerably

developed (see Tuomala 1990). Most of these contributions, however, do not take into

account the dynamic evolution of the economy and its effects on redistribution policies.

Economies evolve due to the interplay of multiple factors. In particular, the productivity

of the agents may evolve in time due to mechanisms that can be considered endogenous

to individual decisions (e. g. education decisions or learning by doing mechanisms) or

exogenous (e.g. aggregate productivity increases or salary indexation to inflation).

The effect of income taxes on human capital formation has been extensively analyzed (see,

for instance, Heckman et al. (1998)). This literature attempts to assess the effects of a given

tax code on human capital accumulation, but does not provide the normative prescription
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of how an optimal income tax schedule should look like. On the other hand, several papers

have adopted the normative approach of Mirrlees (1971) to incorporate education in the

analysis, but have remained static. They typically consider a one shot investment decision

in education (see Tuomala(1990), or Brett and Weymark (2003)). More recently, Kapicka

(2004) has attempted a dynamic description of an optimal labor income tax problem with

education decisions, but in this work only the steady state situation has been characterized.

Labor economics have a strong tradition in the analysis of learning by doing. Studies by

Willis (1986), Altug and Miller (1998) or Cossa, Heckman and Lance (2000) find a significant

effect of past work experience on current wage earnings. It is also well documented that

displaced workers suffer important wage losses (Jacobson, LaLonde and Sullivan (1993)) and

that wage profiles are affected by job tenure (Topel (1991)). These findings from microeco-

nomic data suggest that workers experience systematic changes in labor productivity that

are related with their labor experience. It is reasonable to assume that, as labor supply

depends on the tax schedule, this evolution is likely to be endogenous to the redistribution

policy.

The bulk of the dynamic taxation literature has studied the optimal taxation of labor

income and wealth under the assumption that the government is constrained to use linear

taxes (see Chari and Kehoe (1999) for a review). Non-linear taxation (with asymmetric

information) has been considered in Albanesi and Sleet (2005), Brito et al. (1991), Conesa

and Krueger (2005), Diamond and Mirrlees (1978), Golosov, Kocherlakota and Tsyvinsky

(2003), Kocherlakota (2005), Golosov and Tsyvinski (2003), Werning (2002), Battaglini and

Coates (2003), Roberts (1984) and Berliant and Ledyard (2005). All these papers make

different assumptions about the dynamic evolution of individuals’ unobservable types. They

assume that either the abilities do not evolve in time [Brito et al (1991), Roberts (1984)

and Berliant and Ledyard (2005)], or that abilities evolve following a stochastic process

completely exogenous to the fiscal policy [Albanesi and Sleet (2003), Diamond and Mirrlees

(1978), Golosov, Kocherlakota and Tsyvinsky (2003), Kocherlakota (2005), Golosov and

Tsyvinski (2003) and Werning (2002), Battaglini and Coates (2003) and Conesa and Krueger

(2005)].

To our knowledge, there are no papers trying to extend the optimal non linear labor

income tax problem to a dynamic setting with evolving productivities where the evolution is

due to learning by doing. This is different from education decision mechanisms, because the
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accumulation of human capital is given by the labor supply of each agent instead of being

given by his/her schooling time.

In this paper, we tackle this specific problem following the mechanism design approach of

Mirrlees (1971) where the informational asymmetries preclude the use of non-distortionary

taxation. Thus, we make no a priori restrictions on the type of taxes the government may

use. The objective of our work is to shed light on the dynamic aspect of the trade off equity-

efficiency, leaving aside the insurance aspect related to taxation; for this reason we do not

model stochastic environments.

We consider a dynamic economy where the productivities of the agents evolve in time, and

we model the problem of a government averse to inequality seeking to find the tax schedule

that optimally solves the trade off among equity (i.e. a reduced income inequality) and

efficiency (a higher income per capita) in a finite horizon model in which agents have private

information on their initial endowment of productivity. In addition, the government must

satisfy an aggregate intertemporal budget constraint. The optimal tax code is announced at

the beginning of the game and the government commits to respect it all along the periods

(from Roberts (1984) and Berliant and Ledyard (2005), we know that in such case, separation

of types will occur in each period). Agents choose in the first period, for a given tax schedule,

the consumption and labor supply patterns that maximize their lifetime utility function. In

the model, we consider that the evolution of the productivity depends on two factors: an

exogenous component and the effort of the agent. The inclusion of the exogenous component

allows us to explore the implications on optimal tax policy of aggregate changes of labor force

productivity due to technological progress or to institutional mechanisms, often observed in

reality, like indexation of wages to inflation, etc. The endogeneity of the second mechanism

to the fiscal policy derives from the fact that the optimal individual effort in each period

depends on the tax schedule. For the sake of simplicity, we choose the simplest form (linear)

of wage evolution that incorporates wage increases due to learning-by-doing.

In such a setting, we determine the first order condition to be satisfied by the optimal

tax schedule. The analysis of this first order condition reveals that the introduction of the

endogenous evolution of the productivities adds several important insights to the optimal

labor income tax problem with respect to the static Mirrlees framework. In our case, the

classical static equity-efficiency trade off is modified by the dynamic effects (past and future)

of taxation. In particular we find that the optimal tax strategy balances the social marginal
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costs of increasing marginal tax rates in a given instant t on a given class of productivities

with the social marginal benefits of doing it. The costs are related with the reduction of both

past and future human capital accumulation, with the negative impact on aggregate social

welfare due to the reduction of the individual utility of all the agents paying more taxes at

t and with the increase of the necessity to redistribute more in the future (given that the

spread among social marginal weights of each agent will be higher). This last negative effect

is due to concavity of the social welfare function. The benefits derive from the increase of

the instantaneous tax receipts and then the reduction of the overall tax burden all along the

τ periods (evaluated in terms of social welfare) and from the reduction of present inequality

of incomes and future inequality of the productivities.

The structure of the paper is the following. First we state the problem of interest. Second

we characterize the optimal behavior of agents. Third we study the general solution of the

social planner problem. In sections 5, 6, 7 and 8 we analyze particular cases allowing to

better understand the nature of the dynamic equity-efficiency trade-off. Last section presents

our conclusions.

II. STATEMENT OF THE PROBLEM

We consider a dynamical model where the wage (or productivity) of each individual is

evolving in time. A particular individual is endowed with a productivity woε[0,∞[ at the

initial stage, and from there on his productivity evolves in time according to

∂tw(wo, t) = [a(t) + bL(wo, t)] w(wo, t) subject to w(wo, 0) = wo , (1)

where a(t) is the exogenous contribution to the wage increase, L(wo, t) is the work (effort)

supplied by this individual at time t and bL(wo, t) is the rate of increase of the individual’s

wage due to the learning-by-doing process.

We consider that there is a continuum of individuals and we call f(wo) ≥ 0 the initial

distribution of productivities. We assume that
∫ ∞

0
dwof(wo) = 1 and that the moments of

any order n of the distribution are finite - i.e.
∫ ∞

0
dwow

n
o f(wo) finite. Moreover we consider

that both agents and government are aware of the rule of evolution of the wages and, in

particular, the learning by doing mechanism; however, the initial productivity wo of each

agent is private information not available to the government, who can only know f(wo)
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In this framework, a social planner seeks to maximize the finite-horizon social welfare

function

MaxT () S =

∫ τ

0

dteαt

∫ +∞

0

dwof(wo)G(U(wo, t)) (2)

which is built as an aggregation of the individual indirect utilities U(wo, t). G() is the

weight function that transforms individual utility, U(), into social welfare. In order to

model a government averse to inequality we assume that G′() ≥ 0 and G′′() ≤ 0, where

primes denote derivatives of the function with respect to its argument, i. e., h′(z) = dh/dz.

The more negative is G′′(), the higher is the aversion of the social planner to inequality.

Note that G′() ≥ 0 and G′′() ≤ 0 guarantee that S is finite at all times, provided that

the moments of the distribution f(wo) are finite.

α is the time preference parameter of the government. In our finite horizon model, it can

be positive, null or negative[1]. A positive value means that the social planner gives a higher

weight to the future social welfare. On the contrary, a negative α implies a government more

prone to the present welfare.

The above maximization is constrained by an exogenous budgetary restriction

R =

∫ τ

0

dteβt

∫ +∞

0

dwof(wo)T (w(wo, t)L(wo, t), t) (3)

that represents the non redistributive public spending to be financed all along the τ periods.

β is the opposite of the exogenous interest rate at which the government can lend or borrow

money in the financial market.

The budgetary restriction affects the social welfare because U(wo, t) is affected by the

tax schedule T (wL, t). We consider that individual instantaneous utilities depend only on

consumption and effort, being increasing and concave with respect to consumption and

decreasing and concave with respect to effort. For simplicity (as it is often the case in this

type of literature[2]), we will restrain our analysis to the class of individual instantaneous

utility functions which are quasi-linear in consumption,

U(wo, t) = C(wo, t)−B(L(wo, t)) , (4)

where C(wo, t) is consumption and B(L) denotes the loss of utility associated to the supply

of L labor units. We also impose that B(L) is increasing and convex on effort, and that

individuals (as in Mirrlees) do not accumulate any wealth. Since agents consume all their
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net income, C(wo, t) = w(wo, t)L(wo, t)− T [w(wo, t)L(wo, t), t] thus

U(wo, t) = w(wo, t)L(wo, t)− T [w(wo, t)L(wo, t), t]−B(L(wo, t)) , (5)

Therefore, the social planner must appropriately choose (at time 0) the profile of instanta-

neous income tax function T (x, t) that maximizes the social welfare S while respecting the

budgetary restriction.

Hereafter, for alleviating the notation we shall not explicitly write the dependencies on

wo and t for every term in a given function, but instead we shall use the shorthand [x]wo,t

to indicate for which individual and period the function should be computed, e. g.,

U(wo, t) = [wL−B(L)−T (wL, t)]wo,t ≡ w(wo, t)L(wo, t)−B[L(w0, t)]−T [w(w0, t)L(wo, t), t] .

(6)

III. INDIVIDUAL OPTIMUM

In response to a tax schedule T (), agents decide how many labor units to supply at each

time by optimizing their own welfare. We consider that these long-sighted agents decide

their instantaneous labor supply, L(wo, t), by maximizing their accumulated utility over the

same temporal horizon as the social planner,

MaxL(wo,t)U(wo) =

∫ τ

0

dteγtU(wo, t) . (7)

where γ is the time preference parameter as defined in Frederick, Loewenstein and

O’Donoghue (2002). An impatient individual is characterized by a large, negative γ.

For our utility function (5), the individual optimum is thus determined by

MaxL(wo,t)U(wo) =

∫ τ

0

dteγt[wL−B(L)− T (wL, t)]wo,t (8)

subject to ∂twwo,t = [(a + bL)w]wo,t . (9)

This is an standard optimal control problem for each individual which can be solved

by applying Poyntriagin method. Defining the conjugate moment to w(wo, t), µ(wo, t) and

introducing the hamiltonian of the individual,

H(wo, t) = eγt[wL−B(L)− T (wL, t)]wo,t + [µ(a + bL)w]wo,t , (10)
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the (interior) optimal solution is determined by the system of ordinary differential equations

∂tw = (a + bL)w (11)

∂tµ = −eγtL [1− ∂xT (x, t)]x=wL − (a + bL)µ (12)

0 = eγt {w [1− ∂xT (x, t)]x=wL −B′(L)}+ bµw , (13)

where primes denote the total derivative with respect to the function’s argument, i. e.,

B′(L) = dB/dL.

From these equations we have that

w(wo, t) = woe
∫ t
0 ds[a(s)+bL(wo,s)] , (14)

µ(wo, t) = e−
∫ t
0 dsa(s)

∫ τ

t

dseγse
∫ s
0 dra(r)

[
B′(L)L

w

]
wo,s

, (15)

[1− ∂wLT (wL, t)]wo,t =

[
B′(L)− bQ

w

]
wo,t

, (16)

where we have defined

Q(wo, t) =
[
µwe−γt

]
wo,t

. (17)

It is interesting to note that this term (divided by w(wo, t)) is the current value Lagrange

multiplier associated to the human capital accumulation constraint. It represents the shadow

value, expressed in term of current utility, of an increase of the stock of productivity in

the future. It is decreasing in time and, at the last period, it is null for each class of

productivity. Note also that very impatient individuals (γ tending to −∞) have vanishing

µ and Q, expressing the negligible current value of future stock of productivity.

The first order condition (16) clearly shows that the arbitrage condition driving the

optimal agent’s behavior depends on the comparison of the marginal cost of an increase

of the instantaneous labor supply (i.e the term B′(L)) with the marginal net benefit of

doing it. This benefit is the sum of an instantaneous benefit (i.e the net remuneration of a

supplementary unit of labor supply w(wo, t) [1− ∂wLT (wL, t)]wo,t) and the marginal return of

investment in human capital bQ (i.e. the shadow value, expressed in term of current utility,

of the marginal increase of the stock of productivity in the future, due to instantaneous

labor supply increase). It is worth noting that, given a tax schedule, the labor supply of the

agent is higher when b 6= 0, expressing that the future wage increases incentivate the agent

to make larger efforts.
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IV. SOCIAL OPTIMUM

From eqs.(5) and (16), we find that the change in indirect utility among individuals at

any time is
∂U(wo, t)

∂wo

=

[
L

w

∂w

∂wo

(B′(L)− bQ)− bQ
∂L

∂wo

]
wo,t

, (18)

which upon integration yields

U(wo, t) = U(0, t) +

∫ wo

0

dx

[
L

w

∂w

∂x
(B′(L)− bQ)− bQ

∂L

∂x

]
x,t

. (19)

The relationship between tax and utility given in eq.(5) together with eq.(19) allow us to

reformulate the problem for the social planner in terms of the individual labor output only,

namely

MaxL(wo,t) S =

∫ τ

0

dseαs

∫ +∞

0

dxf(x)G(U)x,s (20)

subject to R =

∫ τ

0

dseβs

∫ +∞

0

dxf(x)[wL−B(L)− U ]x,s , (21)

where w and U are given by eqs.(14) and (19), respectively. By introducing the (constant)

Lagrange multiplier λ, we can define the restricted objective functional

S = S + λR , (22)

and then the first order condition for the social optimum can be found by direct functional

derivation,
δS

δL(wo, t)
= 0 . (23)

Since we have assumed that G′′ ≤ 0, a Taylor expansion of the integrand in (20) evidences

that the first order condition corresponds to a maximum.

After some algebra and using the individual first order condition (16), an interesting

intermediate step is obtained that provides us with a first intuition on the mechanisms

driving the optimal tax policy. At this stage, the first order condition can be written as[
∂T (wL, t)

∂(wL)

]
wo,t

= Z1 + Z2 − Z3 , (24)

where

Z1 = b

[
µe−γt −

∫ τ

t
ds eβ(s−t)[wL]wo,s

w(wo, t)

]
, (25)
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Z2 =
e−βt

w(wo, t)f(w(wo, t))

[
δ
∫ τ

0
dseβs

∫ ∞
0

dxf(x)U(x, s)

δL(wo, t)

]
, (26)

and

Z3 =
e−βt

w(wo, t)f(w(wo, t))

[
δ
∫ τ

0
ds eαs

λ

∫ ∞
0

dxf(x)G[U(x, s)]

δL(wo, t)

]
. (27)

The term Z1 captures the effect of the productivity dynamics. In particular, the term

µe−γt is the current value Lagrange multiplier associated to the agent’s human capital accu-

mulation constraint. It represents the benefit of loosing utility today (by working more) in

terms of future stock of productivity. If this term is high, there will be a strong incentive for

the individual to invest (by working more today) in human capital accumulation in order

to have a higher productivity in the future. It implies that the efficiency distortion of an

increase of the marginal tax rate at time t will be low (i.e. the individual will still work

hard even if the net wage is reduced). On the contrary, if this term is low (as e.g. in the

case of very impatient individuals) the efficiency distortions of taxation will be higher. Off

course, if the endogenous part of the learning by doing process generates a strong impact

of the present effort on the future productivity, the problems of dynamic efficiency will be

more important. This intuition is behind the observation that the term
∫ τ

t ds[bwL]wo,s

w(wo,t)
impacts

negatively on the optimal marginal tax rate (this term corresponds exactly to future en-

dogenous productivity increase divided by the productivity present value). It is interesting

to note that, in the extreme case in which the human capital accumulation process presents

strongly increasing returns to scale (in that case the term
∫ τ

t ds eβ(s−t)[bwL]wo,s

w(wo,t)
is extremely

high), it can be the case that the productivity accumulation constraint prevails over the

equity concerns up to the point where it can be optimal to set negative marginal tax rates

on the agents with high levels of productivity.

The term Z2 is the product of the sum in time of the instantaneous average sensibility of

individual indirect utility to variations of the labor supply of agents in the class w0 and the

factor e−βt

w(wo,t)f(w(wo,t))
. It is related with efficiency aspects of tax problem. It captures the

behavioral effects induced by an arbitrary increase of the marginal tax rate on a given class

of productivities in a given instant t (evaluated by the government at t = 0). Such a measure

has several efficiency effects. First, it reduces the labor supply of people in the neighborhood

of w(wo, t) because the instantaneous marginal return to their labor falls. Second, it reduces

the future value of their stocks of human capital. Third, it reduces the utility of all the
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agents with productivity higher than w(wo, t) because they also pay additional taxes (even

if both the marginal tax rate and the shadow cost are unchanged - i.e their labor supply

remain unchanged). It can be easily seen that the sum of this negative efficiency effects is

higher the higher is the instantaneous elasticity of labor supply and the higher is the impact

of the present effort on the future productivity. In this case the term
[

δ
∫ τ
0 dseβs

∫∞
0 dxf(x)U(x,s)

δL(wo,t)

]
is lower.

The net increase of the tax receipts —i.e the loss on the ”w(wo, t)” agents and the sub-

sequent increase on the 1−F (wo)] agents with higher productivities— is then redistributed

via a lump sum subsidy to everybody in any instant because the intertemporal budget con-

straint must be maintained unchanged. This operation has a positive social welfare effects

if the weight of the poorest agents is higher than the richest (i.e. the government has redis-

tributive tastes). The term Z3 captures these effects. It is the product of the sum in time

of the instantaneous average social welfare sensibility to variations of the labor supply of

agents in the class w0 and, again, the factor e−βt

w(wo,t)f(w(wo,t))
. With an increasing and concave

social welfare function, a low productivity agent weights more (at the margin) than an high

productivity agent, then, it can be easily shown that the term Z3 decreases with the produc-

tivities, and, as it impacts negatively on the marginal tax rate, the lower is the productivity

at time t of an agent, the higher is the contribution to the social welfare of a change of his

labor supply, the lower should be his optimal marginal tax rate.

In both Z2 and Z3, the term e−βt

w(wo,t)f(w(wo,t))
takes into account the number of agents in

each class of productivities w(w0, t) and discounts to time t the effects previously described.

It is interesting to note that, in a purely static framework we have that (see appendix)

δU(x, s)

δL(wo, t)
=

(LB′)′

wo

θ(x− wo)δ(s− t) (28)

and therefore,

Z2 − Z3 =
B′ + LB′′

(wo)2f(wo)

∫ ∞

wo

dxf(x)

[
1− G′(U)

λ

]
. (29)

Since Z1 = 0, the first order condition (24) then reduces to

∂woLT (woL)

1− ∂woLT (woL)
=

[
B′(L) + LB′′(L)

B′(L)

] [
1− F (wo)

wof(wo)

]1−

∫ ∞
wo

dxf(x)
[

G′(U)
λ

]
1− F (wo)

 , (30)

hence recovering what has been found by Mirrlees in his seminal paper. The intuition in

the static framework is that the higher is the aversion to inequality of the social planner the
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higher should be the marginal tax rate on a given class of income. The second message con-

cerns the term B′(L)+LB′′(L)
B′(L)

. It is a measure of the inverse of the sensibility of labour/effort

supply to changes in net wages. The higher is the sensibility of labour/effort supply to

changes in net wages term the lower is the marginal tax rates can be implemented. The

difference with our first order condition is that the efficiency and equity concerns are sim-

ply static, meanwhile, in our case, the government should also consider the impact of the

instantaneous taxation both on the past and the future evolution of the wage inequality.

The complete characterization of the solution of this general problem is not easy to

identify. As we can see, the complete development of the first order condition (see Appendix),

give us a very complex relation:[
∂T (wL, t)

∂(wL)

]
wo,t

= b

[
µe−γt −

∫ τ

t
ds eβ(s−t)[wL]wo,s

w(wo, t)

]
+

+

[
(B′(L)L)′ − bQ

w

]
wo,t

1− F (wo)

w(wo, t)f(wo)
[1− S(wo, t)]

[
∂w

∂wo

−W

]
wo,t

+
b

w(wo, t)

∫ τ

t

ds eβ(s−t) ×
{

Q

[
β − γ − α− γ

λ
e(α−β)sG′(U)− e(α−β)s

λ
G′′(U)∂sU

]}
wo,s

+b
1− F (wo)

w(wo, t)f(wo)

∫ τ

t

ds eβ(s−t)

{
∂Q

∂wo

[γ − β + (α− γ + P )S]

}
wo,s

(31)

where we have defined

F (wo) =

∫ wo

0

dxf(x) (32)

S(wo, t) =
e(α−β)t

λ

1

1− F (wo)

∫ ∞

wo

dxf(x)G′(U(x, t)) (33)

P (wo, t) =

∫ ∞
wo

dxf(x)G′′(U(x, t))∂tU(x, t)∫ ∞
wo

dxf(x)G′(U(x, t))
(34)

W (wo, t) =
1

1− S(wo, t)

∫ t

0

ds eA(t−s)[1− S(wo, s)]

[
∂(bwL)

∂wo

]
wo,s

(35)

A(t− s) =

∫ t

s

dr [γ − β + a(r)] . (36)

More useful insights about the nature of the solution can be found analyzing particular

cases.
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V. NO WAGE EVOLUTION

This is the simplest possible case, the only evolution of the optimal tax rate being dictated

by the discount rates of the social planner, α, and the financial market, β. With respect

to a purely static problem, the possibility to finance redistribution a time t with loans (the

government budget constraint holds for the whole sequence of periods) influences the optimal

tax rate at period t. In this framework, we have that a(t) = 0 = b, thus w(wo, t) = wo and

we find that

∂woLT (woL, t)

1− ∂woLT (woL, t)
=

1− F (wo)

wof(wo)
[1− S(wo, t)]

[
B′(L) + LB′′(L)

B′(L)

]
wo,t

. (37)

This result is formally equivalent to that by Mirrlees, although in our case there is temporal

evolution of S(wo, t). This implies that the average redistribution is not constant over time.

In particular, if the discount rate of the social planner is higher than the interest rate (in

such a case α > β) then it is optimal to finance the present redistribution with debt and to

postpone its payment by rising taxes in the future. On the contrary, if the discount rate of

the social planner is lower than the interest rate (α < β) then it is optimal to increase the

fiscal pressure at early stages and finance future redistribution with the interests generated

by the excess of tax receipts collected. Even though we have a = b = 0, in both cases

—see eq. (16)— the labor supply of the agents will become time-dependent due to the

time-dependent tax schedule: in the first case, L will decrease in time in response to the

increasing tax rate, and viceversa. When α = β, there is no possibility to play strategically

with the debt in order to finance redistribution, thus the problem becomes purely static and

the optimal tax schedule corresponds to a ”repeated Mirrlees”.

VI. EXOGENOUS WAGE EVOLUTION

In this case, b = 0, and we have a marginal tax rate which is formally equivalent to that

found before,[
∂wLT (wL, t)

1− ∂wLT (wL, t)

]
wo,t

=
1− F (wo)

w(wo, t)f(wo)
[1− S(wo, t)]

[
B′(L) + LB′′(L)

B′(L)

]
wo,t

, (38)

although in this case it must be recalled that, besides the time dependence of S(wo, t), we

now have a time dependence of w(wo, t). The labor supply L(wo, t) depends on these two

13



factors. The optimal tax schedule depends on the same key elements as in the static Mirrlees

case: the higher the sensibility of labor supply to changes in net wages, the lower the optimal

tax rate in any period. At the same time, the higher the aversion to inequality, the higher

the marginal tax rate on a given level of productivity, independently on the evolution they

suffer.

A first interesting remark is that the optimal tax rate in this case is lower than in the

previous one (no wage evolution). To see it, it is sufficient to replace w(wo, t) in (38) with

the definition given in (14). We can then rewrite (38) as[
∂wLT (wL, t)

1− ∂wLT (wL, t)

]
wo,t

=
1− F (wo)

wof(wo)e
∫ t
0 ds[a(s)]

[1− S(wo, t)]

[
B′(L) + LB′′(L)

B′(L)

]
wo,t

. (39)

The intuition is straightforward: the presence of the exogenous evolution determine an

increase of the total output of the economy. With a fixed intertemporal budget constraint,

it allows the social planner to reduce at any instant (with respect to a situation with no

wage evolution) the average fiscal pressure. This effect is higher the higher is the exogenous

component a(t). Another immediate implication of this result is that the optimal marginal

tax rate on a given class of agent is (in this case) decreasing over time.

Another important feature is that —as shown in this section and in the previous one—

in a dynamic economy where productivities do not evolve or where they evolve exogenously,

the government will commit on a sequence of optimal tax rates T [(wL)wo,t, t] that follows

the same rules that in Mirrlees. In particular, in these cases we also recover the very well

known result of Seade (1982) about the optimality of a zero marginal tax rate on the agent

with the highest productivity.

The only difference is the possibility to ”play” strategically with the debt (i.e the average

level of redistribution in each period): in economies with high interest rates, the social

planner will prefer to increase the fiscal pressure at the beginning of the ”game” and to

relax it near the end, financing the redistribution with the public wealth accumulated, and

viceversa.

On this subject, Bassetto and Kocherlakota (2004) show that, in a dynamic stochastic

optimal tax problem, when taxes can depend on past incomes the intertemporal structure

of the debt is irrelevant for the optimal allocation of resources in the economy. We have

shown that if optimal taxes are levied on instantaneous income but depend on the entire

intertemporal horizon this statement does not hold.
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VII. ENDOGENOUS EVOLUTION: EQUAL DISCOUNTS FACTORS

Suppose that the time preference parameter of the government is equal to the discount

factor of the agents and to the interest rate (i.e. α = β = γ) then we can rewrite the first

order condition (31) as:[
∂T (wL, t)

∂(wL)

]
wo,t

= Z1 + M1 + M2 + M3 + M4 (40)

with

M1 =

[
(B′(L)L)′ − bQ

w

]
wo,t

1− F (wo)

w(wo, t)f(wo)
[1− S(wo, t)]

[
∂w

∂wo

]
wo,t

(41)

M2 = −
[
(B′(L)L)′ − bQ

w

]
wo,t

1− F (wo)

w(wo, t)f(wo)

∫ t

0

ds eA(t−s)[1− S(wo, s)]

[
∂(bwL)

∂wo

]
wo,s

(42)

M3 =
b

w(wo, t)

∫ τ

t

ds eβ(s−t)

[
−Q

∂sG
′(U)

λ

]
wo,s

(43)

M4 =
b

w(wo, t)f(wo)

∫ τ

t

dseβ(s−t)

[
∂Q(wo, s)

∂wo

∫ ∞

wo

dxf(x)∂s
G′(U(x, s))

λ

]
(44)

In this case it is possible to have a clearer intuition of the elements that define the optimal

marginal tax rate on a given class in a given instant.

The term Z1 is the same as in (25).

The term ∂w
∂wo

in (41), gives us a local measure (in the distribution) of the degree of

inequality of the productivities at time t compared with his initial level. The higher it is,

the higher will be the social benefit of an increase of the marginal tax rate on w(wo, t). This

effect is reinforced if the number of agents that, as a consequence of that increase, will pay

more taxes (i.e. 1 − F (w)) is high. Off course, if this part of the population has a high

weight (at the margin) in the social welfare (the term S), the social marginal benefits of an

increase of the marginal tax rate in a given instant will be low. This last effect implies a

lower optimal marginal tax rate.

The term (42) opposes the previous term (41) by considering how much of the present

degree of inequality in the productivities (and its impact on the social welfare) is due to the

past individual effort. In fact, the term d(bwL)/dwo corresponds to the local variation in the
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contribution of the learning-by-doing process to the evolution of the individual wage. An

increase of the marginal tax rate at the instant t will induce agents in the neighborhood of

wo to decrease their accumulation of human capital in the period from 0 to t (such an effect

arises from the long-sightedness of the agents). If the evolution of the wages has been driven

mainly by the individual effort trajectories (i. e., the term d(bwL)/dwo is high), then this

effects is much more important and it is optimal for the government to set a lower marginal

tax rate. Off course, this negative efficiency effect is mitigated (as in (41)) by the marginal

social benefits of an increase of the tax burden on the 1− F richest part of the population.

The term (43) gives us the impact of the future evolution of the productivity of agents

in the class w(wo, t) on their social marginal weights. The higher are the actual wage w and

the actual marginal return of investment in human capital µ, the higher will be the increase

of the productivity in the future. As a consequence, there will be an increase of the utility

in the future and, then, a decrease of the social marginal weight (∂sG′[U ]
λ

) of agents in the

class w(wo, t). The social planner anticipates this effects by increasing (at the margin) the

marginal tax rate on this class of productivity. Off course, the importance of such effect will

diminish when t approaches τ .

If individual utilities increase over time, the concavity of G(U) implies that it is more

efficient to redistribute more (at the margin) tomorrow instead of today given that the spread

among social marginal weights decreases over time. The social planner can enhance this effect

by taxing less at time t, which allows to increase the accumulation of human capital. This

effect is higher the higher is the differential evolution of the marginal returns with respect

to the initial productivity (i.e. the term ∂Q(wo,s)
∂wo

). This is the mechanism captured by (44).

Indeed, it impacts negatively on the marginal tax rate (note that ∂sG
′(U) = G′′(U)∂sU < 0).

Note also that, as in (43), the importance of this term is decreasing in time.

As we have highlighted in the general case, the optimal tax strategy balances social

marginal costs of increasing marginal tax rates in a given instant on a given class of pro-

ductivities with social marginal benefits of doing it. The costs are: the reduction of both

past and future human capital accumulation, the reduction of social welfare due to the re-

duction of the individual utility of all the agents paying more taxes at t (i.e. 1−F (wo)) and

the increase of the necessity to redistribute more in the future because the effect in (44).

The benefits are: the increase of the tax receipts at t and then the reduction of the overall

tax burden all along the τ periods (evaluated in terms of social welfare), the reduction of
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present (at t) inequality of incomes and future inequality of the productivities. The analysis

performed in this section clearly shows that the introduction of the endogenous evolution of

the productivities adds several important insights to the optimal labor income tax problem

with respect to the static Mirrlees framework. In what follow we analyze the implications

for the optimal taxation on the class of individuals with highest productivity.

VIII. ENDOGENOUS EVOLUTION: THE HIGHEST PRODUCTIVITY INDI-

VIDUAL

The last (if any) individual in the distribution is characterized by an initial wage Ωo such

that F (Ωo) = 1. Then, his/her marginal tax rate at every time period is determined as[
∂T (wL, t)

∂wL

]
Ωo,t

=
b

w(wo, t)
Q(Ωo, t)−

b

w(wo, t)

∫ τ

t

dseβ(s−t)[wL]Ωo,s

+
b

w(wo, t)

∫ τ

t

dseβ(s−t) ×Q(Ωo, s)

[
β − γ − α− γ

λ
e(α−β)sG′(U)− e(α−β)s

λ
G′′(U)∂sU

]
Ωo,s

(45)

Interestingly, we see that the marginal tax rate of the last individual of the wage distribution

does not necessarily be null, as in the static Mirrlees case. This holds only in the last period,

t = τ , where we have Q(x, τ) ≡ 0 for any wage class.

Instead, during the time interval considered the marginal tax rate over the last individual

will in general evolve in time and it can be either null, positive or negative depending on

the balance of the different contributions.

In the simplest case where α = β = γ, from eq.(45) we can see that the marginal tax rate

will be positive, null or negative depending on the following condition:

−
∫ τ

t

ds

[
µw

∂sG
′(U)

λ

]
w̄o,s

≷
∫ τ

t

dseβs[wL]w̄o,s − [µw]Ωo,t . (46)

The meaning of this condition is the following: a positive marginal tax rate reduces the

accumulation of human capital and then the future income production of the richest agent

(i.e. the term
[∫ τ

t
dseβs[wL]Ωo,s

]
). This reduction is smaller the higher is the marginal

return to the human capital (i.e. the term [µw]Ωo,t). On the other side, it reduces his future

contribution to productivity inequality and then his social marginal weight (i.e. the term∫ τ

t
ds

[
µw ∂sG′(U)

λ

]
Ωo,s

). If the first effect is higher than the second, it will be optimal for

the government to set a positive marginal tax rate. On the contrary, if the second effect
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dominates, it will be optimal to subsidize the highest productivity individual in order to

allow for a faster increase of his stock of human capital and then his total output.

IX. CONCLUSIONS

In this paper, we have extended the optimal non linear labor income tax problem [Mirrlees

(1971)] to a dynamic setting with evolving productivities where the evolution depends both

on an exogenous mechanism and on the effort of the agent. The endogeneity is given by the

dependence of the optimal individual effort in each period on the tax schedule. In particular,

we have analyzed the problem of a government averse to inequality seeking to find the tax

schedule that optimally solves the trade off among equity and efficiency in a finite horizon

model in which agents have private information on their initial endowment of productivity.

In addition, the government must satisfy an aggregate intertemporal budget constraint. The

optimal tax code is announced at the beginning of the game and the government commits to

respect it all along the periods. Agents choose in the first period, for a given tax schedule,

the consumption and labor supply patterns that maximize their lifetime utility function.

In such a setting, the classical static equity-efficiency trade off is modified by the dynamic

effects (past and future) of taxation. In particular we find that the optimal tax strategy

balances social marginal costs of increasing marginal tax rates in a given instant on a given

class of productivities with social marginal benefits of doing so. The costs are related

with the reduction of both past and future human capital accumulation, with the negative

impact on aggregate social welfare due to the reduction of the individual utility of all the

agents paying more taxes and with the increase of the necessity to redistribute more in the

future (given that the spread among social marginal weights of each agents will be higher).

The benefits derive from the increase of the instantaneous tax receipts with the consequent

reduction of the overall tax burden all along the time horizon (evaluated in terms of social

welfare) and from the reduction of present inequality of incomes and future inequality of the

productivities.

There are several interesting implications of our results. First, the taxation implemented

for redistributive purposes should consider the positive effects of labor supply on the human

capital accumulation process. On one side, agent’s incentive to work hard in order to

accumulate future productivity reduces the distortionary effects of taxation on instantaneous
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labor supply (when agents are impatient this incentive is less effective). On the other side,

the need of high levels of per capita output production pushes the social planner to reduce

the fiscal pressure in a given instant. In the extreme case in which the mechanism of human

capital accumulation presents strongly increasing returns to scale with respect to labor, the

productivity accumulation constraint prevails on the equity concerns and it can be optimal

to set negative marginal tax rate on agents with high productivity.

Second, the marginal tax rate of the last agent of the wage distribution does not necessar-

ily be null, as in the static Mirrlees case. This holds only in the last period. Instead, during

the time interval considered it will in general evolve in time and it can be either null, positive

or negative. If the social benefit of the reduction of the future productivity inequality of an

increase in the marginal tax today is higher than the net efficiency cost, it will be optimal

for the government to set a positive marginal tax rate. On the contrary, if the second effect

dominates, it will be optimal to subsidize the highest productivity individual in order to

increase faster his stock of human capital and then his total output.

Third, there is a dependence of the intertemporal optimal structure of the redistribution

on the time preferences of the social planner and the market (i.e. the interest rate). In

economies with high (low) interest rates, the social planner will prefer to increase (decrease)

the fiscal pressure at the beginning of the ”game” and to relax (increase) it near the end,

financing the redistribution with the public wealth (public debt) accumulated.

Fourth, in periods in which the evolution of the wages is strongly driven by exogenous

(to individual effort) factors, it is optimal for the social planner to set lower marginal tax

rates than in periods in which the wages remain constant.

The analysis performed in this paper clearly shows that the introduction of the endoge-

nous evolution of the productivities adds several important insights to the optimal labor

income tax problem with respect to the static Mirrlees framework.

To our knowledge, this is the first attempt to analyze this type of dynamic optimal tax

model. In the work presented, there are several limitations and simplifying assumptions of

which we are aware. Three of them are, in our opinion, particularly relevant. First, the

results are limited to the specific class of individual utility function considered. Second,

the analytical complexity of the problem treated makes very difficult to achieve a complete

characterization of the first order condition in the general case; numerical computation of

such type of problems is also very complex and demanding, which justify an entire paper
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devoted to it. Third, more general forms for the learning-by-doing mechanism could be

considered which are non linear to effort, in order to reflect the plausible assumption that

the rate of wage increase saturates as the labor supply increases; one could consider as well

that different wages increase at different rates as a result of, e. g., syndical agreements.

These more realistic considerations do not qualitatively modify our main conclusions [3],

but they add increasing complexity to the problem.

Future work should address these issues jointly with the exploration of more fundamental

issues like the introduction of uncertainty (on future productivities) and the modelling of

alternative human capital accumulation processes (for example education).

Appendix

Here we detail the main steps and intermediate results needed to deduce the first order

condition eq.(31). The starting point is eq.(23), so that

0 =
δS

δL(wo, t)
=

∫ τ

0

ds

∫ ∞

0

dxf(x)
[
eαsG′(U)− λeβs

]
x,s

δU(x, s)

δL(wo, t)

+

∫ τ

0

ds

∫ ∞

0

dxf(x)λeβs

{
[w −B′(L)]x,s

δL(x, s)

δL(wo, t)
+

δw(x, s)

δL(wo, t)
L(x, s)

}
. (47)

In the first place, we recall that

δL(x, s)

δL(wo, t)
= δ(x− wo)δ(s− t) , (48)

where δ(x) denotes Dirac’s delta distribution. This distribution is defined as being zero for

x 6= 0 and +∞ for x = 0, such that∫ b

a

dxδ(x)g(x) = g(0) if a < 0 < b . (49)

Hence, from eq.(14) we have that

δw(x, s)

δL(wo, t)
= bw(wo, s)δ(x− wo)θ(s− t) , (50)

where θ(x) denotes Heavyside’s distribution, defined as

θ(x) =

∫ x

−∞
dyδ(y) . (51)
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Moreover, from eq.(5) we find, by applying the chain rule, that

δU(x, s)

δL(wo, t)
=

[
1

wo

+ b

∫ t

0

dr
∂L(wo, r)

∂wo

]
[B′(L) + LB′′(L)− bQ]wo,t δ(x− wo)δ(s− t)

− bθ(s− t)
∂

∂wo

{
θ(x− wo) [LB′(L)− bLQ]wo,s

}
+ bδ(s− t)

∂

∂wo

[θ(x− wo)Q(wo, t)]

− b

∫ x

0

dy

{{
y

[
1

y
+ b

∫ s

0

dr
∂L(y, r)

∂y

]
+

∂L(y, s)

∂y

}}
δQ(y, s)

δL(wo, t)
. (52)

In addition, from eq.(17) we also find

δQ(x, s)

δL(wo, t)
= δ(x− wo) [θ(τ − t)− θ(s− t)] [(LB′(L))′ − bQ]wo,t e

−γ(s−t)+
∫ s

t drbL(wo,r) . (53)

By substituting eq.(53) into eq.(52) and the result into eq.(23) together with eq.(50), we

finally obtain the desired result eq.(31)
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