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Metaphysical Notes Concerning Hilbert and His Studies on
Non-Euclidean and Non-Archimedean Geometries

Carlos Augusto Casanova G.

RESUMEN

Este articulo pretende dejar claro que el camino por el que Hilbert demuestra la
independencia de los axiomas en sus Fundamentos de geometria no implica ni que los
axiomas sean puramente convencionales, ni que la geometria euclidiana haya quedado
completamente superada, ni que la mente humana pueda liberarse de los principios
mas basicos. Sostiene que la obra de Hilbert sirve, en cambio, para mostrar que la
geometria estudia una parte de la realidad, que el espacio no debe concebirse del
modo absoluto como lo hicieron Newton y Kant, y que los axiomas tienen fuerza de
tales solo dentro del género al que se refieren sus términos.

ABSTRACT

This paper intends to show that the way in which Hilbert’s Foundations of Ge-
ometry demonstrates the independence of geometric axioms implies neither that ge-
ometry and its axioms are merely conventional nor that Euclidian geometry has been
absolutely defeated nor that the human mind can be freed even from the most basic
theoretical principles. This paper holds that Hilbert’s work is useful, instead, to show
that geometry studies a part of reality, that space cannot be conceived in the absolute
way in which Newton and Kant conceived it, and that the axioms play their theoretical
role if and only if the subject matter of the discourse includes the nature to which the
terms of each axiom refer.

In his work Grundlagen der Geometrie, Hilbert attempted to prove the
independence of Geometry’s axioms through the analysis of different geo-
metrical constructions that prescind from one or another of them. Thus he
sought to elucidate that the axioms cannot be deduced from one another [Hil-
bert (1992), p. 32]. For instance, “Axiom III 5 [congruence of triangles] can-
not be deduced from the other Axioms I [incidence], II [order], IIT 1-4
[congruence], IV [parallels] and V [continuity] by logical inference” [Hilbert
(1992), p. 39].! How did he know this? Because he proved that it is possible
to define the construction of segments in such a way that from it one can
build a whole consistent geometry to which axiom III 5 is not applied, even
though all the other axioms are applicable [Hilbert (1992), pp. 39-41, § 11].
In this paper we will examine some passages in which Hilbert accomplished
this very job as regards the parallels axiom and Archimedes’ axiom (along
with axiom III 5, which is taken in a restricted form), and we will see that in
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a determined geometrical construction, at least, omitting Archimedes’ axiom
(V 1) leads to the inapplicability of the axiom that the whole is greater than
any of its parts.

Our goal is to determine, through reflection, and in the light of the two
particular problematic topics already mentioned a) if this Hilbertian strategy
implies, as some believe and claim, that mathematics is a mere “construct”
which contains arbitrarily chosen principles, and b) if our intellect can evolve
so that the axioms seen traditionally as the most sacred and even a whole
geometrical construction with its axioms and theorems alike (in particular the
so called “Euclidean”) can be superseded.

We will consider in this paper mainly the Grundlagen der Geometrie
and other contemporary works by Hilbert. We will leave aside, especially, the
difficult question regarding the extent to which the works of Hilbert on the
theory of relativity affected his conception of the relationship between
Euclidian geometry and the space of our experience. However, some of the
remarks that will follow could shed light on the adequacy of Hilbert’s very
Kantian attempt to transform relativistic physics into a fully mathematical
discipline.”

The present paper has been divided in three parts: (I) prefatory re-
marks,” (IT) non-Euclidian geometries and (IIT) non-Archimedean geometries.

The strength and truth of axioms or principles cannot be proved. Our
sole task here, thus, is to meditate on the mathematician’s activity in order to
excavate its meaning. This way, perhaps, the non-arbitrariness of the axioms,
their self-evidence, and the connection of their strength with the natures to
which their terms refer can be manifested to our mind.

The non-arbitrariness of the axioms can be manifested in two ways.
First, not every axiomatic system stands as relevant for mathematics [Corry
(2002), p. 31. Aleksandrov et al (1965), pp. 264-265]. There are axioms that
emanate from the nature of the particular kind of space or quantity (discrete
or continuous) that is subject of study in a particular construction or are im-
plied by it. Only those axioms can survive a rational examination. Second,
according to what Hilbert in person taught:

The edifice of science is not raised like a dwelling, in which the foundations are
first firmly laid and only then one proceeds to construct and to enlarge the
rooms. Science prefers to secure as soon as possible comfortable spaces to
wander around and only subsequently, when signs appear here and there that
the loose foundations are not able to sustain the expansion of the rooms, it sets
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about supporting and fortifying them. This is not a weakness, but rather the
right and healthy path of development.*

Hilbert was “in search of the adequate [axiomatic] system for each of
the known and sufficiently elaborated theories, and not the other way around”
[Corry (2002), p. 39]. However, as stated above, in the work Grundlagen der
Geometrie, he intended also to show that no axiom can be derived from any
other. To this end, he employed the strategy of building axiomatic systems in
which one of the axioms was not postulated, so that it was kept out of the
system precisely because it could not be derived from the others. In such con-
structions he employed artificial or conventional postulates with the particu-
lar purpose of studying the well-established axioms and the relationships
between them. We should keep in mind this second purpose in order to ex-
plain some of the paradoxes that are to be found in Hilbert’s work.’

The German author always thought not only that the axioms are not ar-
bitrary but also that there was a relationship between the axiomatic system of
geometry and physical reality. However, when he tried to explain such a rela-
tionship, he fell into inaccuracies and even contradictions.

In exploring the origin of the principles of physics and mathematics,
Hilbert spoke about “observation” and “intuition.” These actions truly inter-
vene in the origin of theoretical principles. The way in which Hilbert under-
stood them, however, made it difficult for him to give an account of the kind
of relationship that such actions establish between reality and the mind. For
this reason, the very notion of “truth” was a puzzle for Hilbert. He, indeed,
wrote a question mark following the word “truth” in a letter to Frege dated
December 29™ 1899 [Hilbert and Frege (1980), p. 13].° Hilbert, thus, thought
that the axioms have their origin in experience and intuition but, once formu-
lated, their concepts would be separated from experience and intuition,” in
such a way that it would become difficult to assert their relationship to real-
ity. In the same letter already cited, he seemed to think that the axioms could
be utterly arbitrary and that truth and even existence would mean only (logi-
cal) consistence [Hilbert and Frege (1980), p. 12]. In the same place, he also
stated that the axioms could be applied to a diversity of realities as long as
those realities satisfied the axioms. But, he added, if the system had been de-
veloped enough, as was the Maxwellian theory of electricity, it would take a
lot of evil-will to try to apply the axioms to different phenomena [Hilbert and
Frege (1980), p. 13].

Why was it so difficult for Hilbert to explain the basic experiences un-
derlying the axioms of the science that he practiced all his life to a point in
which he was unable to elucidate their relationship to reality? The answer
might be connected to several facts. First of all, he neglected the distinction
between physics and mathematics. Moreover, to reflect metaphysically on the
correspondence between reality and the formulae of their own sciences is a
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task neither for mathematicians as such (Hilbert was before anything else a
mathematician) nor for physicists as such.® Until the XvIi century European
scientists had a solid classical education, thanks to which they were able to
metaphysically reflect on their disciplines. But at the end of the XVIII century
such tradition was impaired and knowledge was fragmented. Perhaps here
lies the cause behind Hilbert’s perplexities concerning the foundations of sci-
ence:’ he was trying to restore the unity of knowledge, but this had been bro-
ken long before and at his time the task was far from easy.'* Finally, he was
under the influence of the philosophy of Kant.

While Huygens and Newton knew very well that physics (even mathe-
matical physics) and mathematics (even geometry) cannot use the same
method, Hilbert seems to have completely disregarded this basic truth. He
wanted to enclose physical sciences within mathematical sciences and, to this
end, he tried to confer on physical sciences an axiomatic abstraction and a
firmness of results similar to those of geometry. At the same time, he con-
ceived geometry as a natural science [Hilbert (1902), pp. 442 and 454-455.
Corry (1997), pp. 104-109]. He overlooked, thus, a fundamental maxim con-
cerning the physic-mathematical sciences:

Reason is employed in another way, not as furnishing a sufficient proof of a
principle [not as demonstrating the principle by its causes], but as confirming
an already postulated principle, by showing the congruity of its effects. Thus in
astrology the theory of eccentrics and epicycles [proper to the Ptolemaic system
which, since it was more mathematized than the Aristotelian, rested more upon
hypothesis] is postulated, because thereby the sensible appearances of the heav-
enly movements can be saved. Not, however, as if this proof were sufficient, for
perhaps some other hypothesis might save them [Aquinas (1956), I, q. 32, a. 1,
ad 2m; (1947), 1, q. 32, a. 1, ad 2m. Crombie (19591), p- 891.

In geometry one can build proper demonstrations but in mathematical
physics this is impossible. Geometry can derive its theorems from the axioms
in a deductive way. Mathematical physics can only imagine hypotheses try-
ing to “save the phenomena” and testing them in experience. Huygens ac-
knowledged this weakness of mathematical physics. In the Preface to his
Traité de la Lumiere, he asserted that his theory of light tried to draw proofs for
hypothetical principles from their consequences and, for this very reason, such
a theory could not be so firm as geometry [Crombie (1959%), pp. 326-327].
Kant, instead, missed this distinction because he conceived mechanics as an a
priori science and Euclidean space as the space of our sensible perceptions (or-
ganized by the two forms of our sensibility) [Koérner (1960), pp. 138-139 y
140-141].

Perhaps due to the wide influence of Kant in German academic life,
Hilbert did not exploit some very subtle Aristotelian distinctions concerning
the origin of principles and the way to use them, both in mathematics and in
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physics.!' Kant was correct, of course, in pointing out the active role of hu-
man mind in obtaining the axioms. These are not “given” to reason by the
senses. But it should be noted that, as we have shown in a previous paper,
this active character of the intellect can be better explained with the Aristote-
lian notion of agent intellect than with the Kantian notion of a priori forms of
sensibility [Casanova (2003)]."2 According to the philosopher from Stagyra,
principles belong to the theoretical virtue that he called “intellect” (notis), and
they are formed from the analysis of basic notions belonging to each of these
two disciplines: discrete and continuous quantity, on the one hand, and sensi-
ble essences, on the other. Such notions have their origin in induction, in the
sense experience of the genera that constitute their respective subject matters,
illuminated by the agent intellect and grasped by the possible intellect [Aris-
totle (1956), III 4-6; (1964) 11 19; (1894), VI 6]. However, the common ori-
gin of those notions in sense experience adopts a different form in each
discipline. In mathematics the notions result from abstraction of the form
“quantity,” whereas in physics they result from abstraction of the whole from
concrete matter [Aquinas (1972), Lesson II, q. 1, a. 1]. Physics must always
fix its eyes in experience, while mathematics can proceed in a more abstract
way, with a peculiar style with which we will concern ourselves later in this
paper. To neither of these two sciences belongs the task of reflecting on the
sense in which their notions or judgments relate to reality. Because neither of
them reflects on what is their respective genus. This reflection belongs to first
philosophy or metaphysics.

Despite all his perplexities, and without the heat of the epistolary dis-
cussion with Frege, Hilbert’s predominant opinion even in 1919 was the fol-
lowing:

[Mathematics] has nothing to do with arbitrariness. Mathematics is in no sense
like a game, in which certain tasks are determined by arbitrarily established ru-
les. Rather, it is a conceptual system guided by internal necessity, that can only
be so, and never otherwise [Hilbert (1919-1920), p. 14; Corry (1997), p. 116].

Moreover, according to Hilbert, even though pure mathematics con-
cerns necessary truths, its origin can be found (at least in part) in experience,
observation and description of the concrete objects of finite arithmetic and
geometry.”> We can use again Hilbert’s own words:

[...] while the creative power of pure reason is at work, the outer world again
comes into play, forces upon us new questions from actual experience, opens up
new branches of mathematics [which encompasses physics, according to Hil-
bert], and while we seek to conquer these new fields of knowledge for the realm
of pure thought, we often find the answers to old unsolved problems and thus at
the same time advance most successfully the old theories. And it seems to me
that the numerous and surprising analogies and that apparently prearranged
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harmony which the mathematician so often perceives in the questions, methods
and ideas of the various branches of his science, have their origin in this ever-
recurring interplay between thought and experience [Hilbert (1902), p. 440]."

These prefatory remarks are sufficient to see that some changes in Hil-
bert’s philosophical approach to geometry need to be introduced, in order to
account for the reality and/or veracity of the axioms. In reference to non-
Euclidean geometries we have to abandon the conception of Euclidean ge-
ometry as being the only one that corresponds to the space of perception, on
the one hand, and, on the other, we have to keep in mind that, even though
the axioms of geometry have their origin in experience, the abstract character
of mathematics makes room for different ways of analysis of experience. In
reference to the particular non-Archimedean geometry that we will study, it
should become clear that Hilbert’s (at least apparent) claim of the superses-
sion of the principle that “the whole is greater than any of its parts” disre-
gards an axiom’s exclusive applicability to a subject matter in which the
genera to which the terms of the axiom refer are present. Thus, we are pushed
to attempt, from a philosophical perspective, a different explanation of the
reality and/or veracity both of the axioms and of the Euclidean and non-
Euclidean geometries. We hope to aid in establishing precisely the basic
truths towards which the great mathematician was striving.

II

When Hilbert in § 10 of his Grundlage der Geometrie, through his
method, lays aside the axiom of parallels in order to build a non-Euclidean
geometry, he mentions a real space, a sphere. This fact seems, at first glance,
surprising. How can one overlook a spatial axiom, apply all other axioms and
new postulates to a real space and still obtain a geometry that can be “true”?
Could it be that geometry does not have anything to do with reality, but is in-
stead a pure mental construction? Everything seems to point in this direction
because even the most venerable Euclidean building was constructed on the
basis of an axiom that we can overlook in a completely artificial way.

We know, however, that Hilbert does not think that geometry is com-
pletely artificial, but he thinks instead that it is a kind of description or under-
standing of the natural world [Korner (1960), p. 88. Corry (2002), p. 35].
How can we explain this seeming paradox?

One could attempt a first explanation saying that the sphere (the space
which is analyzed in a non-Euclidean geometry) is conceived as being in-
cluded in a wider Euclidean space, a kind of “absolute space,” Newtonian or
Kantian. In this way, non-Euclidean geometry can make sense because its
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propositions can be transformed and, thus, understood by or in a Euclidean
geometry.

Reflection on the Aristotelian and Leibnizian conceptions of place and
space, however, allows one to understand that such an artificial explanation is
not necessary. Space is not an absolute entity, but a set of relations—real or of
reason—between the extreme parts of bodies [Aristotle (1950), IV, 1-9. Leibniz
(1989), pp. 114-115, 120-121, 128-134 y 165-166]. There is no absolute
space in which one can find a sphere, but a diversity of spaces that can be
analyzed into their elements in different ways.

If one postulates a spherical surface and defines each of the points on it
as any two extremes of each diameter that can be traced in each of the longest
circles or equators that can be found on the sphere; and if each line is the pe-
rimeter of one of those equators, no parallel will go through a point external
to a line. Any line that goes through an external point sections the first line in
a point (such as it was defined). This spherical surface, thus, would not be
under the Euclidean axiom of parallels, or Hilbertian Axiom IV: “Let a be
any line and A a point not on it. Then there is at most one line in the plane, de-
termined by a and A, that passes through A and does not intersect a” [Hilbert
(1992), p. 25].

Euclidean geometry, then, is still true, even though there are non-
Euclidean geometries that are also true.'”” Euclid accomplished demonstra-
tions properly speaking and, thus, they were true. How can we then explain
that a variety of geometries are possible?

Geometry is abstract, according to both Aquinas and Aristotle. The no-
tion of “quantity” (continuous or discrete) came to our minds through experi-
ence, but it was abstracted while we were children. For this reason we can
forget its origin and think that such notion is innate, as do Plato, Leibniz and
Kant. In mathematical demonstrations one has to suppose some basic notions
included within the genus “quantity” as the subject of the “passions” or
predicates that are to be demonstrated. Among those basic notions one finds
“unity,” “point,” “line,” “surface,” “space,” etc. After they are supposed
along with the meaning of their names, then one can construct other things,
like triangles and squares. Later, one searches for demonstrations of further
things, such as the addition of all the inner angles of a triangle equaling 180
degrees, or the diagonal being incommensurable with the sides of the square,
etc. Each step yields the subject of the following steps (because, for example,
once the triangle has been constructed, one can prove that the subject “trian-
gle” has inner angles that sum to 180 degrees). And every step supposes that
the basic notions exist and what is meant by the words with which we name
them. These basic notions, and the genus “quantity” to which they belong, do
not exist in themselves, but in the genus “substance,” which mathematics
does not consider [Aquinas (1955), book I, lesson II, §§ 17-19. Aristotle
(1957), VI 11."¢

EERNT3 EERNT3
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Because of its abstract character, mathematics does not have as one of
its tasks to determine in what sense mathematical research is real. For this
reason, moreover, as Aquinas teaches, mathematics can look like a mere
“construct,” “because its demonstrations are presented as if they were craft-
operations, like this: On a given straight line, may an equilateral triangle be
builf” [Aquinas (1955) § 17]. For this reason, finally, demonstrations can take
different paths. This does not mean, however, that they do not represent any-
thing real and are completely arbitrary.'” Euclidean demonstrations are as
firmly standing today as they always were, even though we know today that
they do not exhaust the explanation of space. And they are standing precisely
because, as any true demonstration, they explain an effect as a necessary con-
sequence of a well-known (formal) cause.'®

On this point, our perspective for understanding the nature of mathe-
matics is better than those of Newton and Kant. After the development of
mathematics and physics during the XIX and XX centuries, we can see the re-
lationship between mathematics and experience more easily. We also can un-
derstand more easily —with Aristotle and Leibniz— that space is relative.
We can finally see, within the spirit of Aquinas’ theory of mathematics but
beyond its letter, that constructions of geometry alternative to that of Euclid
are possible.

In order to explain how Euclidean and non-Euclidean geometries can be
both true, one has to consider then that the axiom of parallels comes into play
when the kind of space with which one is dealing is “plane” or is analyzed as
plane. If one is dealing with a different kind of space or analysis, this princi-
ple is void. As any other axiom, it is conditioned to the presence of the na-
tures to which its precise terms refer. If those natures are not present in the
subject matter with which a demonstration is concerned, then the axiom cannot
be applied. In order to determine this presence, the ambiguity of language in
which so many sophistical objections are grounded must be avoided [Aristotle,
(1958), 1].

In the paper “On the Hypotheses which Lie at the Bases of Geometry,”
by Riemann, one finds a strong ratification of what has been asserted in the
last paragraphs. Geometry assumes as things given the notion of space and
the first principles for the construction in space, while giving merely nominal
definitions of every primitive notion. She leaves in darkness, thus, on the one
hand, the relations among these assumptions and, on the other, the problem
concerning the necessity or even the possibility of those connections. Even
though one can construct a magnitude extended in more than three dimen-
sions, space is a particular kind of magnitude extended only in three dimen-
sions. Geometry needs to be nourished by experience because one has to
uncover the simplest “matters of fact” from which one can build the measure-
relations of space. In this enterprise there is not only one possible path be-
cause the “matters of fact” that are sufficient to determine the measure-
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relations can be organized in a diversity of systems of which the most impor-
tant is that which Euclid has laid down as a foundation. Those “matters of
fact,” thus, must be assumed as hypotheses [Riemann (1973), pp. 107-122].

On this account Hilbert’s meta-mathematical reflections are insuffi-
cient. Kantian influence could be behind his assertion that Euclidean geome-
try is the only one that corresponds to our spatial experience, even though he
makes clear that this topic belongs not to geometry but to logic-mathematical
investigations. According to Hilbert, non-Euclidean and non-Archimedean
geometries are arbitrary creations and represent an extension of the word
“geometry,” similar to the extension of arithmetic represented by complex
numbers. He asserts, however, that some objects “behave” in accordance
with non-Euclidean or non-Archimedean geometry. In Corry’s exposition
there are references only to those objects that would behave in accordance
with non-Euclidean geometry, such as the paths of light [Corry (1997), 128-
129]. In reference to the character of being an extension of the word “geome-
try,” as regards non-Euclidean three-dimensional geometries, it seems to me
that Hilbert is wrong. As regards non-Archimedean geometries, perhaps he is
correct, as we will explore below.

Despite our disagreement, there is an observation that Hilbert makes in
1905 that confirms what we have stated here. He thinks that his observation
has to do with geometrical axioms in general, but, in fact, above all else it has
to do with non-Euclidean geometries. Axioms can be chosen more or less ar-
bitrarily. One can begin defining some entities such as point, line and plane.
But one could also begin by defining different entities. Not anyone, however,
nor with the only restriction of consistency. According to Corry, one cannot
begin by defining chairs, tables and beer-mugs. Instead, according to Hilbert,
we have to begin by defining beings that are close to the intuitive geometrical
matters of fact such as circles and spheres, from which the adequate axioms
can be built in such a way that they would not contradict the usual intuitive
geometry.19

III

Non-Archimedean geometries are those in which the fundamental rules
exclude Archimedes’ axiom (V 1): “If AB and CD are any segments, then
there exists a number n such that n segments CD constructed contiguously
from A, along the ray from A through B, will pass beyond the point B” [Hil-
bert (1992), p. 26]. They are concerned, thus, with a non-continuum object of
investigation.

In Appendix II of Foundations of Geometry, “The Theorem on the
Equality of the Base Angles of an Isosceles Triangle,” one can find an in-
stance of non-Archimedean geometry [Hilbert (1992), pp. 113-132]. There
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one has the construction of a geometry that a) uses all the axioms I-IV except
axiom IIT 5 of triangle congruence (which is applied in a restricted way: only
equipositioned triangles would be congruent™), b) excludes Archimedes’
axiom [Hilbert (1992), pp. 114-115] and c) arbitrarily defines the order of a set
of numbers, and a set of graphic representations, rotations, mappings, projec-
tions and of comparison or measurement of segments (one segment is rotated
on the other in order to perform the comparison) [Hilbert (1992), pp. 115-120].
In establishing the axioms and rules a) and c), Hilbert makes use of notions
such as “point,” “line,” “plane,” “angle,” “triangle,” “parallel,” etc. However,
the restriction of axiom III 5, the exclusion of axiom V 1, and the use of the
definitions, once applied, result in a subject of research that is something dif-
ferent from area or volume. In fact, with the mentioned postulates “the con-
cept of area loses its meaning” [Hilbert (1992), p. 127]. That is to say, the
subject matter that can be studied with such an axiomatic system is not any
more the magnitude extended in three dimensions that we call “space.” In
this subject of research, the full version of III 5 cannot be proved. This gives
Hilbert insights about the independence of axioms and about “the logical
connection of the theorem of the isosceles triangle with the other elementary
theorems of plane geometry, in particular, with the theory of area” [Hilbert
(1992), p. 115]. In this subject of research, moreover, theorem 29, proposi-
tion 39 of Book I of Euclid’s Elements, and the axiom that the whole is
greater than any of its parts are not valid.

Let us examine briefly the content of theorem 29, proposition 39, of
Book I of Euclid’s Elements. After this, let us examine also the manner in
which Hilbert shows that the theorem is not demonstrable in the particular
non-Archimedean geometry that he is building, and the consequences that he
draws from the fact that this theorem is not valid.

Such theorem establishes that two equal triangles constructed on the
same base and on the same side of it are built between the same parallels.
According to Hilbert, that is to say, both such triangles have equal altitudes
[Hilbert (1992), p. 128]. For this demonstration, Euclid makes use of the
principle according to which the whole is greater than any of its parts. Let us
look to the theorem:

Let the equal triangles ABC, DBC be on the same base BC, and on the same si-
de of it: they shall be between the same parallels.

Join AD. AD shall be parallel to BC. For if it is not, through A draw AE para-
llel to BC, meeting BD at E, and join EC.

Then the triangle ABC is equal to the triangle EBC, because they are on the
same base BC, and between the same parallels BC, AE [and because triangles
with the same base, and between the same parallels, are equal: Proposition 37].
But the triangle ABC is equal to the triangle DBC [, by hypothesis]. Therefore,
also the triangle DBC is equal to the triangle EBC, the greater [the whole] to the
less [the part]; which is impossible. Therefore, AE is not parallel to BC.
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In the same manner it can be shown, that no other straight line through A but
AD is parallel to BC; therefore AD is parallel to BC.

Wherefore, equal triangles, etc. Q.E.D. [Euclid (1948), p. 42 and (1920), pp.
94-95]. (See figure 1)

(Figure 1)

In the body of his work [Hilbert (1992), p. 64, § 19], long before the
passages where the non-Archimedean geometry that we are studying here is
built, Hilbert asserts that it is possible to construct a geometry with axioms I-
IV, setting aside axiom III 5 (which is assumed in a restricted version) and in
which theorem 48 of his own Foundations of Geometry (equivalent to
Euclidean theorem 29) would not be valid. As a consequence, the fundamen-
tal axiom “the whole is greater than any of its parts” would not be valid in such
geometry either. He then refers his reader to Appendix II, from page 127 on.

What we discover on pages 127 ff. is that Hilbert applies the non-
Archimedean geometry of Appendix II to the following instance:*' Consider
the right triangle OQP, and another right triangle with the same base OQ, and
a third vertex R that constitutes the reflection image of the point P with re-
spect to the segment OQ. That is to say, R lies on the same line perpendicular
to OQ on which lies P and at the same distance from OQ that P, but in an op-
posite side. It should happen that the two segments OP and OR have the same
length. But within the geometry defined in Appendix II this does not happen.
In order to compare both segments, in accordance with the rules defined pre-
viously, one rotates OP onto the axis x (on which the segment OQ lies, the
point O of which lies on the origin), so that its extension would be that of the
ray that goes from the origin to a new point [Hilbert (1992), p. 123]. The
same thing is done with the segment OR, applying the rules defined in Ap-
pendix II. The length of OP is found to be different from the length of OR.
From this finding Hilbert concludes that, “The hypotenuses of two symmetri-
cally situated right triangles with coinciding legs are different and hence the
images of segments under a reflection in a line are not necessarily equal to
those in the original figure” [Hilbert (1992), p. 126].% (See figure 2)
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(Figure 2

Hilbert asserts that in his non-Archimedean geometry Pythagoras’ theo-
rem is valid because Euclid only made use of equipositioned triangles in
demonstrating it, so that applying the restricted version of axiom III 5 one
can prove Pythagoras’ theorem [Hilbert (1992), p. 127]. If one applies Py-
thagoras’ theorem to those triangles in figure 2, then with the hypotenuses of
both triangles, one can form rectangles of equal sides (squares), which would
be equicomplementable because one would be able to carry them to each ot-
her by congruent mappings. But, because the hypotenuses are not equal, the
theorem according to which a rectangle decomposed into triangles cannot be
filled again completely if one of the triangles is left apart is not valid [Bernays
(1992), p. 220]. Thus, the concepts of equicomplementability and equal area
are not equivalent in the context of Appendix II. “Equicomplementability”
means precisely a relationship between two figures such that they can be
filled exactly by the same [smaller] geometrical figures. But in this new con-
text of Appendix II one says that two geometrical figures are equicomple-
mentable if they can be carried to each other by congruent mappings. Thus,
the square constructed on OP would be equicomplementable with the one
constructed on OR, even if the second could fit within the first [for being
smaller] [Bernays (1992), p. 219].

Theorem 29 of Euclid is proved on page 68 by showing that if two
equicomplementable triangles—that is to say, in that context, two triangles
with the same area—have the same base, they also have the same altitude. But in
the context of Appendix II rectangles and triangles with different sides or bases
and altitudes could be equicomplementable. Theorem 29 of Euclid is proved on
page 68 by “using the concept of area” [Hilbert (1992), p. 128], a concept that
now has been excluded, that “loses its meaning without the broader form (III 5)
of the axiom of triangle congruence” [Hilbert (1992), p. 127], because one and
the same triangle can have different areas according to which side is chosen as
its base for the calculation. This can be seen in the very triangle of our exam-
ple, OQR, and following the rules established in Appendix II in order to cal-
culate the magnitude of the segments [Hilbert (1992), p. 127]. Thus, Theorem
29 of Euclid would not be valid in Appendix II, precisely because here the
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principle according to which the whole is greater than any of its parts cannot
be applied.

But, can we stretch this conclusion in order to claim that the human
mind can come to free itself from an axiom that has always been seen as fun-
damental and that seems presupposed in any understanding of extended area?
Can one state that geometry can be constructed in a completely arbitrary way,
to the point of rejecting some of its fundamental axioms? With the purpose of
answering these questions in the light of Hilbert’s works, one must consider
the end that the author is seeking when he writes these pages of the appendix,
the applicability of this geometry to physical reality and its mathematical re-
ception, plus the internal meaning of what Hilbert does.

As regards the end that Hilbert seeks, one can say that it is multiple.
First, he shows that even if one presupposes the restricted form of axiom III
5, one cannot prove the broader form without the axioms of continuity (V 1
and V 3). At least in an implicit way, he establishes also that the Archi-
medean axiom of continuity is independent from the others. Thus, it cannot
be derived from them if it is not postulated explicitly [Hilbert (1992), p. 41].
He, finally, “shed new light on the logical connection of the theorem [of the
equality of the base angles] of the isosceles triangle with the other elementary
theorems of plane geometry, in particular, with the theory of area” [Hilbert
(1992), pp. 114-115].

Arbitrary definitions, designed with these purposes, should not lead us
to conclude that geometry is or can be completely conventional. Hilbert wants
to reach knowledge concerning “well established and elaborated mathematical
entities,” “in retrospective” [Corry (1997), p. 115]. Through the example of
Appendix II, he shows neither that “guashi equals balls” nor that “beer-mugs
equal chairs,” but precisely the relationships between axioms and theorems
well established in accepted theories. Apparently arbitrary definitions, then,
accomplished an end relevant for geometry, even if they could not be re-
ceived within an accepted mathematical or physical theory.

In some passages, Hilbert asserts that non-Archimedean geometries are
an extension of geometry (in the case with which we are dealing, such an ex-
tension leads, through a system of conventions, to the cessation of any talk of
area). Something similar had happened with complex numbers, states Hilbert,
because their first appearance surpassed the axiomatic of arithmetic, forcing
its enlargement. We can argue that in some sense this had happened even be-
fore with negative numbers. The analysis of fundamental notions can lead
one to postulate new notions that are useful to better understand the genus
subject to study. In the case of negative numbers, the meaning of the addition
and its applicability to a diversity of physical or moral entities, like debts,
seems clear. In other cases the meaning is less clear. The applicability to real
beings (not to mere beings of reason), however, leads one to think that the
new notions have to do with reality, at least in the sense that they are entities
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of reason that allow one to better know or to formulate reality. Something
similar occurs in natural language with the use of negative adverbs or of con-
junctions. These words are beings of reason that often are not the similarity
of any real being, but without them we would not be able to understand or to
express real beings. In Leo Corry’s exposition of the axiomatization of ge-
ometry by Hilbert, although some instances of application of non-Euclidean
geometries are suggested, there lacks any example of application of non-
Archimedean geometries.

I ignore whether or not this geometry of the appendix has had some true
reception in mathematical theory. I know, instead, that even Hilbert himself
thinks that the Archimedean axiom is necessary for the application of
mathematics to any measurement of physical quantities because without that
axiom quantities would not be comparable with one another. Astronomy is
based precisely on the commensurability of celestial and terrestrial dimen-
sions; and atomic physics, on the applicability of the division of our macro-
scopic measurements to the microscopic world. I know also that Hilbert
thinks that this necessity could be understood as a result of his research that
has demonstrated the independence of the axiom of continuity and, thus, its
central character both in mathematical as well as in physical theories, which
theories could not substitute the axiom of triangle congruence for the axiom
of continuity.**

What we have asserted allows us to open a brief parenthesis. If a
mathematical theory is relevant, if it genuinely flows from the genus subject
to science, it can receive applications unforeseen at the time of its formula-
tion. Why? Because, as Aristotle and Aquinas would have told us, quantity is
the accident through which all the other accidents join the sensible substance.
Due to the fundamental character of quantity, even the qualities of sensible
beings have quantitative dimensions that can be submitted to the study of
mathematical physics [Aquinas (1955), book I, lesson 2, § 17; (1956), 111, q.
77, a 2, c. Maritain (1995), p. 152].%° Aristotle and Aquinas clearly knew this
fact as regards the subject matters of astronomy, optics, music, and mechan-
ics. (They attempted, however, to understand the essences to the extent al-
lowed to human acumen. They did not limit their research to the quantitative
expression of some of the essences’ properties).”® In this Aristotelian manner
it is easy to give an account of the “ever-recurring interplay between thought
and experience” as Hilbert poses it [Hilbert (1902), p. 440], or the applicabil-
ity of algebra to physics.

Even if this geometry of the appendix has been received by mathemati-
cal science, even if it flows from some kind of discrete quantity, it cannot
prove the basis of thinking that the human mind can be liberated from the
axiom according to which a whole extension must be greater than a partial
extension. Instead, this geometry only can be a grounding to consider that
any axiom is applicable only when the meanings of the terms that constitute
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its content are present in the object under study.”” If one is not concerned
with the concept of extended area properly speaking, the axiom might be in-
applicable. Indeed, in Appendix II one is not comparing a whole with its
parts, but rather segments and geometrical figures with the result of mappings
and rotations that are performed on them. Neither is one comparing the area
of a triangle with the (smaller) area of the same triangle. But one is compar-
ing the multiplication of quantities that, according to more or less arbitrary
conventions, correspond to the value of the base or the altitude of a triangle.
One is comparing also a segment (OR) with another (OP), through a rotation,
and concluding that the two segments which in the context of areas should
have the same magnitude, in the context of this special geometry have differ-
ent magnitudes because the very notion of magnitude has been modified by
arbitrary definitions of the rules of rotation and mapping and of the ordina-
tion of numbers.*®

We should consider an additional point. In the definition of rules that
leads us to consider a reality different from area, because such rules make use
of concepts that have to do with extended area (but precisely in order to point
towards a new kind of abstracted reality), one has to presuppose the axiom
according to which the whole is greater than any of its parts and perhaps even
the axiom of continuity. Indeed, without these axioms words like “number,”
“equal,” “added,” “subtracted,” “multiplied,” “divided,” “greater,” “smaller,”
“sine,” “co-sine,” “point,” “line” would have no meaning. Hilbert establishes
the non-Archimedean system of numbers that works as the basis of the ap-
pendix precisely making use of those words [Hilbert (1992), pp. 115-117].
This observation does not lessen the independence of the axioms. What Hil-
bert attempts to prove is proven. That is to say, the axiom of continuity can-
not be obtained unless it is postulated as an axiom and without the axiom of
continuity the axiom of triangle congruence cannot be proved.

I think that these and similar philosophical reflections could be applied
to all the other non-Pythagorean geometries which Hilbert considers in his
work Grundlagen der Geometrie.”
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NOTES

" Let us check some examples: I- Axioms of incidence. 1- “For every two
points A, B there exists a line a that contains each of the points A, B.” (ibid., p. 3) II-
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Axioms of order. 1- “If a point B lies between a point A and a point C, then the points
A, B, C are three distinct points of a line, and B then also lies between C and A.”
(ibid., p. 5) III- Axioms of congruence. 1- “If A, B are two points on a line a, and A’
is a point on «’, then it is always possible to find a point B’ on a given side of the line
a’ through A’, such that the segment AB is congruent or equal to the segment A’B’.”
(ibid., p. 10) 5- If two sides of a triangle are congruent to two sides of another triangle
and the correspondent angles that those sides form are also congruent, then the other
two angles of each of those triangles are also congruent to the other two angles of the
other triangle (ibid., p. 12). IV- Axiom of parallels, which will be explained in the
text. V- Axioms of continuity. 1- “If AB and CD are any segments, then there exists a
number # such that n segments CD constructed contiguously from A, along the ray
from A through B, will pass beyond the point B.” (ibid., p. 26)

2 T owe the awareness about this aspect of Hilbert’s work to fruitful conversa-
tions with Don Howard and Katherine Brading.

? These remarks will be brief for two reasons: the space allowed in journals for
papers is limited, on the one hand; and, on the other, I will rely on my previous re-
search concerning the nature of mathematics. I published some results of it in the pa-
per “Sobre la realidad de las matematicas.” Areté XV, n.° 1 (2003), pp. 35-62.

4 Manuscript of a course taught in Géttingen in 1905, quoted by Corry (1997),
p. 130.

5 As Stephan Kérner noted, another purpose of Hilbert’s work was to show the
consistency of geometry’s axiomatic system [Korner (1960) pp. 75-84]. This purpose
was severely impaired by Godel’s works. Godel’s second theorem, for instance,
demostrated that the consistency of a formal system is not provable within the system
[K&rner (1960) p. 95].

® This hesitation concerning the concept of “truth” is, perhaps, another manifes-
tation of the Kantian influence.

7 See the manuscript of the course of 1905, nn. 36-37, quoted by Corry (1997),
p. 127. See also, Hilbert, Foundations of Geometry, p. 2, where the author holds that
geometrical axioms are connected to our spatial intuition. Even though their author
does not even guess so, these texts bear a strong similarity with Aristotelian theory:
mathematics according to such theory is the fruit of a form (quantity) abstracted from
experience. We are able to reflect on that experience by postulating as hypotheses the
fundamental notions in order to construct demonstrations. This construction, more-
over, can be done in an inventive way, through dialectics, or in a systematic way, as
Euclid did later.

¥ Competence in science does not guarantee competence in the philosophy of
science.

? Stephan Kérner in The Philosophy of Mathematics. An Introduction Essay,
also points out —as we do— the air of paradox that surrounds Hilbert’s work as regards
the origin of axioms. See pp. 98-106, but especially page 98.

19 A contemporary statement by Max Weber shows that the situation in social
science and the sciences of the spirit was very much alike. [Mitzman (1970), p. 209]

"' The influence of Kant in Hilbert is quite clear [Korner (1960), pp. 72-74]. In
a letter to Schumacher written on November 1% of 1844, Gauss rightly praised Aris-
totle as the only Philosopher able to give definitions in accordance with science.
Among those who gave wrong definitions, he counts Kant for whom, however, he al-
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ways felt some respect. (He did not keep such respect for the Idealist Philosophers
posterior to Kant, among whom we find Hegel. Gauss indeed named the philosophy
of Hegel insania, in a letter to Schumacher) [Dunnington (1955), pp. 313-317].

'2 Gauss knew, for example, that the notion of space of the geometers has to do
with experience, even though it is not a mirror-like image of the world. He knew,
thus, that in knowledge our reason is active. For this motive he appreciated the Cri-
tique of Pure Reason. He thought, however, that the Kantian theory of space was very
wrong. See the opinions of Gauss on philosophers and philosophy, and fragments of
his letters, in Dunnington [(1955), pp. 313-317].

13 See Stephan Kérner [(1960), pp. 72-74 and 98]. According to this author, the
other part of the origin of the axioms belongs to an analysis of the (Kantian) Ideas of
transfinite arithmetic. The consistency of both parts of mathematics, finite and transfi-
nite, can be proven through the construction of formal systems.

' Leo Corry [(1997), p. 120] claims that in this passage Hilbert holds a Leib-
inizian preestablished harmony. I think the text is clear in denying it. Concerning this
point as regards the applicability of mathematics to physics according to Hilbert, see
Stephan Korner [(1960), p. 88].

!5 Notice that we are dealing specifically with geometries that are non-
Euclidean because they are not plane and not concerning ourselves with those non-
Euclidean geometries which are so because they contain more than three dimensions.
These other geometries are metaphorical extensions to non-spatial relations of the real
world [Casanova (2003), p. 37]. Jacques Maritain, quoting Aquinas, who in his turn
quoted Ptolemy, has shown that real dimensions are determined by the number of per-
pendiculars that can meet at a line on a point in physical space [Maritain (1995), p. 43].

' There are in mathematics non-constructive demonstrations, of course, but
these are always based upon a context that has been constructed previously.

'7 The explanation contained in this and the previous paragraph is an exact re-
sponse to the problems that, according to Stephan Korner, raise the “existence propo-
sitions” of mathematics [(1960), pp. 174-176]. And the explanation answers to such
problems within a realistic, Aristotelian conception of mathematics.

'8 In the case of Euclidean demonstrations the cause is only formal, of course.
When the theory of relativity fused physics and geometry, it built a conceptual system
with which one can “save the phenomena.” Such a system, however, is far from both
geometrical and physical entities. Saunders Mac Lane holds, like us, that geometry is
not a priori. He also holds that geometry is abstract and for this reason Euclidean ge-
ometry was completely unaffected by the deviation of light-rays [(1986), p. 411].

!9 See Manuscript of the course of 1905, n. 39 [Corry (1997), p. 128]. In the
light of these considerations, and others made earlier, one can grasp that the exposi-
tion and critique that A. D’Abro made of Hilbert [D’Abro (1959), pp. 191-213] was
mistaken or shallow in many respects, but perhaps the published texts of Hilbert were
confusing enough to allow room for this kind of reading. Thus, 1) D’Abro held that
according to Hilbert axiomatic systems do not define their terms and, as a conse-
quence, they can be applied to any reality, because mathematics does not refer to any
particular reality but to relations. This would explain why systems can be applied to
physics and why Hilbert found an equivalence between geometry and arithmetic (see
ibid., p. 197). To this I reply that the application of geometry to physics does not pre-
suppose that the geometrical axioms have to do with mere relations and do not have to
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do with abstract quantity. Moreover, Hilbert himself thought that geometry (not
arithmetic) was a natural science. 2) D’ Abro underlined too much the opposition be-
tween Poincaré and Hilbert, as if the latter did not hold that intuitions have a place in
mathematics and that axiomatization is only an exercise posterior to the finding of
mathematical truths (ibid., pp. 191-213; in particular, pp. 198 and 202-204). D’ Abro
underlined the opposition so much, in fact, that he came to conclude that theoretical
physicists do not need to pay any attention to the nature of mathematics, even though
they ground their research on a mathematical scheme, because the nature of mathe-
matics is an obscure issue (see ibid., p. 212). To which I reply that what indeed hap-
pens is that these issues concerning the nature of mathematics and the relationships
between mathematics and physics are the job of philosophy, not of physics.

20 This means that the angle ABC would not equal the angle CAB [Hilbert
(1992), p. 113].

2! The instance is constructed in Hilbert (1992), pp. 125-126, but the relevant
consequences for our present purpose are drawn from this instance later, ibid., pp.
127-128.

22 Figure 2 is taken from page 125.

2 Frankly, I do not fully understand how this can be true according to what was
stated by Hilbert [(1992), pp. 121-122], because OP and OR are not congruent. But
this does not affect my reasoning because if there were a mistake in Hilbert’s and
Bernay’s projections, my conclusions would be valid and even stronger: the principle
according to which a whole extension is greater than any of its parts holds when the
notion of extended area is at stake.

2 Hilbert also thinks, however, that the Archimedean axiom of continuity has to
be tested by experiments, in a way similar to that with which Gauss tried to prove the
theorem of the addition of the internal angles of a triangle. See manuscript of the
course of 1905, quoted by Corry [(1997), pp. 125-126]. Indeed, due to the abstraction
of geometry, the theorem of the internal angles of a triangle cannot be proved experi-
mentally but through analysis of a plane space. If we have a different kind of space,
we will have to analyze this other kind in a different way. And if such is the case of
astronomy, then this science will have to use a geometry that analyzes the other kinds
of space. I consider that Hilbert is wrong also as regards the experimental proof of the
Archimedean axiom of continuity. Continuity is a notion that is previous to that of the
addition of the internal angles of a triangle. Faced with the paradoxes of Zeno, Aristotle
realized a metaphysical analysis of common experience that seems sufficient to per-
suade us of the strength of the axiom.

% Even a mammal’s being depends in some way on the contraction and expan-
sion of a small quantity of sensible extension which we call “heart.” In Modern Phi-
losophy, quantity became the res extensa of Descartes, the primary qualities of Locke
or the space of Kant, which is the Cartesian res extensa but without the res [Kant
(2001), p. 30]. Gottlob Frege held an alternative view about the object of mathemat-
ics, as is well known. But he also stated that he had no objections to the Newtonian
way of conceiving that object [(1968, pp. 25-26], and the Newtonian way is the same
as the Aristotelian, at least in the case of arithmetic.

28 T think that if we remove neo-Pythagoreanism from the assertions of Niehls
Bohr concerning the complementarity of methods of approximation to biological real-
ity, we would see that the different ways of approach, the one that reduces biological
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processes to their physic-mathematical component and the one that considers the rela-
tionship of such processes and the living being as a whole, are compatible and they
even need each other. Without a vision of the whole, the living being, physic-
mathematical analysis of one of the processes would lose its meaning.

27 Aristotle and Aquinas knew this pre-requisite for the applicability of the axi-
oms. This knowledge is implicit in Metaphysics IV 3, 1005b15-16. The knowledge of
any being implies the (presence in the soul of the) principle of non-contradiction. It is
also implicit in Posterior Analytics 1, 1 and 7; 11, 19. In this last text, the grasping of
the universal (term) causes the principle.

2 In every instance of a supposed superseding of a fundamental principle
within physics or mathematics that I have been able to examine, I have found some-
thing similar to what is said in the text. Either one was dealing with a pseudo-
principle (like the Kantian or Laplacian of causality), or one had not understood in a
correct way the principle or the context to which it was applied. a) Thus, for example,
when one claims that an infinite contained in another equals the continent (so that the
whole would not be greater than any of its parts), one overlooks that in the very notion
of infinite one finds that it cannot be a “part” of another thing, even though one can
say that there are some infinites greater than others. It is obvious that between the in-
teger 1 and the integer 2 there are infinite rational and irrational numbers and that,
however, this infinite is contained in another infinite (the one that contains every real
number). But the first infinite of this example cannot be called a part of the second.
To understand this, think that for the same reason a point cannot be called a “part” of
the line on which it lies, even if it is contained in the line, as Aristotle showed in book
VI of his Physics. b) In a similar way, the supposed violation of the principle of zertio
excluso by quantum mechanics as it is presented by Weizsicker has to do with a con-
ception of reality completely non-Aristotelian. In an Aristotelian conception, an in-
termediate state of the kind to which Weizsdcker refers is perfectly possible. Between
being in act a statue of Hermes and not being at all, there can be another state: being a
statue of Hermes in potency. There one would not find a violation of the Aristotelian
principle of fertio excluso. This coincides with the description Heisenberg does of the
ontology that underlies Weizsicker’s logic, “[...] If one considers the word ‘state’ as
describing some potentiality rather than a reality—one may even simply replace the
term ‘state’ by the term ‘potentiality’—then the concept ‘coexisting potentialities’ is
quite plausible, since one potentiality may involve or overlap other potentialities”
[Heisenberg (1962), p. 185]. Quine added in 1970 and 1986 that when one asserts that
a principle of classical logic, like that of tertio excluso, has been superseded, what
happens is that one “changes the subject,” by changing the meaning of logical connec-
tors (conjunctions, disjunctions, negations, etc.), in order to fulfill a goal (in quantum
mechanics or in intuitionist mathematics) that can be fulfilled without changing the
traditional meanings [Quine (1986), pp. 80-86]. I paid attention to this text thanks to
Martin Kurd and J. A. Cover [(1998), pp. 380-381], who use the edition of 1970. The
change of subject to which Quine refers is what happens with the principle of the whole
being greater than any of its parts in the work of Hilbert: after the definitions of Appen-
dix II, the concept of area is no longer the object of the mathematical investigations.
Donald Gillies agrees with Quine in that according to him “quantum logic” was not suc-
cessful in the solution of the problems of microphysics: see Gillies [(1998), pp. 317 and
319]. Gillies presupposes, however, that there can be other cases in which this change
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of logic can be useful and mentions the instance of non-monotonic logics of artificial
intelligence, as if they were a violation of Aristotelian logic. Gillies ignores that such
non-monotonic logics often are, in fact and in many ways, very close to Aristotle’s
dialectic or topical method.

» The geometry of Appendix II is in some sense Pythagorean (because it ac-
cepts Pythagoras’ theorem, as we have shown already), and in some sense it is not be-
cause the addition of two sides of a triangle would not necessarily be greater than the
third side [Hilbert (1992), p. 128].
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