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In [8,9] Zemanian extended the (non-modified) Hankel transformation to
distributions. An essential ingredient of the construction consisted in finding
an appropriate testing function space on which Hankel transform acts as an
automorphism. What is now called the Zemanian space, and what we will
denote by Z,, consists of all C' functions ¢ on R, for which the quantities

k

(2 2) @ (a)

Yk (1) = sup Zdr , n,k=0,1,2,...

z>0

are finite. It was shown by Zemanian [8,9] that Z, with the topology 7. ()
induced by the family of semi-norms v, s is a Frechet space and Hankel trans-
form is an automorphism of (Z,,7,(7)).

This note suggests an alternative approach to this issue. We first solve a
similar problem in the modified Hankel transform setting. As one can expect
the space of even Schwartz—class functions does the job, cf. Proposition 2.
Then, by using natural connections linking both transforms, we translate ob-
tained testing space to the setting of the Hankel transform. This shows that
S.(R) skewed by the factor z“*'/? is appropriate for the Hankel transform,
see Corollary 3. Finally, we check that the resulting space coincides with the
original Zemanian space and this is the content of Proposition 4.

We would like to stress the fact that we do not pretend to claim the main
results of this note to be new (see the papers of van Eijndhoven and de Graaf
[4] and van Eijndhoven and van Berkel [5]). We find it reasonable, however,
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to present here straightforward proofs of these results. Also, we take an op-
portunity to point out the fact that considering the Zemanian space as the
skewed space of even Schwartz functions is pretty effective in several situations.
Throughout this note v > —1/2 is assumed to be fixed and R, denotes the
half-line (0,00). Given f in L*(R,,z?**'dz) its modified Hankel transform
H,f is defined by

H,f(z) = /0 " J(";(;—)?i—)f (y)y>**'dy, z>0.

Here J,(z) denotes the Bessel function of the first kind of order v. When
v=(n—2)/2, n > 2, the modified Hankel transform H, f replaces the Fourier
transform of the radial function f(||z||) on R™, see [7, p.155]. Let S.(R)
denote the space of all even Schwartz functions on R. We will frequently
tacitly identify elements of S.(R.) with their restrictions to R,.

We start with the following elementary result.

LEMMA 1. A C* function ¢ on R, belongs to S.(R)if and only if
L1 d\"
T (Ed_m) o(z)

Proof. An elementary argument based on succesive application on Taylor’s
formula shows that if f is an even C* function on R then the function

f'(z)/x , >0
F(z) =4 f"(0) , =0
fi(=z)/(—=z) , <0
is also an even C* function on R. Let ¢ € S,(R). Then the Mean Value

Theorem shows that |¢'(z)| < Cz,z > 0, where C = sup,., |¢"(t)|.- Hence the
inequality

< 00

(1) |llln,e = sup
. z>0

for alln,k =0,1,2,....

(1LY oo

follows for n = 0 and k¥ = 1. For the general case with arbitrary n,k =
0,1,2..., we then apply the preceding remark. To show the opposite impli-
cation we first note that the conditions

(%d%)kf(w)

sup
z>0

< oo

sup
z>0

<oo, k=0,1,2,...,
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imposed on a C* function f on R, imply f®¥(z) = O(1) and f®*¥*+Y(z) =
O(z) for k =0,1,2,... as z — 0*. This easily follows by induction on k once
we remark that

d 2k k i) 1d 2k—j
2 =) = 2= (22 k=1,2,...
( ) (dil?) §Ak1w (.’E d.’L') ) ] I
and
d 2k+1 k s ) 1d 2k+1—j
h— = y (k_J)+1 —_ = ..
(3) (dl‘) JZ:OBk]‘T (.’II d.’L‘) ) k 0’1a )

where the A’s and B’s denote constants. Let ¢ satisfy (1). We will show that
the function

o(z) , >0
G(z) = Qlim0 () , 2=0
(P(-:E) , <0

has the derivatives of any order at zero, hence it is an even Schwartz function
on R. Existence of lim;_,o (t) follows from

o(z1) = p(z2) = @' (Or, 2.) (71 = 72), 0 <@y <Oz, <

and the estimate ¢'(z) = O(1), x — 0. Hence G(z) is continuous at z = 0.
To show that G’(0) exists and equals zero take an € > 0 and choose a positive
0 such that |¢'(z)] < €/2 for 0 <z < J. Let 0 < h < §. Choosing 0 < hy < ¢
such that |¢(h;) — lim; 0+ o(t)] < €h/2 we find

’G(h) - G(O)‘ < |<p(h) —h<P(h1)| +e/2

h

, h—h
< 1@ Onn)] - 2=l

+e/2<e.

Continuity of G’(z) at z = 0 now follows from the estimate ¢'(z) = O(z), z —
0. Existence of lim,_o+ ¥ (¢), G®»(0) and G+ (0) and the identities
G0 (0) = limy_,o+ ¥ (¢), G+ (0) = 0 = lim,_,o+ Z*V (1), k = 1,2,...,
now proceed by induction on k by using an argument analogous to that given
above. This finishes the proof of the opposite implication, hence the lemma.



36 KRZYSZTOF STEMPAK

We now equip S.(R) with a topology T generated by the family of semi-
norms defined in (1). By [10, Lemma 5.2.2, p.131] it can be easily checked that
(S.(R), T) is a Frechet space. The inversion formula H,H,p = ¢ holds for
¢ in S,(R). In fact, A.L. Schwartz [6] established validity of such a formula
under much less restrictive assumptions on a function .

PROPOSITION 2. The modified Hankel transform H, acts as an automor-
phism on (S.(R),T).

Proof. For p > —1/2, ¢ in S,(R) and £ =0,1,2,... there hold

(4) (%%)kHuSO = (_l)kHu+k(é
and
(5) H((ia%)w) = (-1)*H,p.

(4) and (5) are implied, for k = 1, by the identities

1d/J,(¢ J, t 1d
ZE{( o )) =" ‘Z;ltg )v ;a(tﬁljuﬂ(t)) = t"J,(¢)

tr

and the general case then follows. Using both (4) and (5) gives for n,k =
0,1,...
1d\* ik 1d\"
(;@) H,p(z) = (-1) Hu+k+n((§@> <P)($)-

Then, multiplying the above by z", z > 0, gives the bound

(l d )kHucp(w) (%%) nso(y)

s |Ju+k+n($’y)ld
z dz
and boundedness of J,44,(t)/t"™* on R, yields

(zy) +*

n

T

00
< / y2(v+k)+n+1
0

m+1

1H,@llne < C D 1ell2jn
j=0
where m > v 4 k + (n + 1)/2 is an integer (cf. the proof of Lemma 8 in [8]).
This and Lemma 1 show that H, does map S, (R) into itself and is continuous.
The inversion formula guarantees that H, is also a bijection. This finishes the
proof of Proposition 2. i
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Given f, an integrable (with respect to the Lebesgue measure) function on
R, its Hankel transform H, f is defined by

Hof(e) = [ (@) dulan)f W)y, >0
Both transforms are related to each other by

(6) H, f(z) = 2= “TV2%, (() 2 () (@)

whenever z*'/2f is an integrable function on Ry and [;° |f(z)|z*+dz < oo.
In particular,

(7N M,H,p =H,M,p, @€ S.(R)

where M, denotes the operator of multiplication by z**+'/2. Consider the space
S, = zv*1/2. S, (R) with the topology translated from S,(R) by means of the
operator M, that is the topology induced by the family of semi-norms

Pak(@T%0) = |l@llnk, ¢ € S.(R).

We denote this topology by 7, (p)-

COROLLARY 3. The Hankel transform H, is an automorphism of (S,,
7.(p))-

Proof. The corollary is a consequence of Proposition 2, (7) and the defini-
tion of the space and topology. 1

PROPOSITION 4. The spaces Z, and S, and the topologies T, () and T, (p)
coincide.

Proof. Assuming we know that Z, = S, the second part of the statement
is obvious since vV, (%) = pai(t), n,k = 0,1,..., for every ¢ = z**+/2¢p,
¢ € S.(R). To prove the first part of the statement note that by the definition
of Z, it is sufficient to show that Z_,,, = S.(R) and this was done in Lemma 1.
|

Remarks. 1) It is perhaps interesting to note that 7 coincides with the
Frechet topology 7; defined on S.(R) by the family of semi-norms

wn(%)kw(z)

, nk=0,1,2,....

l¢lnk = sup
z>0
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To see this, note that by (2)

d 2k k /1d 2k—j
(2) v < 3l [ge (33) @)
Hence .
|pln,2r < ZO | Aks| - @] |nt2k—-),26—5>
=

and a similar inequality follows from (3) for 2k + 1 in place of 2k. This means
that the identity map

id : (S.(R), T) = (S.(R), T7)

is continuous. The Open Mapping Theorem for Frechet spaces now shows that
this mapping is open, hence 7 = 7;.

2) Explicit representation of functions in Z, given in Proposition 4 im-
mediately shows that Z,,0, C Z,, K = 1,2,..., [8, Lemma 1], and no other
inclusion is possible on the scale of Zemanian spaces. Also, in another contexts
the representation occurs to be useful. For instance, consider the problem of
characterizing these functions m on R, that possess the property that the
operator of multiplication by m is a continuous endomorphism of a fixed Ze-
manian space Z,, cf. [3]. Keeping in mind the identity Z, = z"*1/2S,(R) the
problem turns out to be equivalent to the following: characterize all functions
m : Ry — C such that mS.(R) C S.(R) continuously. In the classical case
(when the symbol e is dropped the answer is: C* functions of polynomial
growth (which means polynomial growth of the function and all its deriva-
tives). In the case we consider we have, clearly, to restrict the attention to the
even C'* functions of polynomial growth (the condition (i) from Theorem 2.3
in [3] is equivalent to the statement that 6(z) is a restriction to R, of a C*
function on R of polynomial growth).

3) Using the identity ()% = z2(2£)? — 14 it follows by induction on k

z dz

that

1d\*7d\’ 1d\*" 1d\*

fallihadl —-) =1 2 = — 20k — 1) | —— k=1,2,....

(zd:c) (dw) ( +x)<xdw> +2( )(a:d:r) ’ T
Hence? for any n =0,1,2,..., ”(%)290”71,0 < ”‘P”n,l + ”‘P”n+2,2, p e Se(R)7
and

a2
“ () ¢l <Mellnsr +llglhnsanss + 26 = Dllpline, 5=1,2,....
n,k
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This means that ()2, as well as the operator

d\°> 2w+1d
DV_(E) + z dz’

is continuous on (S.(R),T) (recall that L4 does act on S.(R)). If we denote
¢y () = 2y >0, then D, ¢y = —y*¢y and

D,H,p = —H,,(yzgo), H,,(D,,(,O) = —.’EQH,,(p,

¢ € S.(R). Analogously, the second order differential operator

2 2
Duz(i) el

dz T

is continuous on (Z,,7 (7)), [8, p. 565], and satisfies D, ¥ = —y°p¥, where
©¥(z) = (zy)'/?J,(zy), y > 0. Moreover

DH Y = —H,,(y2¢), 'H,,(D,,’l/)) = _mzHu"l)-
Since
(8) M,D,p=D,M,p, ¢€S.(R),

the last facts concerning the operator D,, follow from corresponding statements
for D, by using (7) and (8).

4) There are different alternative descriptions of the Zemanian spaces. For
this and another Hankel invariant test function spaces see [2,4, 5] and papers
cited there.

5) The fact that H, acts as an authomorphism on (Z_y/3, F_1/2(7)) was
proved in [1]. But due to (6) this is nothing else but merely an equivalent re-
formulation of the original Zemanian result that #, acts as an authomorphism
on (Z,,F,(7))-
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