
Statistical grid-based facies reconstruction and modelling for
sedimentary bodies. Alluvial-palustrine and turbiditic examples

The geological community is increasingly aware of the importance of geological heterogeneity for managing subsur-
face activities. In sedimentary bodies, facies distribution is an important factor constraining geological heterogeneity.
Statistical grid-based sedimentary facies reconstruction and modelling methods (FRM methods) can be used to pro-
vide accurate representations (reconstructions or models) of facies distribution at a variety of scales, which can be
conditioned to hard and soft data. These representations enable geological heterogeneity to be quantified; and there-
fore, serve as important inputs to manage projects involving subsurface activities. FRM methods are part of a general
workflow comprising the construction of a surface-based framework, which is used to build the modelling grid in
which these methods operate. This paper describes this workflow and provides an overview, classification, description
and illustration of the most widely used FRM methods (deterministic and stochastic). Among others, two selected
datasets comprising alluvial-palustrine and turbiditic deposits are used for illustration purposes. This exercise enables
critical issues when using FRM methods to be highlighted and also provides some recommendations on their
capabilities. For deterministic facies reconstruction, the main choice of the method to be used is between that employ-
ing a continuous or a categorical method. For stochastic facies modelling, choosing between the different techniques
must be based on the scale of the problem, the type and density of available data, the objective of the model, and the
conceptual depositional model to be reproduced. Realistic representations of facies distribution can be obtained if the
available methods are applied appropriately.

Facies model. Facies reconstruction. Mathematical models. Sedimentary heterogeneity.

Geologica Acta,  Vol .5 ,  Nº  3 ,  2007,  199-230

Avai lable onl ine at  www.geologica-acta.com

© UB-ICTJA 199

KEYWORDS

A B S T R A C T

O. FALIVENE L. CABRERA J.A. MUÑOZ P. ARBUÉS O. FERNÁNDEZ and A. SÁEZ

Geomodels-Group of Geodynamics and Basin Analysis, Universitat de Barcelona. Dpts. EPGM and GG. 
c/ Martí i Franquès, s/n, Facultat de Geologia, 08028 Barcelona, Spain.

Midland Valley Inc, 
1767A  Denver West Blvd., Golden CO 80401, USA

Corresponding author present address: BP Exploration Company Limited, Building H, EPT Geological Services,
Chertsey Road, Sunbury on Thames, Middlesex TW16 7, United Kingdom.  E-mail: Oriol.Falivene@bp.com

INTRODUCTION

Utility of facies reconstruction and modelling methods

Valid representations of geological heterogeneity are
important inputs for quantitative models used in managing

subsurface activities. In sedimentary bodies, facies distribu-
tion is an important factor constraining sedimentological and
therefore geological heterogeneity. The recognition of facies
distribution in the subsurface by using direct methods, such
as continuous core recovery boreholes, is expensive and can
only be afforded to directly investigate very restricted areas.
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The use of indirect methods, such as geophysical logs or
seismic image provides information covering larger areas,
although with less resolution or accuracy. Additional geolo-
gical information, such as conceptual depositional models,
regional geology, paleogeographic maps or sedimentation
rates, can also be useful for constraining facies distribution
in the subsurface. Aiming to optimise the use of geological
data, several modelling approaches for creating images of
sedimentary heterogeneity in the subsurface exist. Most cu-
rrently used methods can be classified within two main cate-
gories: structure-imitating and process-imitating. Structure-
imitating approaches numerically reproduce the observed
spatial patterns without directly considering sedimentary
processes (Koltermann and Gorelick, 1996). Process-imita-
ting or process-based approaches are focused towards the
direct mathematical formulation and simulation of the physi-
cal processes controlling the erosion, transport and accumu-
lation of sediments (Tetzlaff and Harbaugh, 1989; Kolter-
mann and Gorelick, 1996).

Statistical grid-based facies reconstruction and model-
ling methods (named hereafter as FRM methods for sim-
plicity) are referred herein to group those structure-imita-
ting methods based on deterministic or probabilistic rules,
operating on a grid and designed to build facies recon-
structions or models. These methods are able to provide
detailed representations of facies distribution in the sub-
surface that honours a wide range of input information,
allows a rapid correlation, visualization and comprehen-
sion of the facies distribution, and serves as a starting
point for further applications. FRM methods are part of a
more general facies reconstruction and modelling work-
flow, which also includes the construction of a surface-
based framework and the grid design.

Many geological disciplines employ FRM methods;
among the most important are the natural resource
exploitation, the storage of residual or strategic subs-
tances in the subsurface, and the planning of civil engi-
neering projects. For example, in the oil industry and
hydrogeology the detailed representation of facies in the
reservoir or the aquifer is used as the starting point for
volumetric or connectivity analysis (Mijnssen, 1997;
Knudby and Carrera, 2005). Wherever a correlation
between petrophysical parameters and facies can be
established, facies representation can be used as an input
to petrophysical modelling and subsequent flow simula-
tion (Deutsch and Hewett, 1996; de Marsily et al., 2005).
Other typical applications are related to the mining indus-
try, where FRM methods are used to constraint the exten-
sion, thickness, quality and exploitability of resources
(Journel and Huijberts, 1978; Journel and Isaaks, 1984).

An increasing number of FRM methods are currently
available. Detailed reviews dealing with some of these

methods can be found in Haldorsen and Damsleth (1990),
Srivastava (1994), Koltemann and Gorelick (1996), de
Marsily et al. (1998) and Webb and Davis (1998). It is
important to note that research has traditionally focused
on showing the possibilities and pitfalls of each method,
whereas much work still needs to be done in terms of
comparing the performance of these methods when
applied to real datasets (de Marsily et al., 2005).

Aims

This paper presents an overview of the general work-
flow for the reconstruction and modelling of facies distri-
bution by using FRM methods. FRM methods are intro-
duced, relevant applications of these methods in the
published literature are outlined, and then the procedures
for obtaining facies distributions are explained and illus-
trated by applying them to two selected datasets. One
dataset derives from an alluvial to palustrine-lacustrine
coal-bearing interval in the As Pontes basin (Oligocene,
NW Spain) and the other from a turbidite channel-fill in
the Ainsa basin (Eocene, NE Spain). Both datasets pre-
sent differences related to data format, data spacing, and
scale of heterogeneities to be reproduced, enabling illus-
tration of a wide range of FRM methods. 

The As Pontes dataset is composed of closely spaced
coal  exploration wells. The objective of the FRM me-
thods applied to this dataset is to generate facies recon-
structions able to predict overall facies distribution pat-
terns by integrating all facies descriptions recorded at the
wells. This dataset is therefore used to illustrate determi-
nistic facies reconstruction methods. 

The Ainsa dataset comprises an outcrop characteriza-
tion resolving facies distribution at bed-scale. The objec-
tive of the FRM methods applied to this dataset is to
generate facies distributions resembling the spatial pat-
terns observed at the outcrop. This dataset is therefore
used to illustrate stochastic facies modelling methods. 

The application of FRM methods to the selected
datasets enabled critical issues on facies modelling to be
highlighted, and the applicability of each FRM method to
be assessed. It is important to note that the aim of this
paper is not to cover all the available FRM methods
developed previously; it is instead to focus on selected
and useful methods that have been demostrated to be suc-
cessful in many cases and are currently widely used.

FACIES RECONSTRUCTION AND MODELLING WORKFLOW

The starting assumption in the facies reconstruction and
modelling workflow is that sedimentary heterogeneity
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can be described in hierarchical elements of diverse scales
(Weber, 1986; Van de Graaf and Ealey, 1989; Miall, 1991;
Huggenberger and Aigner, 1999; Fig. 1). Typically, facies
modelling proceeds from the larger to the smaller scale of
heterogeneity (Hurst et al., 1999; Hurst et al., 2000), and
is usually applied to resolve from mega- to macro-scale.
Giga-scale and mega-scale facies heterogeneity are better
suited to description using a deterministic surface-based
framework (see below), whereas FRM methods typically
better represent the macro-scale facies heterogeneity,
even though this can vary depending on the objective of
the facies reconstruction or model, the input data avai-
lable, or the complexity of the subsurface heterogeneity.
Meso-scale heterogeneity is sometimes approached
directly by petrophysical modelling methods, by FRM
methods, or more recently by innovative non grid-based,
genetically based unconditioned facies modelling methods
(Scheibe and Freyberg, 1995; Pyrcz et al., 2005; Ringrose
et al., 2005). Micro-scale heterogeneity is usually the sub-
ject of petrophysical modelling methods (Dubrule and
Haldorsen, 1986; MacDonald et al., 1992; Goovaerts,
1999; Willis and White, 2000; Deutsch, 2002; Stephen
et al., 2002; Hauge et al., 2003; Larue 2004; Larue
and Legarre, 2004; Larue and Friedmann, 2005; Pyrcz et
al., 2005).

The general workflow for grid-based reconstruction
and modelling of facies distribution in sedimentary bodies

using FRM methods involves three consecutive steps
(Jones, 1988; Krum and Johnson, 1993; Dubrule and
Damsleth, 2001; Fig. 2): 1) the construction of a surface-
based framework; 2) the definition of modelling grids,
constrained by the surfaces reconstructed previously; and
3) the assigning of facies to each cell using FRM me-
thods. It is important that a robust depositional conceptual
model can be established previously from regional geo-
logical information and available input data (Weber and
van Geuns, 1990). This model will mainly serve for gui-
ding basic decisions during the reconstruction and model-
ling workflow (i.e. the detail of correlation that can be
deterministically resolved, appropriateness of the diffe-
rent FRM methods, grid design, selection of analogues or
modelling scenarios, etc.).

Surface-based framework

The first step in the facies reconstruction and model-
ling workflow is the definition of the volume of interest
by means of top and bottom surfaces (Fig. 2A). Depen-
ding on the complexity of heterogeneity and sample data
spacing, additional extensive and correlatable surfaces
lying within this volume can be also constructed, provi-
ding a more detailed subdivision of the system (Fig. 2A).
The main objective of this step is to identify and separate
genetic units characterized by the occurrence and distrib-
ution characteristics of the different facies. Ideally, the
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Sedimentological heterogeneity scales, origins, study techniques (modified from Heinz and Aigner, 2003), and geological modelling
strategies. See text for detailed explanation.
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surface-based subdivision would separate units that could
be considered as stationary (i.e. whose statistical proper-
ties do not vary significantly throughout the unit), in order
to facilitate the subsequent facies reconstruction and mo-
delling. However, this is usually not achieved, due to lack
of data or the presence of intrinsic non-stationarities in

the depositional system; in these cases the reconstruction
or modelling process should take into account the pre-
sence of trends in facies distribution and facies characte-
ristics. This first step can be of great complexity (Mac-
Donald et al., 1998; Artimo et al., 2003; Fernández et al.,
2004; Ross et al., 2005; Arbués et al., in press; Falivene et
al., 2006c) and its description could be the subject of a paper
by itself. However, this step is not described here in further
detail, as this paper concentrates on the FRM methods.

Modelling grid

The second step uses the surfaces described previous-
ly to design the modelling grids, which are the necessary
support for FRM methods. Two stratigraphically consecu-
tive surfaces define the base and the top of each model-
ling grid (Fig. 2B). 

Each modelling grid consists of a number of adjacent
cells, usually parallelepipeds, to which facies are
assigned. The sides of the cells are commonly vertical
and define a rectangular mesh as seen in map view,
whereas bases and tops (i.e. the grid layering) may differ
from the horizontal. Grid layering is defined to mimic
those planes where facies should display more continuity
(i.e. paleodepositional surfaces or bedding planes; Jones,
1988, 1992). It reproduces tectonic and sedimentary
geometries such as onlap, offlap, burial effects and ero-
sion (Fig. 3), according to the previous geological know-
ledge and the conceptual depositional model. However,
FRM methods work on rectangular grids in order to speed
up distance calculations, and this is achieved during the
modelling stage by temporally flattening grid layering to
horizontal and planar surfaces. 

Grid layering style has a large impact on the results
obtained by FRM methods (Ainsworth et al., 1999;
Falivene et al., 2007). Horizontally, the modelling grid
should be designed with one of its axes aligned with the
most important anisotropy direction; this optimises the
number of cells necessary to capture the sedimentary
heterogeneity (Weber and van Geuns, 1990).

Assigning of facies to grid cells

The assigning of a facies category to each grid cell cor-
responds, sensu strictu, to the facies reconstruction and
modelling process (Fig. 2C). Some information regarding
input data types and FRM methods classification should be
introduced before approaching the different methods.

Input data classification

Data from different sources are integrated by FRM
methods. Input data can be classified into two main types:
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Example showing the three phases of the general workflow
for grid-based statistical reconstruction and modelling of facies distri-
bution. A) Surface-based framework. B) Modelling grids constructed
between stratigraphically consecutive surfaces, note the detail show-
ing cell arrangement. C) Facies assigned to grid cells. This example
corresponds to the Morillo Turbidite System (Ainsa Basin slope com-
plex, NE Spain), and was reconstructed mostly by using outcrop data
(Arbués et al., 2003). Vertical exaggeration is 10x and the vertical
coordinates datum corresponds to a paleodepositional surface (Fernán-
dez et al., 2004). Heights are expressed in metres. Horizontal coordi-
nates are in km in Universal Transverse Mercator (UTM) zone 31.

FIGURE 2



a) Hard data refer to facies observed at certain
positions and most usually derive from well logs or
stratigraphic sections (Falivene et al., 2006b). A model

is conditioned by hard data when these data are repro-
duced by the model; this means that cells intersected
by or containing hard data information are assigned
the observed facies at that point. This process
requires scaling-up the original hard data to the grid
resolution (Fig. 4). In most cases, facies boundaries
identified in the logs do not correspond with the limits
of grid cells, and therefore more than one facies cate-
gory may be present in a cell; since assigning more
than one facies category to an individual cell is not
possible, an averaging must be performed (i.e. up-
scaling of log data; Satur et al., 2005). Usually the
category with the largest occurrence within the cell is
chosen as the most representative (Fig. 4). The process
of log data scaling to the size of the grid cells may result
in differences between facies proportions and distribu-
tion observed in the original log data, and the up-scaled
hard data. Nevertheless, if the dimensions of the model-
ling grid cells are sufficiently small with respect to the
resolution of the facies descriptions in the original data,
this bias will not be significant for further facies model-
ling operations (Fig. 4). Intersected cells represent only
a small fraction of all the modelling grid, and the final
objective of the FRM methods is to assign a facies to
each non-intersected cell.

b) Soft data are not as univocally linked to geo-
graphic positions as hard data, and serve as auxiliary
conditioning data. Each method uses different types of
soft data; typical examples correspond to statistical and
geological parameters constraining facies continuity
(proportions, variations in proportions, variograms,
training images, object characteristics, etc.) and con-
ceptual depositional models. Soft data refers also to
indirect measurements, typically carried out by means
of geophysical methods, that can be calibrated to facies
occurrence, and inform about the gross facies distribu-
tion (Mao and Journel, 1999; Yao, 2002; Liu et al.,
2004). In subsurface modelling studies, in which the
soft data extracted from the available information are
not sufficiently constrained for input to FRM methods,
it is common practice to also consider information
derived from other geologically-similar better-docu-
mented examples, i.e. analogues (Alexander, 1993;
Bryant et al., 2000; Dalrymple, 2001). This has led to
the compilation of databases containing geological
descriptions and soft data parameters, either derived
from rock record analogues (e.g. Bryant and Flint,
1993; Dreyer et al., 1993; Falkner and Fielding, 1993;
Hornung and Aigner 1999; Robinson and McCabe,
1997; Dalrymple, 2001; Pringle et al., 2004; de Marsily
et al., 2005; Falivene et al., in press), modern deposi-
tional systems (e.g. Tye, 2004), laboratory experi-
ments or genetically based models (e.g. Clementsen et al.,
1990; Bridge and Mackey, 1993; Doligez et al., 1999).
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Grid layering styles as seen in a vertical section of a sedi-
mentary body. A) Regular rectangular grid. B to E) Irregular grids with
layering style reproducing different infill layering architectures.
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Classification of statistical grid-based facies
reconstruction and modelling methods

FRM methods can be classified according to the objec-
tive of the resultant facies distribution, and the gene-
ral procedure for obtaining the facies distribution
(Fig. 5).

Deterministic versus stochastic methods

According to the purpose of FRM methods, two
groups can be established (Fig. 5):

a) Deterministic methods provide a facies recon-
struction, which is a unique and smooth solution aim-
ing at local accuracy (Isaaks and Srivastava, 1989;
Journel et al., 2000; Fig. 6). Facies reconstructions are
based on interpolation algorithms and provide esti-

mates of the most probable facies category at each grid
node. In practice, facies reconstructions are only useful
in settings where hard data are abundant with respect
to sedimentary heterogeneity. The following characte-
ristics are common to all the deterministic methods: 1)
facies estimated at each grid cell is obtained indepen-
dently of the facies estimated at the other cells; 2) the
histogram of the reconstructed property is different
from that of the original hard data (i.e. lower standard
deviation); in terms of facies reconstruction this
implies that the resulting facies proportions differ from
the original ones, with the proportions of the most
extended categories being increased; 3) spatial continu-
ity (measured in terms of variogram ranges) of the
resulting facies reconstruction is also increased with
respect to that of the original hard data (i.e. smoothing
effect, Isaaks and Srivastava, 1989; Journel et al.,
2000); 4) the strongest control on the reconstructed
facies distribution is exerted by hard data, although a
restricted influence related to soft data is also present
(e.g. Falivene et al., in press); and 5) facies recons-
tructions are always conditioned by hard data (i.e. they
honour hard data).

b) Stochastic methods provide a set of facies mo-
dels (i.e. realizations, Fig. 6) with equiprobable facies
distributions. In each model all the facies heterogene-
ity is represented aiming at reproducing global accu-
racy (i.e. reproduce the entire spatial structure and
variability of facies distribution), even though the
exact distribution of facies heterogeneities cannot be
totally identified with the hard data. Representing all
the facies heterogeneity is accomplished by the use of
algorithms incorporating random numbers, which are
sampled from probability distribution functions (i.e.
functions assigning to every possible outcoming value
a probability of occurrence, PDF). Facies models are
useful when heterogeneity is not sufficiently restric-
ted by hard data, but should be realistically represen-
ted to enable a realistic assesment of properties that
are influenced by the whole facies distribution (i.e.
flow-related responses). The following characteristics
are common to all the stochastic methods: 1) facies
estimated at each grid cell directly depends, at least
partially, on the facies estimated at the other cells; 2)
the histogram for the resulting modelled property (or
facies proportions) is controlled by soft data, and can
reproduce that of the original hard data; 3) spatial
continuity of the resultant facies model is also con-
trolled by soft data, and can reproduce that of the
original hard data; 4) the main control on the mo-
delled facies distribution is exerted by soft data
(Fig. 6); and 5. Facies reconstructions can be either
conditioned by hard data (i.e. they honour hard
data), or not.

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

204Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230

Sketch illustrating the process of up-scaling of hard data
information to the size of grid cells. Results considering different cell
thicknesses are shown. Note that the coarser the grid, the lower the
resolution obtained.
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Pixel-based versus object-based methods

According to the general procedure for dealing with
facies reconstruction and modelling, FRM methods can
be subdivided in two different groups (Fig. 5):

a) Pixel-based methods assign a facies to grid cells
according to the facies occurrence PDF, which is
computed for each grid cell. These methods allow
direct conditioning by hard data. The different methods
within this group differ in the assumptions made to
compute the facies occurrence PDF : continuous or
categorical. Continuous methods are based on trans-

forming facies categories to a continuous property (i.e.
a property which takes real values ordered from the
smallest to the largest), reconstructing or modelling
the distribution of the continuous property over all the
grid cells, and truncating this property using several
thresholds in order to obtain the categorical facies
distribution (e.g. Rudikiewicz et al., 1990). Categori-
cal methods are based on transforming each facies
category to a new property, defined as the occurrence
probability of the facies, and building the PDF at each
grid cell as the combination of the reconstruction or
modelling of these new properties (e.g. Journel and
Alabert, 1989).

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

205Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230

Scheme for the classification and use of statistical grid-based facies reconstruction and modelling methods (FRM methods). The methods
are classified according to the resultant facies distribution purpose and the general method procedure. FRM methods illustrated with the As Pontes
basin dataset are included in light grey boxes. Methods illustrated with the Ainsa basin dataset are included in dark grey boxes. Other examples
have been used to illustrate those methods included in white boxes. The characteristics related to the conceptual depositional model being repro-
duced are also shown. See text for detailed discussion on each FRM method.
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b) Object-based methods are characterized by the intro-
duction of objects replacing a background, which commonly
represents the most laterally extensive facies. This approach
is called also Boolean (e.g. Delhomme and Giannesini,

1979; Haldorsen and Chang, 1986). Objects are assigned a
facies, have a predefined geometry, and are introduced until
a set of conditions is met. Geometries and conditions depend
upon the particular algorithm and algorithm set up; these
should be based on the conceptual depositional model.
Geometries are defined using a PDF for each object parame-
ter. Among conditions, facies proportions are generally con-
sidered to be the most critical. Then, the objects are dis-
cretized according to the grid geometry and thus each object
may span a number of cells. Conditioning to hard data is fre-
quently achieved through the implementation of iterative
algorithms, this can be time-consuming, and in some cases
yields non-converging solutions, with conditioning artifacts
near hard data.

All the deterministic methods are included within the pixel-
based group, whereas stochastic methods can fit either within
pixel-based or object-based groups. All the object-based me-
thods are stochastic methods, whereas pixel-based methods
include either deterministic or stochastic methods (Fig. 5).

DETERMINISTIC FACIES RECONSTRUCTION METHODS

In order to illustrate deterministic FRM methods, the
results obtained from reconstructing the first dataset are
used. This dataset derives from alluvial-palustrine deposits in
the As Pontes basin (NW Spain). Examples on the use of
deterministic facies reconstruction methods in the literature
will be introduced before presenting the application of the
different methods to the As Pontes dataset.

Background on the use of deterministic facies
reconstruction methods

The use of deterministic methods for obtaining facies
reconstructions has not been as widespread in the literature as
the use of stochastic methods for obtaining facies models (see
below). Johnson and Dreiss (1989) and Ritzi et al. (1995)
applied a deterministic categorical method (Indicator Kriging:
IK; Fig. 5) to obtain facies reconstructions in clastic aquifers,
in both cases with only two different facies categories, making
the results of this method very similar to those obtained with a
continuous method. Falivene et al. (in press) used a categorical
method (IK) to reconstruct facies distribution in a fine-grain
alluvial fan. Moreover, Falivene et al. (2007) compared
visually and statistically several facies reconstruction
methods (Truncated Inverse Distance Weighting: TIDW,
Truncated Kriging: TK, Indicator Inverse Distance Weighting:
IIDW, and Indicator Kriging IK [Fig. 5], among others)
applied to a heterogeneous coal seam, this work was based on
the same dataset as here. Other studies have focused on deter-
ministic reconstructions of continuous parameters that can
directly be related to facies (mud fraction in Flach et al.
[1998]; grain-size compositions in Koike et al. [1998]; or
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Sketch comparing facies distributions obtained by a deter-
ministic reconstruction method (B), and two conditioned realizations
of a stochastic modelling method: (C) and (D). The deterministic
reconstruction is based mainly on well data (hard data). The stochas-
tic model assumes that hard data do not capture all the heterogeneity
present; and incorporates the missing heterogeneity based on the con-
ceptual depositional model (A), which is parameterised into into soft
data.

FIGURE 6



results of geotechnical cone penetration tests in Lafuerza et al.
[2005]). This approach is conceptually similar to continuous
methods for facies reconstruction (TK and TIDW). In all
cases, published facies reconstructions achieved by determin-
istic methods have been derived from extensively sampled
sites.

The scarcity of deterministic facies reconstructions in the
literature (compared to stochastic facies models, see below) is
due to: a) the lack of digital high-density (with respect to
facies heterogeneity) detailed facies descriptions; and b) the
smoothing effect of deterministic methods (Isaaks and Srivas-
tava, 1989; Olea and Pawlowsky, 1996; Journel et al., 2000;
Yamamoto, 2005), which results in facies reconstructions
yielding usually optimistic results compared to the real hetero-
geneity distribution (i.e. more homogeneous distributions),
limiting their predictive use. Moreover, as the density of the
dataset with respect to facies heterogeneity decreases, the
smoothing effect of facies reconstructions increases.

Application of facies reconstruction methods to
the As Pontes basin dataset

Introduction

The As Pontes basin is a small non-marine basin (12
km2) resulting from the activity of an Oligocene-Early

Miocene strike-slip fault system (Santanach et al., 1988,
2005; Fig. 7A). During the early evolutionary stages of
this system, two sub-basins bounded by contractional and
extensional structures developed (Eastern and Western)
(Ferrús, 1998; Santanach et al., 2005; Figs. 7B and 7C).
The basin-fill in both sub-basins resulted from the interac-
tion of sedimentation in alluvial fans and lacustrine to
marsh-swamp systems, and consists of siliciclastic facies
assemblages together with significant coal deposits
(Bacelar et al., 1988; Cabrera et al., 1995, 1996; Ferrús,
1998). The dataset used herein is comprised of 174 coal
exploration wells drilling the 6AW coal zone in the west-
ern subbasin (Ferrús, 1998; Fig. 7C). The available con-
tinuous core descriptions record beds thicker than 0.15 m
with a total length of 4000 m. Well placement approxi-
mates a regular grid, spaced at about 105m (Fig. 7D). The
6AW coal zone is made up of coal facies interfingering
with lacustrine and alluvial mudstone facies, it extends
over 2.5 km2

, and averages 30 m in thickness, with its
maximum thickness towards the northern active basin
margin (50 m).

Owing to the high density of information in the As
Pontes dataset, this dataset was deemed useful to illustrate
and compare the results obtained by different deterministic
pixel-based facies reconstruction methods (Fig. 5);
the objective of these methods is to generate facies recons-
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A) Location of the As Pontes basin. B) Geological map of the basin showing the main tectonic structures that affect the basement. Note
the strike-slip fault and associated thrusts, which bound the northern basin margin; the N–S oriented normal faults and the E–W and NE–SW oriented
thrusts. C) Longitudinal sketch of the basin showing the main stratigraphic units, sedimentary facies and basement structures (see arrows for loca-
tion on frame B). Note the stratigraphic position of the 6AW coal zone. D) Well location in the studied part of 6AW zone. The studied part corres-
ponds to the grey shaded zone in frame B. Location of the NW-SE section in Figure 9 is shown.
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tructions able to predict the overall facies distribution pat-
terns by integrating all well data. Both continuous
methods (TK and TIDW) and categorical methods (IK
and IIDW) were employed.

General set up

For facies reconstruction purposes, the top of the coal
zone was considered as an isochrone surface and used as
a horizontal datum. This allowed to remove most of the
tectonic deformation along the northern basin margin
(Santanach et al., 2005), and enabled and improved visua-
lization of facies distribution results. The grid layering
style was set up as proportional between the flattened top
of the coal zone and a lower surface. In the inner parts
and active margin of the basin the lower surface coincided
with the base of the coal zone, enabling reproduction of
post-depositional deformed geometries. In the passive
basin margin the lower surface was set nearly hori-
zontal, and this in combination with the inclined geome-
try of the base of the coal zone, which dips towards the
inner basin parts, enabled the reproduction of an onlap
pattern typical of expansive coal zones like 6AW (for
details see Falivene et al., 2007). Horizontal grid spac-
ing was set to 20 m; vertical grid spacing varied due to
the use of a proportional grid layering style (see exam-
ple in Fig. 3B), but was set with an average of 0.15 m.

Hard data corresponded to the facies descriptions
recorded in the wells. For facies reconstruction purposes,
five facies categories were used: lacustrine mudstones
(LM), dark brown coal (DBC), pale yellow brown coal
(PBC), xyloid brown coal (XBC) and alluvial mudstones
(AM). These facies have been described elsewhere (Ca-
brera et al., 1992, 1995; Hagemann et al., 1997; Huerta et
al., 1997; Huerta, 1998, 2001). Facies logs were upscaled
to the size of grid cells by assigning the most abundant
logged facies to each grid cell intersected by hard data
(see example in Fig. 4). Owing to the high density of
data, it was possible to extract soft data from the upscaled
hard data; these data included proportions (3% for LM,
12% for PBC, 53% for DBC, 7% for XBC and 25% for
AM), geometric anisotropy factors, variograms, indicator
anisotropy factors and indicator variograms (Tables 1 and
2; Falivene et al., 2007).

Truncated Kriging and Truncated Inverse Distance
Weighting (continuous methods)

Preliminary data transformations

The first step in continuous methods for facies recons-
truction (Fig. 5) is the transformation of facies categories
to a continuous property. This requires preliminary facies
ordering based on the conceptual depositional model. In

the As Pontes example facies were ordered following
transport energy-related paleoenvironment criteria (LM,
PBC, DBC, XBC and AM; Fig. 8). Continuous methods
start by calculating the thresholds between facies;
assuming a Gaussian distribution for the continuous
facies property function, the areas between thresholds
correspond to the measured proportions in the hard data
(Fig. 8). The next step is to assign to each facies a value
between their thresholds. In the As Pontes case, constant
values located in the centre of each category were used,
which is a common practice (Fig. 8; Deutsch, 2002).

Interpolation algorithm and results

Once the facies categories are assigned a continuous
property value, facies reconstruction proceeds with the
interpolation of the continuous property over the model-
ling grid nodes. Interpolation estimates the most probable
value at each grid node; and therefore, it is not necessary
to compute the entire PDF of facies occurrence for each
grid node. 

Several algorithms have been used for estimating the
most probable value of a continuous property at non-sampled
locations from a few scattered hard data (see examples in
Weber and Englund, 1992, 1994; Dirks et al., 1998; Zim-
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Illustration of the transformation of facies categories to a
continuous variable assuming a gaussian distribution for the As
Pontes dataset. Note the proportions of each facies, the thresholds
between facies categories, and the values of the continuous property
assigned to each facies in brackets. LM stands for lacustrine mud-
stones, PBC for pale brown coal, DBC for dark brown coal, XBC for
xyloid brown coal and AM for alluvial mudstones.

FIGURE 8



merman et al., 1999; Teegavarapu and Chandramouli,
2005). The most common methods are based on avera-
ging nearby hard data points. Other methods are based on
minimizing the roughness of the interpolated property
(e.g. splines; Ahlberg et al., 1967; Dubrule, 1984; Mitasova
and Mitas, 1993, Mitasova and Hofierka, 1993) or in
polynomial fitting; these methods are not as flexible,
realistic and exact as average-based methods and there-
fore will not be discussed further here. Average-based
methods differ on the procedure to obtain the weights
for each nearby hard data point; two widely used
approaches are introduced here: a) inverse distance
weighting, and b) kriging.

a) Inverse distance weighting is a simple set of me-
thods, in which the weights for each averaged hard data
point are assigned based on an inverse of distance criterion
(Kane et al., 1982; Pebesma and Wesseling, 1998). Usually,
the inverse of the squared distance is used, as in the
example presented here. Soft data needed in inverse dis-
tance weighting corresponded to the geometric anisotropy
factor (Kupfersberger and Deutsch, 1999). This factor is
used to multiply the vertical coordinates before the esti-
mation (Jones et al., 1986; Zoraster, 1996). This enables
assigning different weights to hard data points located at
the same real distance from the point being estimated, but
with differing stratigraphic position, and allows reprodu-
cing flattened geometries, which are typical of sediment-
ary deposits. In order to obtain objective measures of the
anisotropy factor, this was derived from the anisotropy
measured by variogram ranges (see below), and was set to
the ratio between horizontal and vertical variogram range
(Table 1). 

b) Kriging is a geostatistical method in which the
weights for each averaged hard data point are defined to
minimise the estimation variance (Matheron, 1963; Jour-
nel and Huijbregts, 1978; Cressie, 1990). The minimisa-
tion of the estimation variance enables a spatial covari-
ance criterion to be introduced, which results in weights
for each data point that not only depend on the distance
and direction to the grid cell being estimated (as in
inverse distance weighting), but also on the characteristics
of the interpolated property (described by the variogram,
see below) and the relative positions of the averaged hard
data (redundancy factor). This fact makes kriging esti-
mates more robust than the results yielded by inverse dis-
tance weighting methods (e.g. Falivene et al., 2007),
especially in cases where hard data are not located fol-
lowing a regular pattern. Soft data in kriging include
variograms, which are a measure of the degree of correla-
tion of a property as a function of distance (Journel and
Huijberts, 1978; Isaaks and Srivastava, 1989; Gringarten
and Deutsch, 2001). Variogram parameters (shape of the
variogram, nested structures, sill contributions and hori-

zontal and vertical ranges; Deutsch and Journel, 1998)
were derived from the values assigned to hard data (Table
1). Apart from the estimated grid cell value, kriging also
provides the estimation variance (Journel, 1986); this is a
measure of the reliability of the estimated value, which
depends on the data configuration and on the variogram
of the property. The estimation variance is not directly
used in interpolation algorithms, but is crucial for trun-
cated gaussian simulation method (see stochastic facies
modelling methods section). 

The final step of continuous methods is to truncate the
interpolated transformed property with the thresholds
between facies categories (Fig. 8). This allows the facies
reconstructions to be obtained: truncated inverse distance
weighting (TIDW; Fig. 9A), and truncated kriging (TK;
Fig. 9B). The algorithm implementation for TIDW was
based on the inverse squared distance weighting imple-
mentation in the GSTAT software package (Pebesma and
Wesseling, 1998), whereas TK used the kriging code
available in GSLIB (Deutsch and Journel, 1998).

Indicator Kriging and Indicator Inverse Distance
Weighting (categorical methods)

Preliminary data transformations

The first step in categorical methods for facies recons-
truction (Fig. 5) is the indicator transformation (Journel,
1983; Gómez-Hernández and Srivastava, 1990) of facies
categories. The indicator transformation applied to cate-
gorical variables like facies, transforms each facies into a
new variable, called an indicator. The value of these new
variables corresponds to the probability of finding the
related facies at a specific position. Where hard data exist,
the value of the indicator variable corresponding to the
facies present is set to one, whereas the values of all the
other indicator are set to zero.

Interpolation algorithm and results

The following step in facies reconstruction using cate-
gorical methods is to interpolate each new indicator vari-
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Anisotropy 228
Factor

Sill Theoretical Horizontal Vertical 
contribution variogram Range (m) Range

model (m)

Variogram
0.6 Exponential 500 1.4 

0.4 Exponential 100 3.0 

Soft data parameters for continuous methods (TIDW and
TK) applied to obtain deterministic facies reconstructions of the As
Pontes basin dataset.

TABLE 1



able at each grid node. Either inverse squared distance
weighting and kriging (see above) were used. Soft data
parameters describing each new indicator facies-related vari-
able (anisotropy factors for IIDW and variograms for IK)
were extracted from the transformed hard data (Table 2).

By assembling the interpolation results obtained for
all the indicator variables, the facies occurrence  PDF at
each grid node is determined. The probability of finding
each facies varies from 1 (full probability) to 0 (null
probability). The facies with the highest probability at
each grid node is selected as the one present at that
node, enabling to obtain the facies reconstructions:
indicator inverse distance weighting (IIDW; Fig. 9C),
and indicator kriging, (IK; Fig. 9D). The algorithm
implementation for IIDW was based the on inverse
squared distance weighting implementation in the
GSTAT software package (Pebesma and Wesseling,
1998), whereas IK used the kriging code available in
GSLIB (Deutsch and Journel, 1998).

STOCHASTIC FACIES MODELLING METHODS

In order to illustrate stochastic FRM methods the
results obtained from modeling the second dataset are
used. This dataset derives from turbidite deposits in the
Ainsa basin (NE Spain). Examples on the use of stochastic

facies modelling methods in the literature will be intro-
duced before presenting the application of the different
methods to the Ainsa basin dataset.

Background on the use of stochastic facies
modelling methods

A large number of published studies have used sto-
chastic methods for facies modelling; some relevant
applications in the literature are outlined below.

Pixel-based methods

Truncated Gaussian simulation (TGS; Galli et al.,
1994; Journel and Ying, 2001) has been used to reproduce
depositional settings assuming highly ordered depositional
models, e.g. deltaic (Matheron et al., 1987; Rudikiewicz
et al., 1990; Joseph et al., 1993), fluvial (Mathieu et al.,
1993; Eschard et al., 1998), or turbiditic channel fills
(Felletti, 2004). Two important variations of TGS have
been developed (Fig. 5). One is the truncation of the sum
of a Gaussian field and a deterministic expectation trend
(MacDonald and Aasen, 1994), which reproduces ordered
facies belts showing indentations between them (Fig. 10),
and it has been used to model facies belts within deltaic
depositional systems (MacDonald et al., 1992; Mac-
Donald and Aasen, 1994; Jian et al., 2002; Castellini et
al., 2003), and gradual facies transitions (Falivene et al.,
2006c). The other is the truncation of plurigaussian fields,
based on combinations of several sequential Gaussian
simulations, which allows reproducing more complex spa-
tial relationships between facies than the original TGS
method (Le Loc’h and Galli, 1996; Dowd et al., 2003; Fig.
11). Another remarkable application of two-dimensional
TGS has been used to describe the presence or absence of
shale drapes at the bounding surfaces of sandy deltaic
deposits or turbiditic channel bases (Novakovic et al., 2002;
Li and White, 2003).

Sequential indicator simulation (SIS) has been applied in
a variety of depositional settings assuming no facies orde-
ring, such as fluvial (Langlais et al., 1993; Journel et al.,
1998; Seifert and Jensen, 1999, 2000), deltaic (Cabello et al.,
2007), aeolian (Sweet et al., 1996), and turbidite settings
(Journel and Gómez-Hernández, 1993). A variation of SIS
that accounts for transition probabilities has been developed
(transition probability geostatistics, Fig. 5; Carle and Fogg,
1996, 1997). This variant is based on Markov chains (Gin-
gerich, 1969; Harbaugh and Bonham-Carter, 1970), and
defines facies transition probabilities as the probability for a
facies to be present in a location, provided that another facies
is present at another location. Facies transition probabilities
are taken into account within the general SIS procedure at
the time of computing the facies occurrence PDF. Applica-
tions of this variant have been used to model facies distribu-
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LM
Facies 228
PBC
Facies 99
DBC
Facies 228
XBC
Facies 142
AM
Facies 113 

Sill Theoretical Horizontal Vertical
contribution variogram Range (m) Range

model (m)

LM 0.018 Exponential 500 1.4 
Facies 0.012 Exponential 100 3.0 

PBC 0.063 Exponential 200 1.4 
Facies 0.042 Exponential 100 3.0 

DBC 0.150 Exponential 500 1.4 
Facies 0.100 Exponential 100 3.0 

XBC 0.039 Exponential 300 1.4 
Facies 0.026 Exponential 100 3.0 

AM 0.113 Exponential 700 1.4 
Facies 0.076 Exponential 100 3.0 
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Soft data parameters for categorical methods (IIDW and IK)
applied to obtain deterministic facies reconstructions of the As
Pontes basin dataset.

TABLE 2



tion in alluvial fans (Fogg et al., 1998; Carle et al., 1998;
Weissmann et al., 1999; Weissmann and Fogg, 1999; Weiss-
mann et al., 2002; Fig. 12).

Multiple-point geostatistics (MPG: Guardiano and
Srivastava, 1993; Wang, 1996; Caers, 2001; Strebelle, 2002;
Caers and Zhang, 2004; Liu, 2006) is a more recent
approach, developed to reproduce depositional conceptual
models with well-defined shapes, in cases where conditio-
ning to numerous hard data is needed (e.g. fractures, Wang
1996; or fluvial and turbidite channels, Strebelle and Journel,
2001; Strebelle et al., 2002; Caers and Zhang, 2004).

Object-based methods

The earliest applications of object-based methods
focused on the simulation of horizontal and planar shales

(Fig. 5), which could not be confidently correlated between
neighbouring wells (Delhomme and Giannesini, 1979;
Haldorsen and Chang, 1986; Haldorsen et al., 1987).

Object-based methods have also been successful in
simulating channelized depositional systems (Fig. 5),
because the external geometry of the related depositional
elements (channel-belts, channels, crevasse channels or
overbank deposits) can easily be parameterised as objects
characterized by relatively simple shapes. Many different
methods, the earliest ones aimed to improve the evalua-
tion of hydrocarbon reserves in North Sea fluvial reser-
voirs, have been developed (Clementsen et al., 1990;
Wadsley et al., 1990; Hirst et al., 1993; Tyler et al.,
1994b; Hatloy, 1994; Deutsch and Wang, 1996; Holden et
al., 1998; Viseur et al., 1998; Skorstad et al., 1999;
Deutsch and Tran, 2002), with many successful applica-
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Section showing facies distributions derived from deterministic reconstruction methods applied to the As Pontes basin dataset. (A, B)
were derived from continuous pixel-based methods, whereas (C, D) from categorical pixel-based methods. The position of the section is shown in
Figure 7D. Arrows indicate the position of intersected wells (hard data). Vertical exaggeration is 10x.

FIGURE 9



tions (Stanley et al., 1990; Jones et al., 1995; Mijnssen,
1997; Journel et al., 1998; Seifert and Jensen, 2000).
Object-based methods are also currently being applied to
deep-water channelized deposits (Jones and Larue, 1997;
Jones, 2001; Hodgetts et al., 2004; Larue and Friedman,
2005). An example of a facies distribution obtained using
an object-based modelling method designed for reproducing
channelized depositional systems is shown in Fig. 13. 

More generic object-based methods have also been
developed (Gundeso and Egeland, 1990; MacDonald and
Halland, 1993; Lia et al., 1996), like Ellipsim (Deutsch
and Journel, 1998) or the advanced object-based method
presented and used for modelling the Ainsa basin dataset
(see below). These are based on introducing objects of a
certain shape, in most cases ellipses or parallelepipeds.
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Illustration of the different stages to reproduce gradual facies transitions using a pixel-based stochastic modelling method based on the
truncation of the sum of a deterministic expectation trend and a Gaussian field. A) Deterministec expectation trend. B) Gaussian field. C) Sum of the
expectation trend and the Gaussian field. D) Truncation of the sum, obtaining two different facies units (a and b) with a gradual change between
them. E) Application of this method to model gradual facies transitions within a turbidite channel-complex, paleocurrent is to the NW(simplified from
Falivene et al., 2006c).

FIGURE 10

Illustration of the pixel-based stochastic modelling method based
on the truncation of plurigaussian fields. A, B) are images of two different
Gaussian fields. C) Facies model derived from the combination and truncation of
the two Gaussian fields. D) Graphical plot showing the rules related to permissible
facies transitions used to combine the Gaussian fields and generate the facies
model. Simplified from Beucher et al. (2003).
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The most advanced general object-based methods can
approach a variety of conceptual depositional models by
changing the object geometries (shape, roughness, undu-
lations), parameters (orientation, dimensions, correlation
factors between dimensions), and their relationships
(repulsion factors, varying proportions along grid zones)
(Brandsaeter et al., 2001; Cunha et al., 2001; Purvis et al.,
2002; Smith and Møller, 2003; Conybeare et al., 2004; Pringle
et al., 2004; Satur et al., 2005; Falivene et al., 2006c).

Application of facies modelling methods to the
Ainsa basin dataset

Introduction

The Ainsa basin is the slope portion of a Lower
Eocene foredeep, which developed in the footwall of the
western oblique ramp of the Montsec thrust sheet (Fig.
14A; Muñoz, 1998; Fernández, 2004; Fernández et al.,
2004). The slope complex is mostly made up of mud-
stones with a number of embedded sandy and conglome-
ratic turbidite systems; among which the Ainsa turbidite
system (Mutti, 1985; Mutti et al., 1988; Arbués et al.,
1998; Fernández et al., 2004). The information used
herein is derived from the so-called Quarry outcrop (Figs.
14B and C), where the basal part of the lowermost cycle
of channel-complex development and abandonment of the
Ainsa turbidite system is exposed (Arbués et al., in press).
Mutti and Normark (1987), Schuppers (1993, 1995),
Clark and Pickering (1996) and Arbués et al. (in press)
have presented sedimentological descriptions and inter-
pretations for this outcrop. Only the information related

to the sandstone-rich, turbidite-filled, C2 interval in the
detailed characterization by Arbués et al. (in press) was used
for this study (Fig. 14C). The exposed section of interval C2
is nearly 30 m thick and 750 m long, and oriented oblique
(SSE-NNW) to the paleoflow direction (WNW).

Given the relatively high degree of heterogeneity pre-
sent in the facies distribution and the availability of a
detailed outcrop characterization (Fig. 14C), this dataset
was deemed useful to illustrate the results obtained by
stochastic modelling methods (Fig. 5). The objective of
these methods is to generate facies distributions resem-
bling the spatial patterns observed at the outcrop. Con-
tinuous methods (TGS), categorical methods (SIS and
MPG), and object-based methods (Ellipsim and an
advanced general object-based method) were applied. 

Another widely used stochastic modelling methods
were introduced above (e.g. truncation of the sum of an
expectation trend and a Gaussian field: Fig. 10; truncation
of plurigaussian fields: Fig. 11; transition probability geo-
statistics: Fig. 12; object-based methods reproducing ho-
rizontal and planar shales; and object-based methods repro-
ducing channelized depositional systems: Fig. 13); but
these were not applied to the Ainsa dataset because they are
considered unsuitable for reproducing the sedimentary he-
terogeneity observed in the Quarry outcrop (Fig. 14C).

General set up

The outcrop characterization used as the starting point
for application of stochastic modelling methods (Fig.
14C) was constructed from a photomosaic and a number
of closely spaced stratigraphic logs. A widespread shale
layer located in the middle of the C2 interval was used as
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Three-dimensional facies simulation showing the archi-
tecture of alluvial fan deposits obtained by using transition probability
geostatistics. Note the reproduction of fining-upward (channel to levee)
tendencies, which cannot be simulated with traditional sequential
indicator simulation (SIS). Simplified from Carle et al. (1998).

FIGURE 12

Horizontal section showing facies architecture from a
three-dimensional model obtained by using a stochastic object-based
modelling method designed to reproduce channelized depositional
systems.

FIGURE 13
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A) Location of the Ainsa basin (boxed area) within the Pyrenean context. B) Geological map of the Quarry outcrop and surrounding areas
(simplified from Arbués et al., in press). C) Sedimentological characterization of the Quarry outcrop (simplified from Arbués et al, in press). D) Grid-
ded and simplified characterization corresponding only to the C2 architectural interval. E) Hard data used to condition the facies models.
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datum to correlate the logs (Fig. 14C); this allowed us to
consider the general bedding in C2 as parallel to the hori-
zontal for facies modelling purposes. The C2 interval in
the characterization was resampled onto a 2D rectangular
grid with cells oriented parallel to the horizontal datum
(Fig. 14D). Cell dimensions were 2.5 m wide and 0.05 m
high; the modelling grid used the same layering style and
spacing. Only three facies were considered for modelling
purposes: thick-bedded sandstones (Ss), conglomerates
(Cc) and heterolithic packages and mudstone beds (Ht-M).

Hard data consisted of five, regularly spaced, vertical
logs extracted from the gridded characterization (Fig.
14E). Hard data were not dense enough to allow the
accurate extraction of some soft data parameters;
instead, these were derived from the gridded outcrop
characterization (Fig. 14D). Soft data included facies
proportions (7% for Cc, 63% for Ss and 30% for Ht-M;
Fig. 15), variograms (Table 3), indicator variograms
(Table 4), object parameters (Table 5), and indirectly,
training images (Fig. 16).

Truncated Gaussian Simulation (continuous methods)

Preliminary data transformations

The first step in pixel-based, continuous methods for
facies modelling (Fig. 5) is the transformation of facies
categories into a continuous property, as in continuous

deterministic facies reconstruction methods (Fig. 8). This
requires an ordering of facies based on the conceptual
depositional model. In the Ainsa dataset facies were
ordered following grain-size and energy-related paleoen-
vironment criteria (Cc, Ss and Ht-M; Fig. 15). Continuous
methods start by calculating the thresholds between
facies; assuming a Gaussian distribution, the areas
between thresholds correspond to the measured propor-
tions in the hard data (Fig. 15). The next step is to assign
to each facies a value between their thresholds; constant
values located in the centre of each category were used
(Fig. 15; Deutsch, 2002). Variogram parameters were
derived from the outcrop characterization transformed
into a continuous property (Table 3).

Simulation algorithm and results

The second step consists of building a simulated random
field of the transformed continuous property extending all
over the modelling grid. This field is conditioned by the hard
data (Fig. 14E) and reproduces the previously computed va-
riograms, which characterize the spatial variability of the
continuous property (Table 3). Several algorithms have been
designed for building simulated fields, among these those
based on the turning bands (Matheron, 1973; Journel, 1974;
Tompson et al., 1989), post-processing with simulated
annealing (Deutsch and Cockerham, 1994), lower-upper
Cholesky decomposition (Alabert, 1987; Davis, 1987) or
sequential Gaussian simulation (Deutsch and Journel, 1998).
Sequential Gaussian simulation has proven to be the most
powerful and straightforward algorithm (Koltermann and
Gorelick, 1996; Deutsch and Journel, 1998), and is currently
the most widely used. Therefore only this algorithm will be
discussed herein. Sequential Gaussian simulation (Deutsch
and Journel, 1998; Journel and Deutsch, 1993) assigns a
value to each grid cell sequentially, by following a preset
path visiting all the modelling grid nodes. The assignation is
made by   random sampling from a PDF function, which is
calculated for each grid node by assuming a Gaussian distri-
bution described by the mean value and the standard devia-
tion predicted by kriging interpolation (Cressie, 1990; see
above). The kriging interpolation at each grid node is condi-
tioned by hard data, previously simulated node values, and
variograms. Sequential Gaussian simulation used the code
provided in GSLIB (Deutsch and Journel, 1998).
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Illustration of the transformation of facies categories to
a continuous variable assuming a Gaussian distribution for the Ainsa
dataset. Note the proportions of each facies, the thresholds between
facies categories, and the values of the continuous property assigned
to each facies in brackets. Cc stands for conglomerates, Ss for sand-
stones, and Ht-M for heterolithics and mudstones.

FIGURE 15
Sill Theoretical Horizontal Vertical
contribution variogram Range (m) Range

model (m)

Variogram
0.82 Exponential 120 0.6 

0.18 Exponential 1000 5.0 

Variogram parameters for continuous assumption methods (TGS)
applied to obtain stochastic facies models of the Ainsa basin dataset.
TABLE 3



The final step of continuous methods is to truncate the
simulated transformed property with the thresholds
between facies categories (Fig 15). This yields the facies
models: truncated Gaussian simulation (TGS; Fig. 17B).

Sequential Indicator Simulation (categorical methods)

Preliminary data transformations

Sequential indicator simulation (SIS) belongs to pixel-
based categorical stochastic modelling methods (Fig. 5).
This method is based on the indicator transformation
(Journel, 1983; Journel and Alabert, 1989; Gómez-
Hernández and Srivastava, 1990) of the facies categories
(similar to categorical deterministic facies reconstruction
methods). The indicator transformation applied to cate-
gorical variables like facies, transforms each facies into a
new variable, and the value of each new variable corres-
ponds to the probability of finding the related facies at a
specific position. Where hard data exist, the value of the
indicator variable corresponding to the facies present is
set to one, whereas the values of all the other indicator
variables are set to zero. Indicator variograms were
derived from the indicator variables of the transformed
outcrop characterization (Table 4). 

Simulation algorithm and results

SIS assigns a facies value to each grid cell sequentially,
by following a preset path visiting all the modelling grid
nodes. SIS applied to categorical variables only differs
from sequential Gaussian simulation in the procedure to
compute the PDF. At each grid cell, the PDF in SIS is
computed from the interpolated values derived from kriging
of each indicator variable (i.e. the probability of finding
each facies). Kriging of each new indicator variable in
turn is conditioned by transformed hard data, previously
simulated node values, and soft data (indicator vario-
grams; Table 4). Kriging of each new indicator variable
does not guarantee that the estimated probabilities for

each facies are comprised between 0 and 1, and that the sum
of the probabilities equals 1; verifying and correcting for
these two properties should be performed in order to gene-
rate a permissible facies ocurrence PDF (Langlais et al.,
1993; Deutsch, 2002), from which to sample the facies
values. The simulated field obtained corresponds directly to
the SIS results (Fig. 17C). The implementation of SIS pro-
vided in GSLIB (Deutsch and Journel, 1998) was used.

Multiple Point Geostatistics (categorical methods)

Simulation algorithm and results

Multiple point geostatistics (MPG; Guardiano and Sri-
vastava, 1993; Wang, 1996; Caers, 2001; Strebelle, 2002;
Caers and Zhang, 2004; Liu, 2006) belongs to the pixel-
based categorical stochastic modelling methods (as SIS,
Fig. 5). MPG does not require any preliminary data trans-
formation. MPG assigns a facies value to each grid cell
sequentially, by following a preset path visiting all the
modelling grid nodes. The differences between MPG and
SIS stems from the procedure to compute the facies ocur-
rence PDF at each grid cell. In MPG, like in SIS, the
facies ocurrence PDF is computed by considering hard
data, previously simulated nodes and soft data. However,
in MPG the soft data considered are training images (Fig.
16), instead of indicator variograms. A training image is a
template from which to find spatial configurations of
facies resembling the one around the node to be simu-
lated. The spatial configuration of facies around the node
to be simulated is determined by considering neighbour-
ing hard data and previously simulated nodes. Then, simi-
lar spatial configurations are searched for in the training
image; from each of the spatial configurations found, the
facies of the corresponding homologous node is recorded.
The obtained facies records are used to construct the facies
ocurrence PDF corresponding to the node being simulated. 

The training image represents a conceptual image of the
sedimentary heterogeneity to be reproduced in the simulated
facies model. Training images have been generally derived
from object-based realizations (Fig. 16; Strebelle, 2002;
Caers and Zhang, 2004). Outcrop characterizations could
also be used as training images; in the case of the Ainsa
basin dataset this was not feasible, because the characteriza-
tion width was not large enough to assure the reproduction
of large-scale correlation patterns (Caers and Zhang, 2004).
The resultant facies model obtained with MPG is shown in
Fig. 17D. MPG used the SNESIM code (Strebelle, 2002).

Ellipsim and an advanced general object-based
method (object-based methods)

Object-based methods are stochastic facies modelling
methods. Among the many available object-based algo-
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Sill Theoretical Horizontal Vertical
contribution variogram Range (m) Range

model (m)

Cc 0.04 Exponential 112 0.75 
Facies 0.025 Exponential 500 2.5 

Ss
0.23 Exponential 115 0.46 Facies

Ht-MN 0.16 Exponential 112 0.46 
Facies 0.05 Exponential 400 0.5 

Va
ri

o
g

ra
m

s

Indicator variogram parameters for categorical assumption
methods (SIS) applied to obtain stochastic facies models of the Ainsa
basin dataset.

TABLE 4



rithms, we used two with different modelling capacity:
Ellipsim and an advanced general object-based method
(Fig. 5). In both cases, the Ss facies was used as back-
ground, since it is the most laterally extensive facies, into
which objects of the Cc and Ht-M facies were introduced.

The Ellipsim method, coded by Deutsch and Journel
(1998) is a very simple object-based algorithm, which only
handles elliptical objects with constant orientation of their
main axes, and is not capable of conditioning to hard data. It
can only introduce objects of a unique facies in each run,
therefore the modelling was split into three steps: 1) model-
ling of facies Ht-M in a background of facies Ss; 2) model-
ling of facies Cc in a background of facies Ss; and 3) mer-
ging the two realizations into a single one. The sedime-
tological criterion used for merging is that the Cc facies
erodes/replaces the Ht-M and Ss facies; a resultant facies
realization is shown in Fig. 17E. Soft data for Ellipsim con-
sisted of geometric parameters characterizing the ellipses
(proportions and dimensions), and were derived from the
outcrop characterization (Table 5). 

Concerning the advanced general object-based
method, we refer to an algorithm able to reproduce com-

plex geometries introduced by Lia et al. (1996), and
implemented in the Irap RMS modelling package (by
Roxar AS©; “Facies:Composite”). In addition to the basic
set-ups for object-based facies modelling (different
shapes, dimensions and correlation factors between
dimensions), simulated Gaussian fields are used in this
method to introduce undulations of the object centre
plane and to add a degree of roughness to the top and
base of each object, both giving the object shape a more
realistic geometry. The simulation algorithm allowed con-
ditioning to hard data, which is obtained with an iterative
routine based on simulated annealing. The basic shape for
the Cc elements was chosen as ellipses, aimed at repro-
ducing their general lenticular external geometry. In addi-
tion, the parameters defining the centre plane and rough-
ness were set to mimic the more detailed concave-convex
nature of the erosive bounding surfaces observed on the
outcrop. In the case of the Ht-M elements, rectangles
were used as the basic shape, and undulations were set to
a high degree, aimed at reflecting the overall geometry of
these elements (Falivene et al., 2006a). Roughness was
set at a low degree since small-scale erosive features are
generally absent. Object dimensions were also derived
from the outcrop characterization. A realization obtained
using this method is shown in Fig. 17F. 

DISCUSSION AND CONCLUDING REMARKS

The first part of this section discusses critical issues that
were encountered in the application of FRM methods to the
studied datasets. Then, the capabilities and applicability of
the methods are discussed by reference to the obtained results.

Critical issues in facies modelling

In order to obtain meaningful and reliable facies distri-
butions with FRM methods, some important and critical
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Training image used in multiple point geostatistics, applied to obtain stochastic models of the Ainsa basin dataset. The image corres-
ponds to an unconditioned realization obtained with an advanced general object-based modelling method. Note the change of scale respect to
Figures 14D and 17.

FIGURE 16

Percentage Horizontal Radius (m))    Vertical radius (m)

Ht-M 30%+2% 225 0.16 Facies    

5% 25                             0.23 
Cc

7% 5% 20                             0.21 
Facies

90% 52                 0.43 D
im

en
si

o
ns

Object parameters for object-based methods (Ellipsim)
applied to obtain stochastic facies models of the Ainsa basin dataset.
Note that Ht-M proportions were increased to account for the erosion
after merging with Cc facies. Three different types of Cc geometries
were considered.

TABLE 5



issues linking input data and resultant facies distributions
should be considered: a) stationarity and trends in pro-
portions and geometrical characteristics of facies ele-
ments; b) reproduction of soft data in pixel-based methods;
c) relationship between soft data parameters and resul-
tant sizes of facies elements; and d) hard data condi-
tioning. 

Stationarity and trends

Pixel-based geostatistical methods (Fig. 5) were pri-
marily designed for reproducing facies distributions that
can be assumed stationary within the modelling grid (i.e.
whose statistical properties, such as proportions, standard
deviation and variograms, do not vary in space within the

studied sedimentary body; Journel, 1985). However,
facies distribution in the subsurface is usually affected by
the presence of trends (i.e. facies proportions are not
constant over the sedimentary body), these trends in most
cases relate to variations in the depositional environment,
either over different areas (horizontal trends) or over time
(vertical trends). 

When using deterministic methods in facies reconstruc-
tion (Fig. 5), and when hard data are relatively abundant,
there are no significant differences between explicitly using
a trend, which has been directly extracted from hard data,
or not (Fig. 18). This is related to the fact that interpolation
is done only with points located nearby, which implies that
the search window is smaller than the trend wavelength and
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A) Gridded and simplified characterization of the C2 interval. (B to F), Facies distributions derived from stochastic modelling methods,
and trying to reproduce the sedimentary heterogeneity in frame A. Vertical exaggeration is 10x.
FIGURE 17



thus accounts implicitly for the modelled trend (Journel
and Rossi, 1989; Falivene et al., 2007). 

In contrast, when using stochastic methods for facies
modelling (Fig. 5), trends are very important to reproduce a
conceptual depositional model, as the simulation results are
usually not heavily constrained by hard data. In most cases
trends must be predefined derived from general geological
knowledge or additional input data (e.g. geophysical infor-
mation), depending upon the modelling method there are
several ways to introduce them: a) trends in TGS can be
accounted for by varying the truncation thresholds along
the modelling grid (Galli et al., 1994; Mathieu et al., 1993);
if strong trends are used the results obtained can be similar
to those obtained using the method based on the truncation
of the sum of an expectation trend and a Gaussian field
(Figs. 5 and 10; MacDonald and Aasen, 1994); b) trends in
TGS, SIS and MPG can be accounted for by introducing a
term in the PDF related to the varying facies proportions
(Langlais et al., 1993); and c) trends in object-based methods
can be accounted for by varying the probabilities of object
insertion depending upon the location in the grid (Lia et al.,
1996; Falivene et al., 2006d).

Reproduction of soft data in pixel-based methods

When deterministic methods are used, input soft
data (variograms and proportions) are not reproduced

in the facies reconstruction. This is inherent to the in-
terpolation approximation and relates to the smoothing
effect of interpolation methods (Journel and Huijberts,
1978, p. 451; Isaaks and Srivastava, 1989, p. 268; Olea
and Pawlowsky, 1996; Journel et al., 2000). See Falivene et
al. (2007) for further discussion related to the quantifica-
tion of the smoothing effect in the As Pontes basin recons-
tructions introduced herein (Fig. 9).

Oppositely, the objective of stochastic facies
modelling is to reproduce soft data in the resultant
facies model. However, if the modelling grid size is
not large enough compared to the pixel-based typical
soft data (i.e. variogram ranges or training images
size); realizations showing smaller spatial continuity
may result. Several procedures may help to alleviate
this problem: a) Optimising the path visiting all the
modelling grid nodes to improve the honouring of
soft data (Tran, 1994); b) Performing simulations in
larger grids and then cropping the area of interest, as
it was done for TGS, SIS and MPG methods applied
to the Ainsa basin dataset (Fig. 17B, C and D;
Falivene et al., 2006a), and demonstrated in Fig. 19;
and c) By using post-processing with simulated
annealing (i.e. randomly changing simulated node
values in order to minimize an objective function,
which accounts for the reproduction of soft data in
the resultant facies model; Goovaerts, 1996).
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Section showing facies distributions derived from deterministic reconstruction methods applied to the As Pontes basin dataset. A) was
constructed by using indicator kriging, and B) by indicator kriging with an areal trend. The areal trend was extracted from the available hard data
(i.e. wells) information (Figure 7D). Note the similarities of the resultant facies distribution, independently of whether a method considering areal
trends explicitly is used or not. See Falivene et al. (2007) for detailed discussion. Position of the section is shown in Figure 7D. Arrows indicate the
position of intersected wells (hard data). Vertical exaggeration is 10x.

FIGURE 18



Relationships between soft data parameters and
resultant sizes of facies units

Another important issue related to the application of
FRM methods is the relationship between soft data para-
meters (i.e. variograms or training images) used to condi-
tion the modelling algorithm, and geometrical parameters
describing the facies distribution (i.e. size of clustered
values with the same facies, which are related to the sizes

of facies units or elements that can be measured in out-
cropping analogues, and used in object-based modelling
methods). 

The sizes obtained with deterministic reconstruction
methods (TIDW, TK, IIDW, IK; Fig. 5) are mostly controlled
by the hard data (Fig. 9); and therefore, there is no straightfor-
ward link with the soft data parameters employed by these
algorithms.
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Reproduction of soft data (i.e. variograms) in Sequential Indicator Simulation (SIS, Figure 5). The upper frames correspond to SIS realiza-
tions trying to reproduce sedimentary heterogeneity in Figure 17A. The left one was obtained through the straightforward application of SIS. The right
one was obtained using a simulation area extending well beyond the grid limits (at least 20 times the variogram ranges), which was cropped to obtain
the final facies model. The lower frames show the theoretical horizontal indicator variograms used in the simulations (continuous bold lines), and mea-
sured resultant horizontal variograms computed from different realizations (dashed lines). Note the improvement on theoretical variogram reproduction
when a large simulation area is used (variograms on the right), respect to the straightforward application of SIS (variograms on the left).

FIGURE 19



In SIS and TGS (Fig. 5), the relationship between
modelling input parameters and sizes of output clustered
values with the same facies is important. This relationship
makes possible to relate the variograms, which are com-
plex and may be difficult to infer, to easily quantifiable
and intuitive parameters such as sizes. Moreover, it also
allows the use of prior knowledge of the depositional sys-
tem in order to define variograms. This relationship has
been sometimes erroneously identified as controlled only
by the variogram range. However, in SIS the resultant
sizes are controlled by the slope of the variogram at the
origin and the facies proportion (Carle and Fogg, 1996;
Ritzi, 2000, Guardiola-Albert and Gómez-Hernández,
2001). Whereas in TGS and related methods (Fig. 5, 10
and 11) the controlling factors are more complex, as the
grid spacing also exerts some influence (Guardiola-Albert
and Gómez-Hernández, 2001). In MPG (Fig. 5), the sizes
depend directly on the characteristics of the training
image (Strebelle, 2002; Liu, 2006). 

In object-based methods (Fig. 5), the relationship
between object sizes specified as soft data and the resul-
tant sizes of the elements in the facies model is straight-
forward and fully controlled by the modelling algorithm.

Hard data conditioning 

Hard data conditioning in pixel-based methods (either
deterministic or stochastic; Fig. 5) is achieved directly
without approximations or iterations. On the other hand,
conditioning to hard data in object-based models can be
problematic in some cases. Object-based modelling methods
condition facies observations following two main ap-
proaches. a) The simplest one is based on first placing
those objects intersected by hard data information and later
distributing non-intersected objects at random locations
until the desired proportions are met (Clementsen et al.,
1990; Gundeso and Egeland, 1990); and b) The more com-
plex, flexible and time-consuming option is based on simu-
lated annealing. Simulated annealing computes an objec-
tive function measuring the discrepancy of the model with
respect to the selected conditions (soft data and hard data),
propose a change to the seed model (e.g. moving or chang-
ing the characteristics of an object), and accept or reject
this change depending upon the objective function evalua-
tion improvement (Lia et al., 1996; Holden et al., 1998;
Skorstad et al., 1999; Deutsch and Tran, 2002). In both
approaches hard data conditioning may not be completely
feasible, especially when a large number of soft data con-
straints are used, with a dense set of conditioning hard data
observations that should be honoured compared to the
object sizes. These facts may cause the modelling method
to fail or not fully converge in a reasonable computing time
(i.e. resulting in some non-realistic discontinuities near
hard-data, e.g. Fig. 17F).

Methods applicability

The application of several FRM methods to generate
facies distributions from two different datasets, such as
the As Pontes basin and the Ainsa basin datasets, made it
possible to illustrate and discuss on the applicability of a
wide variety of reconstruction and modelling techniques.

Continuous versus categorical methods

Both deterministic and stochastic pixel-based continuous
methods (Fig. 5) involve the simplification of facies cate-
gories to a single variable (Figs. 8 and 15). This simplifi-
cation limits these methods by imposing two fundamental
restrictions: a) continuous facies ordering. For examples
see Figs. 9A and 9B, where a transitional step with facies
XBC occurs in most transitions from AM to DBC. See
also Fig. 17B, where a transitional step with facies Ss
occurs in transitions from Cc to Ht-M, except in some
rare very rapid changes along the vertical. The extreme
case of an ordered facies distribution corresponds to the
reproduction of interfingered transitions by the method
based on the truncation of the sum of an expectation trend
and a Gaussian field (Fig. 10); and b) the use of a single
set of soft data parameters (one anisotropy factor in
TIDW or one variogram model in TK or SGT; Tables 1
and 3) to constrain the spatial variability of facies dis-
tribution (de Marsily et al., 1998). 

However, the simplification of facies categories to a
single variable gives to continuous pixel-based methods
their major advantages. 1) Relatively limited information or
hard data are required to derive soft data parameters, and 2)
continuous pixel-based methods are faster in terms of com-
puting time than their equivalent categorical methods.

In contrast to continuous pixel-based methods, for
categorical pixel-based methods all the facies transitions
are possible (Figs. 9C and D, Figs. 17C to F) and each
facies is characterized by one set of soft data parameters
(Tables 2, 4 and 5). Categorical pixel-based methods are
more suitable for generating facies distributions of gene-
ral depositional models (Fig. 5); although they require
more information to derive all sets of soft data and are
more time consuming than the continuous methods. Con-
tinuous methods are only useful in depositional settings
where it is reasonable to assume a highly ordered facies
distribution (Fig. 5).

The truncation of plurigaussian fields (Fig. 11) and
transition probability geostatistics (Fig. 12) represent
approaches between continuous and categorical pixel-
based methods that make it possible to obtain intermediate
facies ordering results. In the case of object-based methods,
the facies ordering would depend on the type of model
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that is chosen and particularly if repulsion factors
between facies are used.

Deterministic versus stochastic methods

Deterministic methods were able to provide interpola-
tion-based results, predicting the overall facies distribu-
tion patterns, from the hard data in the As Pontes basin
dataset (Figs. 9 and 18). Stochastic methods were able to
generate facies distributions reproducing the heterogeneity
in the Ainsa basin dataset (Fig. 17). Deterministic me-
thods provide a unique solution, whereas stochastic methods
provide multiple equiprobable realizations, which can be
used for quantifying uncertainty and in further non-linear
post-processing, such as flow simulation (Falivene et al.,
2006a).

The results of deterministic methods applied to facies
reconstruction are controlled mainly by hard data. Con-
sidering that at least reasonable soft data parameters are
used, the facies distributions obtained with the different
interpolation algorithms (e.g. kriging or inverse distance
weighting) are very similar for each assumption (for con-
tinuous methods compare Figs. 9A and B, and for cate-
gorical methods compare Figs. 9C and D; Falivene et al.,
2007). Therefore the results are not extremely sensitive to
the interpolation method, and the main difference comes
from selecting a continuous method or a categorical
method (Fig. 5). Categorical methods tend to provide
facies distributions with lower smoothing effect (Falivene
et al., 2007), and are thus preferred unless the facies
ordering is really obvious. Markov analysis can be used
to detect continuous facies ordering in hard data (Gin-
gerich, 1969; Miall, 1973).

In contrast, the results of stochastic methods applied to
facies modelling are mainly controlled by the mathematical
approximations of the modelling method and the soft data
parameters (Dubrule, 1994; Jones et al., 1995; Mijnssen,
1997). Results of the different methods may differ signifi-
cantly; even when using soft data derived from the same
dataset (Figs. 17B to F). The method chosen should be able
to reproduce the depositional conceptual model at the scale
of the problem (Journel et al., 1998; Figs. 5 and 17) and
integrate all the available hard and soft data.

For modelling the Ainsa dataset, the selection of the
method reproducing best the facies distribution observed
in the outcrop would be dependent on the further use of
the facies model; if this facies model were to be used for
predicting flow-related responses, then the preferred
modelling method would be the advanced general object-
based method (Fig. 17F; Falivene et al., 2006a). However,
there are no unequivocal rules for selecting the appropriate
methods in each specific case, as this will depend on se-

veral factors: 1) the scale of the problem, 2) the type and
density of data available, 3) the depositional setting, and
4) the objective of the model. Using the FRM methods
presented herein, one should be able to model a wide
range of settings. In complex situations, with hetero-
geneities in facies distribution occurring at different
scales, it might be also useful to combine several methods
in order to reproduce a given depositional conceptual
model; such approaches are termed hierarchical (Mac
Donald et al., 1992; MacDonald and Halland, 1993; Tyler
et al., 1994a; Jones et al., 1995; Deutsch and Wang, 1996;
Cunha et al., 2001; Deutsch and Tran, 2002; Falivene et
al., 2006c).

Conclusions

The use of a surface-based framework, in combination
with statistical grid-based facies reconstruction and mo-
delling methods (FRM methods), provides a flexible and
powerful approach to generating subsurface facies distri-
butions constrained by a variety of input geological data. 

The wide spectrum of existing FRM methods makes it
difficult to choose the most appropriate method for a given
studied case. Some basic rules for choosing between the
different available methods have been stated with the
application of FRM methods to the two selected datasets
from the As Pontes and Ainsa basins:

1) Choosing between a deterministic facies recons-
truction method and a stochastic facies modelling method
would depend on the objective of the resulting facies dis-
tribution. On the one hand, if the aim is to capture the
general facies distribution patterns then a deterministic
method will be preferred. Deterministic FRM methods
enable the automatic correlation of facies in a large num-
ber of close-spaced wells, and prove useful when facies
distribution is reasonably captured by dense well data
coverage. On the other hand, if the aim is to recreate
facies distribution from a more limited dataset, but
according to a preconceived conceptual depositional model,
then a stochastic method will be preferred.

2) When deterministic facies reconstruction methods
are applied, the main choice of the method to be used is
that of employing a continuous method for ordered facies
distributions (i.e. truncated-based method), or a categorical
method (i.e. indicator-based method) for non-ordered
facies distributions. Markov chain analysis provides an
objective test of facies ordering.

3) When stochastic facies modelling methods are
used, choosing between the different techniques requires
a series of decisions by the modeller. These should be
based on the scale of the problem, the type and density of
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available data, the objective of the model, and aimed to
best reproduce the conceptual depositional model; some
general ideas are provided in Fig. 5. Currently there are
no objective unequivocal rules to justify them, and this
must be based on the modellers’ experience, or by com-
paring the resultant facies distribution with the real facies
distribution, which for most cases is unknown.

Nowadays, the main limitation of FRM methods is
that processes responsible for the resulting facies archi-
tecture are not included explicitly in the modelling algo-
rithm. Process-based sedimentary models, formulating
such processes explicitly, are currently most used to better
understand the factors controlling sedimentary hetero-
geneity (Teles et al., 2001; Bitzer and Salas, 2002; Gra-
tacós, 2004; Euzen et al., 2004; Burgess et al., 2006).
However, these tools have not been widely applied for
building facies distributions of the subsurface directly
applicable for predictive and practical purposes because
of: 1) the challenge of conditioning on hard data, 2) the
complexity of inferring their input data parameters, and 3)
their scale and temporal limitations. The next generations
of FRM methods should be more process oriented, or at
least to enable to widely benefit from the output of
process-based methods in order to derive their input soft
data. Obviously, such improvements will benefit from the
increase in computing power and efficiency in database
management during the forthcoming years.

ACKNOWLEDGEMENTS

The research was carried out in the Geomodels Institute.
This Institute is sponsored by the Generalitat de Catalunya
(DURSI) and by the Instituto Geológico y Minero de España
(IGME) and includes the 3D Geological Modelling CER (Uni-
versity of Barcelona). The authors are indebted to ENDESA
MINA PUENTES for providing the first dataset. Financial sup-
port from the Spanish Government (Dirección General de Inves-
tigación (Projects COMODES: CGL 2004-05816-C02-01/BTE
and MARES: CGL 2004-05816-C02-02/BTE) and the Generali-
tat de Catalunya (Grup de Recerca de Geodinàmica i Anàlisi de
Conques, 2005SGR-000397). Research by O. Falivene was
funded by a pre-doctoral grant from the Spanish Government
(Ministerio de Educación y Ciencia). Roxar is thanked for pro-
viding the IRAP RMS reservoir modelling software. This article
summarizes part of the research included in the Thesis of O.
Falivene (Testing three-dimensional facies reconstruction and
modelling techniques applied to cored and outcropping ana-
logues. Examples from swamp coal zones to alluvial fans and
marine turbidite sequences, 2006, Universitat de Barcelona, 358
pp.); their reviewers are gratefully acknowledged. The original
manuscript has been improved thanks to the comments by Dr.
Ph. Renard (Univ. of Neuchatel), Dr. G. de Marsily (Univ. Pierre
et Marie Curie), and Dr. R. Smith (Shell).

REFERENCES

Ahlberg, J.H., Nilson, E.W., Walsh, J.L., 1967. The theory of splines
and its applications. New Cork, Academic Press, 280 pp.

Ainsworth, R.B., Sanlung, M., Duivenvoorden, T.C., 1999. Cor-
relation techniques, perforation strategies and recovery fac-
tors: an integrated 3D reservoir modelling study, Sirikit
field, Thailand. American Association of Petroleum Geolo-
gists Bullertin, 83, 1535-1551.

Alabert, F., 1987. The practice of fast conditional simulations
through LU decomposition of the covariance matrix. Mathe-
matical Geology, 19, 369-386.

Alexander, J., 1993. A discussion on the use of analogues for
reservoir geology. In: Ashton, M. (ed.). Advances in Reser-
voir Geology. Geological Society Special Publication, 69,
175-194.

Arbués, P., Mellere, D., Falivene, O., Fernández, O., Muñoz,
J.A., Marzo, M., de Gibert, J.M., in press. Context and
architecture of the Ainsa-1-quarry channel complex. Ainsa
Basin, Eocene South-Central Pyrenees, Spain. In: Nielsen,
T.H., Shew, R.D., Steffens, G.S., Studlick, R.J. (eds.), in
press. Atlas of Deep-Water Outcrops. American Association
of Petroleum Geologist Studies in Geology, 56.

Arbués, P., Muñoz, J.A., Fernández, O., Falivene, O., Marzo,
M., 2003. Contrasts on the 3D Geometry and Architecture
of two Turbidite Systems in the Ainsa Basin. South-Central
Pyrenees, Spain, American Association of Petroleum Geolo-
gists International Conference & Exhibition, Barcelona,
Abstract, A4-A5.

Arbués, P., Muñoz, J.A., Poblet, J., Puigdefàbregas, C., McClay,
K., 1998. Significance of submarine truncation surfaces in
the sedimentary infill of the Ainsa basin (Eocene of south-
central Pyrenees, Spain). 15th International Sedimentological
Congres, Alicante, Spain, Publicaciones de la Universidad
de Alicante, 145-146.

Artimo, A., Makinen, J., Berg, R.C., Abert, C.C., Salonen, V.P.,
2003. Three-dimensional geologic modeling and visualiza-
tion of the Virttaankangas aquifer, southwestern Finland.
Hydrogeology Journal, 11, 378-386.

Bacelar, J., Alonso, M., Kaiser, C., Sánchez, M., Cabrera, L.,
Sáez, A., Santanach, P., 1988. La cuenca terciaria de As
Pontes (Galicia): su desarrollo asociado a inflexiones con-
tractivas de una falla direccional. II Congreso Geológico de
España, Simposios, Granada, Sociedad Geológica de
España, 113-121.

Beucher, H., Geffroy, F., Doligez, B., 2003. Complex features in
sedimentology and truncated plurigaussian simulations.
American Association of Petroleum Geologists Annual Con-
vention, Salt Lake City (Utah), Extended Abstract.

Bitzer, K., Salas, R., 2002. SIMSAFADIM: three-dimensional
simulation of stratigraphic architecture and facies distribu-
tion modeling of carbonate sediments. Computers and Geo-
sciences, 28, 1177-1192.

Brandsaeter, I., Wist, H.T., Naess, A., Lia, O., Arnzten, O.J.,
Ringrose, P.S., Martinius, A.W., Lerdahl, R., 2001. Ranking

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

223Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230



stochastic realizations of complex tidal reservoirs using
streamline simulation criteria. Petroleum Geoscience, 7,
S53-S63.

Bridge, J.S., Mackey, S., 1993. A theoretical study of fluvial
sandstone body dimensions. In: Flint, S.S., Bryant, I.D.
(eds.). The Geologic Modelling of Hydrocarbon Reservoirs
and Outcrop Analogues. International Association of Sedi-
mentologists, Special Publications, 15, 213-236.

Bryant, I.D., Flint, S.S., 1993. Quantitative clastic reservoir geo-
logical modelling: problems and prespectives. In: Flint, S.S.,
Bryant, I.D. (eds.). The Geologic Modelling of Hydrocarbon
Reservoirs and Outcrop Analogues. International Associa-
tion of Sedimentologists, Special Publications, 15, 3-20.

Bryant, I.D., Carr, D., Cirilli, P., Drinkwater, N.J., McCormick,
D., Tilke, P., Thurmond, J., 2000. Use of 3D digital ana-
logues as templates in reservoir modelling. Petroleum Geo-
science, 6, 195-201.

Burgess, P.M., Lammers, H., van Oosterhout, C., Granjeon, D.,
2006. Multivariate sequence stratigraphy: Tackling complexi-
ty and uncertainty with stratigraphic forward modeling, multi-
ple scenarios, and conditional frequency maps. American
Association of Petroleum Geologists Bulletin, 90, 1883-1901.

Cabello, P., Cuevas, J.L., Ramos, E., 2007. 3D modelling of
grain size distribution in quaternay in deltaic plain deposits
(Llobregat Delta, NE Spain). Geologica Acta, 5(3), 231-244.

Cabrera, L., Hagemann, H.W., Pickel, W., Sáez, A., 1992. Carac-
terización Petrológica y Geoquímica Orgánica de los ligni-
tos de la cuenca de As Pontes (La Coruña). II Congreso
Geológico de España - VIII Congreso Latinoamericano de
Geología, Salamanca, Tomo 2, 239-246. 

Cabrera, L., Hagemann, H.W., Pickel, W., Sáez, A., 1995. The
coal-bearing, Cenozoic As Pontes Basin (northwestern
Spain): geological influence on coal characteristics. Interna-
tional Journal of Coal Geology, 27, 201-226.

Cabrera, L., Ferrús, B., Sáez, A., Santanach, P., Bacelar., J.,
1996. Onshore Cenozoic strike-slip basins in NW Spain. In:
Friend, P.F., Dabrio, C.J. (eds.). Tertiary Basins of Spain.
The Stratigraphic Record of Crustal Kinematics. Cam-
bridge, Cambridge University Press, 247-254.

Caers, J., 2001. Geostatistical reservoir modelling using statisti-
cal pattern recognition. Journal of Petroleum Science and
Engineering, 29, 177-188.

Caers, J., Zhang, T., 2004. Multiple-point geostatistics: A quan-
titative vehicle for integrating geologic analogs into multiple
reservoir models. In: Grammer, M., Harris, P.M., Eberli,
G.P. (eds.). Integration of outcrop and modern analogs in
reservoir modelling. American Association of Petroleum
Geologists Memoir, 80, 383-394.

Carle, S.F., Fogg, G.E., 1996. Transition probability based indi-
cator geostatistics. Mathematical Geology, 28, 453-476.

Carle, S.F., Fogg, G.E., 1997. Modeling spatial variability with
one and multidimensional continuous-lag Markov chains.
Mathematical Geology, 29, 891-917.

Carle, S.F., Labolle, E.M., Weissmann, G.S., Van Brocklin, D.,
Gogg, G.E., 1998. Conditional Simulation of Hydrofacies

Architecture: A Transition Probability/Markov Approach. In:
Fraser, G.S., Davis, J.M. (eds.). Hydrogeologic models of
sedimentary aquifers, SEPM Special Publication, Concepts in
Hydrogeology and Environmental Geology, 147-170.

Castellini, A., Chawathé, A., Larue, D., Landa, J.L., Jian, F.X.,
Toldi, J., 2003. What is Relevant to Flow? A Comprehensive
Study Using a Shallow Marine Reservoir. Society of Petro-
leum Engineers Paper No. 79669, 12 pp.

Clark, J.D., Pickering, K.T., 1996. Architectural Elements and
Growth Patterns of Submarine Channels: Application to
Hydrocarbon Exploration. American Association of Petro-
leum Geologists Bulletin, 80, 194-221.

Clementsen, R., Hurst, A., Knarud, R., Omre, H., 1990. A com-
puter program for evaluation of fluvial reservoirs. In: Buller,
A.T., Berg, E., Hjemeland, O., Kleppe, J., Torsaeter, O.,
Aasen, J.O. (eds.). North Sea Oil and Gas Reservoirs II.
London, Graham and Trotham, 373-385.

Conybeare, D.M., Cannon, S., Karaoguz, O., Uygur, E., 2004.
Reservoir modelling of the Hamitabat Field, Thrace Basin,
Turkey: an example of a sand-rich turbidite system. In: Lomas,
S.A., Joseph, P. (eds.). Confined Turbidite Systems. Geolo-
gical Society, London, Special Publications, 222, 307-320.

Cressie, N., 1990. The origins of kriging. Mathematical Geo-
logy, 22, 239-252.

Cunha, L.B., Barroso, A., Romeu, R.K., Sombra, C.L., Cortez,
M.M., Backheuser, Y., Lopes, M.F., Scwerdesky, G., Bruhn,
C.H., de Souza, R.S., Becker, M.R., 2001. A multi-scale
approach to improve reservoir characterization and forecast-
ing: the Albacora Field (deep-water offshore Brazil) study.
Petroleum Geoscience, 7, S17-S23.

Dalrymple, M., 2001. Fluvial reservoir architecture in the Strat-
fjord Formation (northern North Sea) augmented by outcrop
analogue statistics. Petroleum Geoscience, 7, 115-122.

Davis, M., 1987. Production of conditional simulations via the
LU decomposition of the covariance matrix. Mathematical
Geology, 19, 91-98.

de Marsily, G., Delay, F., Teles, V., Schafmeister, M.T., 1998.
Some current methods to represent the heterogeneity of
natural media in hydrogeology. Hydrogeology Journal, 6,
115-130.

de Marsily, G., Delay, F., Gonçalves, J., Renard, P., Teles, V.,
Violette, S., 2005. Dealing with spatial heterogeneity.
Hydrogeology Journal, 13, 161-183.

Delhomme, A.E.K., Giannesini, J.F., 1979. New reservoir
description techniques improve simulation results in Hassi-
Messaud field, Algeria. Society of Petroleum Engineers
Paper No. 8435, 11 pp.

Deutsch, C.V., 2002. Geostatistical Reservoir Modeling.
Applied Geostatistics Series, New York, Oxford University
Press, 376 pp.

Deutsch, C.V., Cockerham, P., 1994. Practical considerations in
the application of simulated annealing to stochastic simula-
tion. Mathematical Geology, 26, 67-82.

Deutsch, C.V., Hewet, T.A., 1996. Challenges in Reservoir Fore-
casting. Mathematical Geology, 28, 829-842.

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

224Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230



Deutsch, C.V., Journel, A.G., 1998. GSLIB: Geostatistical
Software Linrary and User’s Guide, 2nd edition. New
York, Oxford University Press, Applied Geostatistics
Series, 350 pp.

Deutsch, C.V., Tran, T.T., 2002. FLUVISIM: a program for
object-based stochastic modeling of fluvial depostional sys-
tems. Computers and Geosciences, 28, 525-535.

Deutsch, C.V., Wang, L., 1996. Hierarchical Object-Based Sto-
chastic Modeling of Fluvial Reservoirs. Mathematical Geo-
logy, 28, 851-880.

Dirks, K.N., Hay, J.E., Stow, C.D., Harris, D., 1998. High-reso-
lution studies of rainfall on Norfolk Island Part II: interpola-
tion of rainfall data. Journal of Hydrology, 208, 187-193.

Doligez, B., Granjeon, D., Joseph, P., Eschard, R., 1999. How
can stratigraphic modeling help constrain geostatistical
reservoir simulations? In: Harbaugh, J.W., Watney, W.L.,
Rankey, E.C., Slingerland, R., Goldstein, R.H., Franseen,
E.K. (eds.). Numerical experiments in stratigraphy; recent
advances in stratigraphic and sedimentologic computer
simulations. Society for Sedimentary Geology Special Pub-
lication, 62, 239-244.

Dowd, P.A., Pardo-Igúzquiza, E., Xu, C., 2003. Plurigau: a
computer program for simulating spatial facies using trun-
cated plurigaussian method. Computers and Geosciences,
29, 123-141.

Dreyer, T., Falt, L.M., Hoy, T., Knarud, R., Steel, R., Cuevas,
J.L., 1993. Sedimentary architecture of field analogues for
reservoir information (SAFARI): a case study of the fluvial
Escanilla Formation, Spanish Pyrenees. In: Flint, S., Bryant,
I.D. (eds.). The geological modelling of hydrocarbon reser-
voirs and outcrop analogues. International Association of
Sedimentologists, Special Publications, 15, 57-80.

Dubrule, O., 1984. Comparing Splines and Kriging. Computers
and Geosciences, 10, 327-338.

Dubrule, O., 1994. Estimating or Choosing a Geostatistical
Model? In: Dimitrakopoulos, R. (ed.). Geostatistics for the
Next Century. Dordrecht, The Netherlands, Kluwer Acade-
mic Publishers, 3-14.

Dubrule, O., Damsleth, E., 2001. Achievements and challenges
in petroleum geostatistics. Petroleum Geoscience, 7, S1-S7.

Dubrule, O., Haldorsen, H.H., 1986. Geostatistics for
permeability estimation. In: Lake, L.W., Carroll, H.B.
(eds.). Reservoir Characterization. Orlando, Academic
Press, 223-247.

Eschard, R., Lemouzy, P., Bacchiana, C., Désaubliaux, G.,
Parpant, J., Smart, B., 1998. Combining sequence stratigra-
phy, geostatistical simulations and production data for
modeling a fluvial reservoir in the Chamoy Field (Triasic,
France). American Association of Petroleum Geologists
Bulletin, 82, 545-568.

Euzen, T., Joseph, P., Du Fornel, E., Lesur, S., Granjeon, D.,
Guillocheau, F., 2004. Three-dimensional stratigraphic
modelling of the Grès d’Annot system, Eocene-Oligocene,
SE France. In: Joseph, P., Lomas, S. (eds.). Deep-water sedi-
mentation in the Alpine Foreland Basin of SE France: New

perspectives on the Grès d’Annot and related systems. Geo-
logical Society Special Publications, 221, 161-180.

Falivene, O., Arbués, P., Gardiner, A.R., Pickup, G.E., Muñoz,
J.A., Cabrera, L., 2006a. Best-practice stochastic facies
modeling from a channel-fill turbidite sandstone analog (the
“Quarry Outcrop”, Eocene Ainsa Basin, NE Spain). Ameri-
can Association of Petroleum Geologists Bulletin, 90, 1003-
1029.

Falivene, O., Arbués, P., Howell, J., Fernández, O., Cabello, P.,
Muñoz, J.A., Cabrera, L., 2006b. A FORTRAN program
to introduce field-measured sedimentary logs into reser-
voir modelling packages. Computers and Geosciences,
32,1519-1522.

Falivene, O., Arbués, P., Howell, J., Muñoz, J.A., Fernández,
O., Marzo, M., 2006c. Hierarchical geocellular facies
modelling of a turbidite reservoir analogue from the
Eocene of the Ainsa Basin, NE Spain. Marine and Petro-
leum Geolgy, 23, 679-701.

Falivene, O., Cabrera, L., Sáez, A., 2006d. Reconstrucción
geoestadística de facies en un abanico aluvial dominado por
aportes lutíticos (Cuenca cenozoica de As Pontes, A
Coruña). Predicción de la distribución de acuíferos en cuer-
pos arenosos. VI Congreso del Grupo Español del Terciario,
Salamanca, Geo-Temas, 9, 79-82.

Falivene, O., Cabrera, L., Sáez, A., 2007. Optimum and robust
3D facies interpolation strategies in a heterogeneous coal
zone (Tertiary As Pontes basin, NW Spain). International
Journal of Coal Geology, 71(2-3), 185-208.

Falivene, O., Cabrera, L., Sáez, A., in press. Large to intermedi-
ate-scale aquifer heterogeneity in fine-grain dominated allu-
vial fans (Cenozoic As Pontes basin, NW Spain): Insight
based on 3D reconstruction. Hydrogeology Journal.

Falkner, A., Fielding, C., 1993. Quantitative facies analysis of
coal-bearing sequences in the Bowen Basin, Australia:
applications to reservoir description. In: Flint, S.S., Bryant,
I.D. (eds.). The Geologic Modelling of Hydrocarbon Reser-
voirs and Outcrop Analogues. International Association of
Sedimentologists Special Publications, 15, 81-98.

Felletti, F., 2004. Statistical modelling and validation of correla-
tion in turbidites: an example from the Tertiary Piedmont
Basin (Castagnola Fm., Northern Italy). Marine and Petro-
leum Geology, 21, 23-39.

Fernández, O., 2004. Reconstruction of geological structures in
3D. An example from the southern Pyrenees. Doctoral thesis.
Universitat de Barcelona, 321 pp.

Fernández, O., Muñoz, J.A., Arbués, P., Falivene, O., Marzo,
M., 2004. 3-D reconstruction of geological surfaces: an
example of growth strata and turbidite systems from the
Ainsa basin (Pyrenees, Spain). American Association of
Petroleum Geologists Bulletin, 88, 1049-1068.

Ferrús, B., 1998. Análisis de cuenca y relaciones tectónica-sedi-
mentación en la cuenca de As Pontes (Galícia). Doctoral
thesis. Universitat de Barcelona, 351 pp.

Flach, G.P., Hamm, L.L., Harris, M.K., Thayer, P.A., Haselow,
J.S., Smits, A.D., 1998. A method for characterizing hydro-

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

225Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230



geologic heterogeneity using lithologic data. In: Fraser,
G.S., Davis, J.M. (eds.). Hydrogeologic models of sedimen-
tary aquifers, SEPM Special Publication, Concepts in
Hydrogeology and Environmental Geology, 119-136.

Fogg, G.E., Noyes, C.D., Carle, S.F., 1998. Geologically-based
model of heterogeneous hydraulic conductivity in an allu-
vial setting. Hydrogeology Journal, 6, 131-143.

Galli, A., Beucher, H., Le Loc’h, G., Doliguez, Group, H.,
1994. The pros and cons of the truncated Gaussian method.
In: Armstrong, M., Dowd, P.A. (eds.). Geostatistical Simu-
lations. The Netherlands, Kluwer Academic Publishers,
217-233.

Gingerich, P.D., 1969. Markov Analysis of cyclic alluvial sedi-
ments. Journal of Sedimentary Petrology, 39, 330-332.

Gómez-Hernández, J., Srivastava, R.M., 1990. ISIM 3D: an
ANSI-C three-dimensional and multiple indicator condition-
al simulation program. Computers and Geosciences, 16,
355-410.

Goovaerts, P., 1996. Stochastic Simulation of Categorical Vari-
ables Using a Classification Algorithm and Simulated
Annealing. Mathematical Geology, 28, 909-921.

Goovaerts, P., 1999. Impact of the simulation algorithm, magni-
tude of ergodic fluctuations and number of realizations on
the spaces of uncertainty of flow properties. Stochastic
Environmental Research and Risk Assessment, 13, 161-182.

Gratacós, O., 2004. SIMSAFADIM-CLASTIC: Modelización
3D de transporte y sedimentación clástica subacuatica. Doc-
toral thesis. Universitat de Barcelona, 216 pp.

Gringarten, E., Deutsch, C.V., 2001. Variogram interpretation
and modeling. Mathematical Geology, 33, 507-535.

Guardiano, F., Srivastava, R.M., 1993. Multivariate geostatis-
tics: beyond bivariate moments. In: Soares, A. (ed.). Geosta-
tistics-Troia 1. Dordrecht, Kluwer Academic Publications,
113–114.

Guardiola-Albert, C., Gómez-Hernández, J., 2001. Average
length of objects generated by a binary random function:
discretization effects and relation with the variogram para-
meters, geoENV III. The Netherlands, Kluwer Academic
Publishers, 323-332.

Gundeso, R., Egeland, O., 1990. SESIMIRA; a new geological
tool for 3D modelling of heterogeneous reservoirs. In:
Buller, A.T., Berg, E., Hjemeland, O., Kleppe, J., Torsaeter,
O., Aasen, J.O. (eds.). North Sea oil and gas reservoirs con-
ference, Proceedings, 363-371.

Hagemann, H.W., Pickel, W., Cabrera, L., Sáez, A., 1997. Ter-
tiary lignites of the As Pontes (NW Spain) - An example for
composition of bright coal layers and its implications for
formation. 9th International Conference on Coal Science,
Essen, Alemania, Proceedings 1, 31-34.

Haldorsen, H.H., Chang, D.M., 1986. Notes on stochastic shales
- from outcrop to simulation model. In: Lake, L.W., Carroll,
H.B. (eds.). Reservoir Characterization. Orlando, Academic
Press, 445-485.

Haldorsen, H.H., Chang, D.M., Begg, S.H., 1987. Discontinuous
vertical permeability barriers: a challenge to engineers and

geologists. North Sea Oil and Gas Reservoirs. London, UK,
The Norwegian Institute of Technology, 127-151.

Haldorsen, H.H., Damsleth, E., 1990. Stochastic Modeling.
Journal of Petroleum Geology, 42, 404-412.

Harbaugh, J.W., Bonham-Carter, G., 1970. Computer simulation
in geology. New York, Willey and Sons, 575 pp.

Hatloy, A.S., 1994. Numerical facies modeling combining deter-
ministic and stochastic methods. In: Yarus, J.M., Chambers,
R.L. (eds.). Stochastic Modeling and Geostatistics: princi-
ples, methods and case studies. American Association of
Petroleum Geologists, Computers Applications in Geology,
3, 109-120.

Hauge, R., Syverseveen, A.R., MacDonald, A.C., 2003. Model-
ing Facies Bodies and Petrophysical Trends in Turbidite
Reservoirs. Society of Petroleum Engineers Paper No.
84053, 7 pp.

Heinz, J., Aigner, T., 2003. Hierarchical dynamic stratigraphy in
various Quaternary gravel deposits, Rhine glacier area (SW
Germany): implications for hydrostratigraphy. International
Journal of Earth Sciences (Geol Rundsch), 92, 923-938.

Hirst, J.P.P., Blackstock, C., Tyson, S., 1993. Stochastic model-
ling of fluvial sandstone bodies. In: Flint, S.S., Bryant, I.D.
(eds.). The Geologic Modelling of Hydrocarbon Reservoirs
and Outcrop Analogues. International Association of Sedi-
mentologists Special Publications, 15, 237-252.

Hodgetts, D., Drinkwater, N.J., Hodgson, D., Kavanagh, J.,
Flint, S., Keogh, K.J., Howell, J., 2004. Three dimensional
geological models from outcrop data using digital collection
techniques: an example from the Tanqua Karoo depocentre,
South Africa. In: Curtis, A., Wood, R. (eds.). Geological Pri-
or Information: Information Science and Engineering. Geo-
logical Society of London, Special Publications, 239, 57-75.

Holden, L., Hauge, R., Skare, O., Skorstad, A., 1998. Modeling
of fluvial reservoirs with object models. Mathematical Geol-
ogy, 30, 473-496.

Hornung, J., Aigner, T., 1999. Reservoir and aquifer characteri-
zation of fluvial architectural elemets: Stubensandstein,
Upper Triassic, southwest Germany. Sedimentary Geology,
129, 215-280.

Huerta, A., 1998. Petrografía, Mineralogía y Geoquímica de los
lignitos de la cuenca Oligo-Miocena de As Pontes (A
Coruña): Control geológico sobre la calidad del carbon.
Doctoral thesis. Universitat de Barcelona, 333 pp.

Huerta, A., 2001. Resumen de tesis Doctoral: Caracterización
mineralógica y geoquímica de los lignitos de la cuenca Ter-
ciaria de As Pontes (Provincia de La Coruña). Acta Geológi-
ca Hispánica, 36, 183-186.

Huerta, A., Querol, X., Sáez, A., Cabrera, L., 1997. Mineralogy
and Geochemistry of the As Pontes lignites (NW Spain):
Relation with paleohydrological basin evolution. In: Hendry,
J., Carey, P., Ruffell, A., Worden, R. (ed.). Migration and
Interaction in Sedimentary basins and Orogenic Belts.
GEOFLUIDS II’97. Contributions to the Second Interna-
tional Conference on Fluid Evolution. Belfast, Geological
Society Special Publication, 370-373.

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

226Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230



Huggenberger, P., Aigner, T., 1999. Introduction to the special
issue on aquifer-sedimentology: problems, perspectives and
modern approaches. Sedimentary Geology, 129, 179-186.

Hurst, A., Cronin, B., Hartley, A., 2000. Reservoir modelling of
sand-rich deep-water clastics: the necessity of downscaling.
Petroleum Geoscience, 6, 67-76.

Hurst, A., Verstralen, I., Cronin, B., Hartley, A., 1999. Sand-rich
fairways in deep-water clastic reservoirs: genetic units, cap-
turing uncertainty, and a new approach to reservoir model-
ing. American Association of Petroleum Geologists Bulletin,
83, 1096-1118.

Isaaks, E.J., Srivastava, R.M., 1989. An introduction to Applied
Geostatistics. New York, Oxford University Press, 561 pp.

Jian, F.X., Larue, D., Castellini, A., Toldi, J., 2002. Reservoir
Modeling Methods and Characterization Parameters For a
Shoreface Reservoir: What is Important For Fluid Flow Per-
formance? Society of Petroleum Engineers Paper No.
77428, 14 pp.

Johnson, N.M., Dreiss, S.J., 1989. Hydrostratigraphic interpreta-
tion using indicator geostatistics. Water Resources Research,
25, 2501-2510.

Jones, A., Doyle, J., Jacobsen, T., Kjonsvik, D., 1995. Which sub-
seismic heterogeneities influence waterflood performance? A
case study of a low net to gross fluvial reservoir. In Hahn,
H.J. (ed.). New developments in improved oil recovery. Geo-
logical Society of London Special Publication, 84, 5-18.

Jones, T.A., 1988. Geostatistical Models with Stratigraphic Con-
trol - Short Note. Computers and Geosciences, 14, 135-138.

Jones, T.A., 1992. Extensions to Three Dimensions Introduction
to the Section On 3-D Geologic Block Modeling. In: Hamil-
ton, D.E., Jones, T.A. (eds.). Computer Modeling of Geo-
logic Surfaces and Volumes. American Association of Petro-
leum Geologists, Computers Applications in Geology, 1,
175-182.

Jones, T.A., 2001. Using flowpaths and vector fields in object-
based modeling. Computers and Geosciences, 27, 133-138.

Jones, T.A., Larue, D.K., 1997. Object-based modeling and
deepwater depositional systems. In: Pawlowsky, V. (ed.).
IAMG’97: Third annual conference of the International
Association for Mathematical Geology, International Center
for Numerical Methods in Engineering, Barcelona, Proceed-
ings, 438-443.

Jones, T.J., Hamilton, D.E., Johnson, C.R., 1986. Contouring
geologic surfaces with the computer. New York, Van Nos-
trand Reinhold, 314 pp.

Joseph, P., Hu, L.Y., Dubrule, O., Claude, D., Crumeyrolle, P.,
Lesseur, J.L., Soudet, H.J., 1993. The Roda deltaic complex
(Spain): From sedimentology to reservoir stochastic model-
ling. In: Eschard, R., Doliguez, B. (eds.). Subsurface Reser-
voir Characterization from Outcrop Observations. Paris,
Editions Technip, 97-109.

Journel, A.G., 1974. Geostatistics for conditional simulation of
orebodies. Economic Geology, 69, 673-687.

Journel, A.G., 1983. Nonparametric Estimation of Spatial Dis-
tributions. Mathematical Geology, 15, 445-468.

Journel, A.G., 1985. The Deterministic Side of Geostatistics.
Mathematical Geology, 17, 1-15.

Journel, A.G., 1986. Geostatistics: Models and Tools for the
Earth Sciences. Mathematical Geology, 18, 119-140.

Journel, A.G., Alabert, F.G., 1989. Non-Gaussian data expan-
sion in the earth sciences. Terra Nova, 1, 123-134.

Journel, A.G., Deutsch, C.V., 1993. Entropy and spatial disorder.
Mathematical Geology, 25, 329-355.

Journel, A.G., Huijbregts, C.J., 1978. Mining geostatistics. Lon-
don, Academic Press, 600 pp.

Journel, A.G., Isaaks, E.H., 1984. Conditional Indicator Simula-
tion: Application to a Saskatchewan uranium deposit. Ma-
thematical Geology, 16, 685-718.

Journel, A.G., Kyriakidis, P.C., Mao, S., 2000. Correcting the
Smoothing Effect of Estimators: A Spectral Postprocessor.
Mathematical Geology, 32, 787-813.

Journel, A.G., Rossi, M., 1989. When do we need a trend in
kriging? Mathematical Geology, 21, 715-739.

Journel, A.G., Ying, Z., 2001. The theoretical links between
Sequential Gaussian Simulation, Gaussian Truncated Simu-
lation, and Probability Field Simulation. Mathematical
Geology, 33, 31-39.

Journel, A.G., Gómez-Hernández, J.J., 1993. Stochastic Imaging
of the Wilmington Clastic Sequence. Society of Petroleum
Engineers Formation Evaluation March, 33-40.

Journel, A.G., Gundeso, R., Gringarten, E., Yao, T., 1998. Sto-
chastic modelling of a fluvial reservoir: a comparative
review of algorithms. Journal of Petroleum Science and
Engineering, 21, 95-121

Kane, V.E., Begovich, C.L., Butz, T.R., Myers, D.E., 1982.
Interpretation of Regional Geochemistry Using Optimal
Interpolation Parameters. Computers and Geosciences, 8,
117-135.

Knudby, C., Carrera, J., 2005. On the relationship between indi-
cators of geostatistical, flow and transport connectivity.
Advances in Water Resources, 28, 405-421.

Koike, K., Shiraishi, Y., Verdeja, E., Fujimura, K., 1998. Three-
Dimensionsal Interpolation and Lithofacies Analysis of
Granular Composition Data for Eathquake-Engineering
Characterization of Shallow Soil. Mathematical Geology,
30, 733-759.

Koltermann, C.E., Gorelick, S.M., 1996. Heterogeneity in sedi-
mentary deposits: A review of structure-imitating, process-
imitating, and descriptive approaches. Water Resources
Research, 32, 2617-2658.

Krum, G.L., Johnson, C.R., 1993. A 3-D modelling approach
for providing a complex reservoir description for reservoir
simulations. In: Flint, S.S., Bryant, I.D. (eds.). The Geologic
Modelling of Hydrocarbon Reservoirs and Outcrop Ana-
logues. International Association of Sedimentologists Spe-
cial Publications, 15, 253-258.

Kupfersberger, H., Deutsch, C.V., 1999. Methodology for Inte-
grating Analog Geologic Data in 3-D Variogram Modeling.
American Association of Petroleum Geologists Bulletin, 83,
1262-1278.

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

227Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230



Lafuerza, S., Canals, M., Casamor, J.L., Devincenzi, J.M., 2005.
Characterization of deltaic sediment bodies based on in situ
CPT/CPTU profiles: A case study on the Llobregat delta
plain, Barcelona, Spain. Marine Geology, 222-223, 497-510.

Langlais, V., Doyle, J.D., Sweet, M.L., Geehan, G., 1993. An
additional geological input to SIS: the vertical organization
of lithofacies. In: Eschard, R., Doliguez, B. (eds.). Subsur-
face Reservoir Characterization from Outcrop Observations.
Paris, Editions Technip, 111-123.

Larue, D., 2004. Outcrop and waterflood simulation modeling
of the 100-Foot Channel Complex, Texas and the Ainsa II
Channel Complex, Spain: Analogs to multistory and multi-
lateral channelized slope reservoirs. In: Gramer, M., Harris,
P.M., Eberli, G.P. (Eds.). Integration of outcrop and modern
analogs in reservoir modelling. American Association of
Petroleum Geologists Memoir, 80, 337-364.

Larue, D., Friedmann, F., 2005. The controversy concerning
stratigraphic architecture of channelized reservoirs and
recovery by waterflooding. Petroleum Geoscience, 11,
131-146.

Larue, D., Legarre, H., 2004. Flow units, connectivity, and
reservoir characterization in a wave-dominated deltaic reser-
voir: Meren reservoir, Nigeria. American Association of
Petroleum Geologists Bulletin, 88, 303-324.

Le Loc’h, G., Galli, A., 1996. Truncated plurigaussian method:
theoretical and practical points of view. Fifth International
Geostatistics Congress, Wollongong, Australia, Kluwer aca-
demic publishers, Proceedings, 211-222.

Li, H., White, C.D., 2003. Geostatistical models for shales in
distributary channel point bars (Ferron Sandstone, Utah):
from ground-penetrating radar to three-dimensional flow
modelling. American Association of Petroleum Geologists
Bulletin, 87, 1851-1868.

Lia, O., Tjelmeland, H., Kjellesvik, L.E., 1996. Modeling of
facies architecture by marked point models. Fifth Interna-
tional Geostatistics Congress, Wollongong, Australia, Kluwer
Academic Publishers, Proceedings, 386-398.

Liu, Y., 2006. Using the Snesim program for multiple-point sta-
tistical simulation. Computers and Geosciences, 32, 1544-
1563.

Liu, Y., Harding, A., Abriel, W., Strebelle, S., 2004. Multiple-
point simulation integrating wells, three-dimensional seis-
mic data, and geology. American Association of Petreoleum
Geologists Bulletin, 88, 905-921.

MacDonald, A.C., Aasen, J.O., 1994. A Prototype Procedure for
Stochastic Modeling of Facies Tract Distribution in
Shoreface Reservoirs. In: Yarus, J.M., Chambers, R.L.
(eds.). Stochastic modeling and geostatistics. American
Association of Petroleum Geologists, Computers Applica-
tions in Geology, 3, 91-108.

MacDonald, A.C., Falt, L.M., Hektoen, A.L., 1998. Stochastic
modeling of incised valley geometries. American Associa-
tion of Petroleum Geologists Bulletin, 82, 1156-1172.

MacDonald, A.C., Halland, E.K., 1993. Sedimentology and
shale modeling of a sandstone-rich fluvial reservoir; upper

Statfjord Formation, Statfjord Field, Northern Sea. Ameri-
can Association of Petroleum Geologists Bulletin, 77, 1016-
1040.

MacDonald, A.C., Hoye, T.H., Lowry, P., Jacobsen, T., Aasen,
F.O., Grindheim, A.O., 1992. Stochastic flow unit modeling
of a North-Sea coastal-deltaic reservoir. First Break, 10,
124-133.

Matheron, G., 1963. Principles of geostatistics. Economic Geo-
logy, 58, 1246-1266.

Matheron, G., 1973. The intrinsic random functions and their
applications. Advances in applied probability, 5, 439-468.

Matheron, G., Beucher, H., de Fouquet, H., Galli, A., Gerillot,
D., Ravenne, C., 1987. Conditional simulation of the geo-
metry of fluvio-deltaic reservoirs. Society of Petroleum
Engineers Paper No. 6753.

Mathieu, Y., Verdier, F., Houel, P., Delmas, J., Beucher, H.,
1993. Reservoir heterogeneity in fluviatile Keuper facies: a
subsurface and outcrop study. In: Eschard, R., Doliguez, B.
(eds.), Subsurface Reservoir Characterization from Outcrop
Observations. Paris, Editions Technip, 145-160.

Mao, S., Journel, A.G., 1999. Conditional simulation of lithofa-
cies with 2D seismic data. Computers and Geosciences, 25,
845-862.

Miall, A.D., 1973. Markov Analysis applied to an ancient allu-
vial plain succession. Sedimentology, 20, 347-364.

Miall, A.D., 1991. Hierarchies of architectural units in terrige-
nous clastic rocks, and their relationship to sedimentation
rate. In: Miall, A.D., Tyler, N. (eds.). The three-dimensional
facies architecture of terrigenous clastics sediments and its
implications for hydrocarbon discovery and recovery. SEPM
Concepts in Sedimentology and Palaentology, 3, 6-11.

Mijnssen, F.C.J., 1997. Modelling of sandbody connectivity in
the Schooner Field. In: Ziegler, K., Turner, P., Daines, S.R.
(eds.). Petroleum geology of the southern North Sea:
future potential. Geological Society Special Publication,
123, 169-180.

Mitasova, H., Hofierka, J., 1993. Interpolation by regularized
spline with tension: II. Application to Terrain Modeling and
Surface Geometry Analysis. Mathematical Geology, 25,
657-669.

Mitasova, H., Mitas, L., 1993. Interpolation by regularized
spline with tension: I. Theory and implementation. Mathe-
matical Geology, 25, 641-655.

Muñoz, J.A., Arbués, P., Serra-Kiel, J., 1998. The Ainsa basin
and the Sobrarbe oblique thrust system: Sedimentological
and tectonic processes controlling slope and platform
sequences deposited synchronously with a submarine emer-
gent thrust system. In: Meléndez Hevia, A., Soria, A.R.
(eds.). 15th International Association of Sedimentologists
International Congress of Sedimentology, Alicante, Field
trip guidebook, 213-223.

Mutti, E., 1985. Hecho Turbidite Syste, Spain. In: Bouma, A.,
Normark, W.R., Barnes, N.E. (eds.). Submarine fans and
related turbidite systems. Frontiers in Sedimentary Geology.
New York, Springer, 205-208.

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

228Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230



Mutti, E., Normark, W.R., 1987. Comparing examples of mo-
dern and ancient turbidite systems: Problems and Concepts.
In: Legget, J.K., Zuffa, G.G. (eds.). Deep water clastic
deposits: Models and Case Histories, London, Graham and
Trotman ed., 1-38.

Mutti, E., Seguret, M., Sgavetti, M., 1988. Sedimentation and
deformation in the Tertiary Sequences of the Southern Pyre-
nees. AAPG Mediterranean Basins Conference, Nice,
France, Special Publication of the Institute of Geology of
the University of Parma, Field Trip 7 guidebook, 153 pp.

Novakovic, D., White, C.D., Corbeanu, R., Hammon III, W.S.,
Bhattacharya, J., McMechan, G.A., 2002. Hydraulic Effects
of Shales in Fluvial-Deltaic Deposits: Ground-Penetrating
Radar, Outcrop Observations, Geostatistics and Three-
Dimensional Flow Modeling for the Ferron Sandstone,
Utah. Mathematical Geology, 34, 857-893.

Olea, R., Pawlowsky, V., 1996. Compensating for estimation
smoothing in kriging. Mathematical Geology, 28, 407-417.

Pebesma, E.J., Wesseling, C.G., 1998. GSTAT: A program for
geostatistical modelling, prediction and simulation. Com-
puters and Geosciences, 24, 17-31.

Pringle, J.K., Westerman, A.R., Clark, J.D., Drinkwater, N.J.,
Gardiner, A.R., 2004. 3D high-resolution digital models of
outcrop analogue study sites to constrain reservoir model
uncertainty: an example from Alport Castles, Derbyshire,
UK. Petroleum Geoscience, 10, 343-352.

Purvis, K., Kao, J., Henderson, J., Duranti, D., 2002. Complex
reservoir geometries in a deep-water clastic sequence,
Gryphon Field, UKCS: injection structures, geological
modelling and reservoir simulation. Marine and Petroleum
Geology, 19, 161-179.

Pyrcz, M.J., Catuneanu, O., Deutsch, C., 2005. Stochastic sur-
face-based modeling of turbidite lobes. American Associa-
tion of Petroleum Geologists Bulletin, 89, 177-191.

Ringrose, P.S., Nordahl, K., Wen, R., 2005. Vertical permeability
estimation in heterolithic tidal sandstones. Petroleum Geo-
science, 11, 29-36.

Ritzi, R.W., 2000. Behaviour of indicator variograms and transi-
tion probabilities in relation to the variance in lengths of
hydrofacies. Water Resources Research, 36, 3375-3381.

Ritzi, R.W., Dominic, D.F., Brown, N.R., Kausch, K.W.,
McAlenney, P.J., Basial, M.J., 1995. Hydrofacies distribu-
tion and correlation in the Miami Valley aquifer system.
Water Resources Research, 31, 3271-3281.

Robinson, J.W., McCabe, P.J., 1997. Sandstone-Body and
Shale-Body Dimensions in a Braided Fluvial System: Salt
Wash Sandstone Member (Morrison Formation), Garfield
County, Utah. American Association of Petroleum Geolo-
gists Bulletin, 81, 1267-1291.

Ross, M., Parent, M., Lefebvre, R., 2005. 3D geologic framework
models for regional hydrogeology and land-use management: a
case study from a Quaternary basin of southwestern Quebec,
Canada. Hydrogeology Journal, 6-7, 690-707.

Rudkiewicz, J.L., Guérillot, D., Galli, A., Heresim, G., 1990. An
integrated software for stochastic modeling of reservoir

lithology and property with an example from the Yorkshire
Middle Jurassic. In: Butler, A.T., Berg, E., Hjemeland,
O., Kleppe, J., Torsaeter, O., Aasen, J.O. (eds.). North
Sea oil and gas reservoirs II. London, Graham and Trot-
man, 399-406.

Santanach, P., Baltuille, J.M., Cabrera, Ll., Monge, C., Sáez, A.,
Vidal-Romaní, J.R., 1988. Cuencas terciarias gallegas rela-
cionadas con corredores de fallas direccionales. II Congreso
Geológico de España, Simposios, Granada, Sociedad
Geológica de España, 123-133.

Santanach, P., Ferrús, B., Cabrera, L., Saez, A., 2005. Origin of
a restraining bend in an evolving strike-slip system: The
Cenozoic As Pontes basin (NW Spain). Geologica Acta, 3,
225-239.

Satur, N., Keeling, G., Cronin, B.T., Hurst, A., Gurbuz, K., 2005.
Sedimentary architecture of a canyon-style fairway feeding a
deep-water clastic system, the Miocene Cingoz Formation,
southern Turkey: significance for reservoir characterisation
and modelling. Sedimentary Geology, 173, 91-119.

Scheibe, T., Freyberg, D.L., 1995. Use of sedimentological
information for geometric simulation of natural porus media
structure. Water Resources Research, 31, 3259-3270.

Schuppers, J.D., 1993. Quantification of turbidite facies in a
reservoir-analogous submarine-fan channel sandbody, south-
central Pyrenees, Spain. In: Flint, S.S., Bryant, I.D. (eds.).
The Geologic Modelling of Hydrocarbon Reservoirs and
Outcrop Analogues. Special Publications of the International
Association of Sedimentologists, 15, 99-112.

Schuppers, J.D., 1995. Characterization of Deep-Marine Clastic
Sediments from Foreland Basins: Outcrop-derived concepts
for exploration, production and reservoir modelling. Doctoral
Thesis. Delft University of Technology, The Netherlands,
272 pp.

Seifert, D., Jensen, J.L., 1999. Using Sequential Indicator Simu-
lation as a tool in reservoir description: Issues and Uncer-
tainties. Mathematical Geology, 31, 527-550.

Seifert, D., Jensen, J.L., 2000. Object and Pixel-based reservoir
modeling of a Braided Fluvial Reservoir. Mathematical
Geology, 32, 581-603.

Skorstad, A., Hauge, R., Holden, L., 1999. Well conditioning in a
fluvial reservoir model. Mathematical Geology, 31, 857-872.

Smith, R., Møller, N., 2003. Sedimentology and reservoir
modelling of the Ormen Lange field, mid Norway. Marine
and Petroleum Geology, 20, 601-613.

Smith, R.D.A., Ecclestone, M. 2006. Multiscale 3D Interpreta-
tion and modelling for exploration and on down the life-
cycle stream. GCSSEPM, Houston.

Srivastava, R.M., 1994. An overview of stochastic methods for
reservoir characterization. In: Yarus, J.M., Chambers, R.L.
(eds.). Stochastic Modeling and Geostatistics: principles,
methods and case studies, American Association of Petroleum
Geologists, Computers Applications in Geology, 3, 3-16.

Stanley, K.O., Jorde, K., Raestad, N., Stockbridge, C.P., 1990.
Stochastic modelling of reservoir sandbodies for input to
reservoir simulation, Snorre field, northern North Sea, Norway.

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

229Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230



In: Buller, A.T., Berg, E., Hjemeland, O., Kleppe, J., Tor-
saeter, O., Aasen, J.O. (eds.). North Sea Oil and Gas Reser-
voirs II. London, Graham and Trotham, 91-101.

Stephen, K.D., Clark, J.D., Pickup, G.E., 2002. Modeling and
Flow Simulations of a North Sea Turbidite Reservoir: Sensi-
tivities and Upscaling. Society of Petroleum Engineers
Paper No. 78292, 15 pp.

Strebelle, S., 2002. Conditional Simulation of Complex Geolo-
gical Structures Using Multiple-Point Statistics. Mathema-
tical Geology, 34, 1-22.

Strebelle, S., Journel, A., 2001. Reservoir Modeling Using Mul-
tiple-Point Statistics. Society of Petroleum Engineers Paper
No. 71324, 11 pp.

Strebelle, S., Payrazyan, K., Caers, J., 2002. Modeling a Deep-
water Turbidite Reservoir conditional to seismic data using
multiple-point geostatistics. Society of Petroleum Engineers
Paper No. 77425, 10 pp.

Sweet, M.L., Blewden, C.J., Carter, A.M., Mills, C.A., 1996.
Modeling heterogeneity in a low permeability gas reservoir
using geostatistical techniques, Hyde Field. American Asso-
ciation of Petroleum Geologists Bulletin, 80, 1719-1735.

Teegavarapu, R.S.V., Chandramouli, V., 2005. Improved weight-
ing methods, deterministic and stochastic data-driven mo-
dels for estimation of missing precipitation records. Journal
of Hydrology, 312, 191-206.

Teles, V., Bravard, J.P., de Marsily, G., Perrier, E., 2001. Model-
ling of the construction of the Rhône alluvial plain since
15000 years BP. Sedimentology, 48, 1209-1224.

Tetzlaff, D.M., Harbaugh, J.W., 1989. Simulating Clastic Sedi-
mentation. New York, Van Nostrand Reinhold, 202 pp.

Tompson, A.F.B., Ababou, R., Gelhar, L.W., 1989. Implementa-
tion of the three-dimensional turning bands field generator.
Water Resources Research, 25, 2227-2243.

Tran, T.T., 1994. Improving variogram reproduction on dense simu-
lation grids. Computers and Geosciences, 20, 1161-1168.

Tye, R.S., 2004. Geomorphology: An approach to determining
subsurface reservoir dimensions. American Association of
Petroleum Geologists Bulletin, 88, 1123-1147.

Tyler, K., Henriquez, A., MacDonald, A.C., Svanes, T., Hoilden,
L., Kektoen, A.L., 1994a. Moheres -A Collection of Stochas-
tic Models for Describing Heterogeneities in Clastic Reser-
voirs. In: Aasen, J.O. et al. (eds.). North Sea Oil & Gas Re-
servoirs III. Dordrecht, The Netherlands, Kluwer, 213-221.

Tyler, K., Henriquez, A., Svanes, T., 1994b. Modeling hetero-
geneities in fluvial domains, a review on the influence on
production profile. In: Yarus, J.M., Chambers, R.L. (eds.).
Stochastic Modeling and Geostatistics: principles, methods
and case studies. American Association of Petroleum Geolo-
gists, Computers Applications in Geology, 3, 77-89.

van de Graaff, W.J.E., Ealey, P.J., 1989. Geological modeling
for simulation studies. American Association of Petroleum
Geologists Bulletin, 73, 1436-1444.

Viseur, S., Shutka, A., Mallet, J.L., 1998. New Fast, Stochastic,
Boolean Simulation of Fluvial Deposits. Society of Petro-
leum Engineers Paper No. 49281, 13 pp.

Wadsley, A.W., Erlandsen, S., Goemans, H.W., 1990. HEX - A
tool for integrated fluvial architecture modelling and nume-
rical simulation of recovery process. In: Buller, A.T., Berg,
E., Hjemeland, O., Kleppe, J., Torsaeter, O., Aasen, J.O.
(eds.). North Sea Oil and Gas Reservoirs II. London, Gra-
ham and Trotham, 387-397.

Wang, L., 1996. Modeling complex reservoir geometries with
multipoint statistics. Mathematical Geology, 28, 895-908.

Webb, E.K., Davis, J.M., 1998. Simulation of the spatial hetero-
geneity of geologic properties: an overview. In: Fraser, G.S.,
Davis, J.M. (eds.). Hydrogeologic models of sedimentary
aquifers. SEPM Special Publication, Concepts in Hydroge-
ology and Environmental Geology, 1, 1-24.

Weber, D.D., Englund, E.J., 1992. Evaluation and comparison
of spatial interpolators. Mathematical Geology, 24, 381-391.

Weber, D.D., Englund, E.J., 1994. Evaluation and comparision of
spatial interpolators II. Mathematical Geology, 26, 589-603.

Weber, K.J., 1986. How heterogeneity affects oil recovery. In:
Lake, L.W., Carroll, H.B. (eds.). Reservoir Characterization.
Orlando, Academic Press, 445-485.

Weber, K.J., van Geuns, L.C., 1990. Framework for constructing
clastic reservoir simulation models. Journal of Petroleum
Technology, 42, 1248-1253.

Weissmann, G.S., Fogg, G.E., 1999. Multi-scale alluvial fan
heterogeneity modeled with trasition probability geostatis-
tics in a sequence stratigraphic framework. Journal of
Hydrology 226, 48-65.

Weissmann, G.S., Carle, S.F., Fogg, G.E., 1999. Three-dimen-
sional hydrofacies modeling based on soil surveys and tran-
sition probability geostatistics. Water Resources Research,
35, 1761-1770.

Weissmann, G.S., Zhang, Y., Labolle, E.M., Fogg, G.E., 2002.
Dispersion of groundwater age in an alluvial aquifer system.
Water Resources Research 38, 1198-1211.

Willis, B.J., White, C.D., 2000. Quantitative outcrop data for
flow simulation. Journal of Sedimentary Research, 70,
788-802.

Yamamoto, J.K., 2005. Correcting the Smoothing Effect of Ordi-
nary Kriging Estimates. Mathematical Geology, 37, 69-94.

Yao, T., 2002. Integrating Seismic Data for Lithofacies Model-
ing: A Comparison of Sequential Indicator Simulation Algo-
rithms. Mathematical Geology, 34, 387-403.

Zimmerman, D., Pavlik, C., Ruggles, A., Armstrong, P., 1999.
An experimental comparison of ordinary and universal krig-
ing and inverse distance weighting. Mathematical Geology,
31, 375-390.

Zoraster, S., 1996. Imposing Geologic Interpretations on Com-
puter-Generated Contours Using Distance Transformation.
Mathematical Geology, 28, 969-985.

Statistical grid-based facies reconstruction and modellingO. FALIVENE et al.

230Geolog ica  Acta ,  Vo l .5 ,  Nº  3 ,  2007,  199-230

Manuscript received June 2006;
revision accepted February 2007.


