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Abstract
In this paper we pose the problem of how to study basic cognitive processes in the frame of simulations of artificial

worldr of the style of Artificial Life The main difficulty of simulating biologically grounded cognitive processes lies
in the search for fonns of organisms suitable to establish functional relationships with their environments and coevolve
with them. ln order to attempt it, we study the properties of autonomous systenzs at different ckgrees of complexity and
the origin of cognitive processer as a sophistication of primitive sensori-motor loops of livingsystenzs. The distinction
between what we call ontogenetic adaptation to an environment and learningmotivates a definition of two different
degrees of complexity of that interaction. While the first one generates a variety of structures within individuals in an
evolutionary scale, the second one produces a subsystem that ŭ modulated during the life of each organism. We present
some ideas to develop a model of an Artificial World where some our theoretical claims can . be studied and suggest
that an AL approach can arise an interesting discussion in Cognitive Science.
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El estudio de organismos con capacidades
cognitivas básicas en mundos artificiales

Resumen
En este artículo planteamos almo estudiar los procesos cognitivos básicos en el nzarco de simulaciones de mundos

artificiales al estilo de la V ida Artificial. La dificultad principal simular procesos cognitivos de base biolégica
reside en la básqueda de formas de organismos adecuados para establecer relaciones funcionales con sus entorrzos y
derarrollarse con ellos. Para ello, estudiamos las propied,d9s de sistemas autánomos en diferentes grndor de compleji-
dad y el origen de procesos cognitivos como una sofirticación ck bucles seraorio-motores primitivos desistemas vivos. La
diferencia entre lo que denominamos adaptación ontogenética a un entorno y aprendizaje establece una definición de
dos grados distintos de complejidad de esa interacción. Mientras que el primero genera una variedad de estructuras
intraindividuales en una escala evolutiva, el segundo produce un subsistema que es modulado durante la vida de
cada organismo. Presentamos algunas idrpara desarrollar un modelo de un mundo artificial, donde pueden ser
estudi,d,s algunas de nuestras afirrnaciones teóricas y sugerimos que un enfoque deVida Artificial puede promover
una discusión interesante en el campo ck la Ciencia Cognitiva.
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1. INTRODUCTION

One of the most peculiar features of the methodological style of Artificial Life
(AL) [22, 23, 411 is the attempt to ground all the processes that concern living sys-
tems with the purpose of—sooner or later— being able to artificially emulate them.
After the functionalism which was the main characteristic of AI, now a way is open
for a new structuralism that will make possible to study the behavior of focused sys-
tems through relations that are closer to what is materially realizable. The AL
approach is developed towards the ideal of being able to display genuine evolutions
of artificial natures in the computer, so that the simpler will generate the more com-
plex through an emergent evolution. However, an absolute fidelity to that ideal
would not make it possible to study systems as complex as the cognitive ones we are
interested on. Even basic cognitive phenomena constitute a degree or level of orga-
nization of matter where access is difficult (for they present a huge complexity in
physico-chemical terms and, therefore, in computational ones). Thus, the only
option left in order to study these phenomena is to simplify the underlying materia-
lity by designing certain features.

Then, in this domain we have developed an artificial world model whose main
interest is to study the cognitive capacities of the artificial organisms and their evolu-
tionary consequences. This approach can uncover various types ofproblems that are
often left aside when the cognitive phenomenon is approached only at high levels [21.

The paper is organized in the following way: section 2 presents a review of the
properties of the systems that can be in various ways considered autonomous with
respect to their environments at different degrees of complexity, in order to establish
some criteria to estimate the complexity ofcognitive phenomena. In section 3 a cha-
racterization of the origin of cognition is presented, as arising from forms of adapta-
tion to the environment that are linked to genetic specification of system operation.
In section 4 some basic ideas are presented on the modellization of what we consider
basic cognitive capacities through models of simulation ofartificial worlds. Finally,
in section 5 these ideas are briefly discussed and some conclusions are proposed on
the advantages of this approach to study cognitive problems.

2. LEVELS OF SYSTEM-ENVIRONMENT RELATIONSHIP

A cognitive process only can take place in the frame ofa system that maintains
some degree of autonomy and self-determination in respect to its environment.
However, we cannot consider that all natural systems where some form of autonomy
is observed are cognitive. In fact, we can distinguish several degrees of complexity
among autonomous systems, according to the kind of interaction they establish
with their environments, and their artificial representation should vary according to
this degree of complexity. We will try to make this idea clearer through a short
course through self-organizing systems in a gradation of increasing complexity to
establish some criteria on the features that are essential to model artificial cognitive
systems.

2.1. Self-maintained minimal systems

The most elemental notion ofa system that internally defines its identity in res-
pect to its surroundings can be explored in the formation of systems connected by
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an operational closure. There the system properties will critically depend on the
components that take part and the relations that are established among them [17].

In the context of Protobiology those systems are supposed to present a funda-
mental feature oflife: the possibility of forming connected "protoorganisms" whose
relationships with the environment depend on the interactions of the molecular
components of the systern, the system being able to reproduce by fracture and, in
some cases, to entirely reconstruct the set of relations that supplies its systemic iden-
tity. Even though, such reproduction is not mediated by the existence of "template"
components capable of self-replication; thus, reproduction presents a very low
degree ofreliability, and all system components are at the same hierarchical level.

Models of this kind of systems have been developed by the formation of self-
maintaining reaction networks, such as autocatalytic sets. Those are autonomous
systems created to grasp the properties of the protobiological organization; they are
based on molecular chemical reactions basically developed to pose the problem of
the origin oflife. Autocatalytic Sets [18, 101 are good models to study the minimal
conditions of complexity of the systems where some kind of functional emergence
will be found. Their main property is that starting from an initial set of components
whose interaction is chemical (catalyzed cleavage or condensation of components), it
is possible to observe connected sets of components forming a stable network, mea-
ning by stability the capacity to present a coherent behavior in the presence of per-
turbations and to self-maintain in the continuous flow of energy and materials
coming from the network environment. Therefore, an unstable network would lose
connectivity among components, the reactions among them would not allow any
global behavior and unconnected parts would appear in the whole of the system.

This capacity of forming systems where there is an operational closure among
components that stand at a single level has been viewed by the Autopoietic
Approach [38, 24], as a basic and sufficient condition for life. The autopoietic orga-
nization would appear as the top of the following gradation of self-organizing pro-
cesses [12]: 1) dynamical systems; such as dissipative structures that do not imply
transformation of matter (examples would be whirlwinds or Benard cells); 2) "osci-
llating" systems as special cases of crossed autocatalytic reactions (for example, the
Belusov-Zabotinsky reaction) that imply transformation of matter; 3) Autopoietic
Systems, as networks of component production in watery mediums (for example,
living cells). This kind of system is limited by a physical closure constructed by
itself (membrane) and maintains its organization by exchange of matter and energy
through that structure. The general idea of autopoiesis is self-production [391, as a
special form ofself-organizing process that constitutes living systems.

Anyway, even if the criteria of autopoiesis are becessary ones for a definition of
life, they are not sufficient [301. Important features ofliving systems such as the pos-
sibility of trasmitting their organization through self-reproduction and therefore,
undergo darwinian evolution cannot be explained by this approach. In fact, the
Autopoietic Approach deliberately leaves those properties aside as consequences of
the "autopoietic structures" that should not be taken into account when defining
the "autopoietic organization"[38]. They have important reasons to defend this
view; the main could be the necessity to argue against a view that attributes the
most relevant role in the constitution oflife to isolated components like nucleic
acids and to promote instead a vision ofliving organization that lies on the whole
system [9]. This whole system organization can be viewed as a set of recurrent opera-
tions that continuously re-construct the system. Therefore, it is the necessiry of blu-
rring the role of informational components (templates) as underlying the living and
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to promote the idea oflife as a property of the whole what underlies the autopoietic
rejection of these properties (self-reproduction, evolution) from the definition oflife.
But, in our view, these capacities ofliving systems denote a degree of system com-
plexity that cannot be given for granted. Minimal autopoietic systems cannot either
reproduce with a reasonable degree of reliability nor evolve, therefore our conclusion
can be that living systems are necessarily more complex that autopoietic systems.

2.2. Minimal Living System and environment

Even if we do not wish to under value the importance of systems, such as the
previously described as decisive steps both for the natural origin oflife and for an
eventual artificial one, from our point of view what in fact characterizes life is the
formation ofa self-maintaining organization where there exist two entangled levels
of components: one ofa conservative type (like nucleic acids) and another of a dissi-
pative type (like proteins) forming a functional closure. Pattee [33] has theorized
this organization as forming a "semantic closure".

An organization defined by a "semantic closure" can not only explain the self-
maintenance and self-production that characterize the autopoietic organization, but
also biological phenomena such as self-reproduction and evolution. Unlike the
Informational Paradigml in Theoretical Biology, a paradigm based on the "semantic
closure" will not view nucleic acids as trivial informational carriers, because their
"meaning" depends on a dynamic interpretation realized by the whole system.
Unlike in the Autopoietic Paradigm, living organization does not rely merely on an
"operational closure" ofa syntactic type, but the history ofliving systems endowes
each of them with hereditary structures that act as "symbols" in the frame of the
whole system.

This way the closure can be understood as an interdependence or complementa-
rity between some dynamic elements, whose change is rate-dependent (proteins)
and other symbolic ones, whose change can be described as rate-independent
(nucleic acids). Rate-dependent dynamics account for the creative processes of the
living, while rate-independent symbols can grasp the historically stabilized features
of life. The molecular strings of genes only become symbolic representations when
the physical tokens of symbols are directly recognized by the "translating" molecu-
les (aminoacil-tRNA-synthetase), who exert arbitrary specific matching actions that
result in protein synthesis. Then, finally, once folded proteins execute functional
actions. Thus, without the rate-dependent functional action ofproteins, the "mea-
ning" of the genes would not exist. The semantic closure arises when the "transla-
ting" molecules themselves are referents of the gene strings. Therefore, in the cell it
is not possible to opt solely for one or the other of the two dimensions of the pheno-
menon without losing explanatory capacity, as would be the case if we think that all
living phenomena arise from the properties of informational molecules
(Informational Paradigm) or that all living phenomenology can be explained in
terms ofdynamic components constituting a coherent whole.

In this organization, due to the replicating capacity of certain components in
space and time, the system can "construct" another similar one, it can reproduce
itself reliably. This construction takes place in a space that is also constructed from
the inside of both systems (original and copy). This capacity ensures: 1) to obtain a
fracture plane in space that warrants division into two similar copies; 2) to duplicate
certain patterns which are indispensable for the identical operarion of original and
copy and 3) autonomy of the system, that is the operational closure of the process I111.
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From this perspective biological information is not independent from the rest

of the physico-chemical interactions taking place inside the system or in the system-
environment relationship. Instead it is the capacity of certain physical entities of
exerting diverse actions in respect to other system components or the whole system;
it is not derived from intrinsic properties of system components such as their chemi-
cal composition, but from the specific network of interactions where it is exerted. To
be able to talk of information there must exist alternative configurations; in the cell
information can be stabilized and transmitted due to the existence of template com-
ponents whose conservative order makes possible their functioning as "records".

In our view this two level organization generates all biological phenomenology.
Rosen [361 developed a series of works to model systems of this kind: M ,R
(Metabolic Repair) Systems, which are complex reaction networks that can evolve.
In this kind of network there is a reciprocal interaction between the metabolic units
(M) and the repairing or genetic ones (R): each R unit of the system depends on the
outputs of the M system and M units are controlled by the R units. This kind of
interaction of entangled levels is what makes this system far more complex than the
canonical reaction networks. Therefore M, R systems are not just models of the
emergence of metabolisms (as for example, autocatalytic networks), but a network
that grasps the operation of the "semantic closure".

2.3. The cognitive specificity

Biological organization can be characterized as a network of component pro-
duction in which the existence of informational components is essential to syntheti-
se the specific components (proteins) that control metabolic operation so that the
operation of the system can be stable under the fluctuations of the environment. The
network is closed by a semipermeable membrane through which there is a selective
exchange of reactives and energy (mainly through membrane proteins).

Even if systems pertaining to both of the previously considered categories (pro-
toorganisms, minimal living systems) maintain a relation with their environments
(it does not make sense to pose the problem of autonomy for an isolated system), the
specific feature of the cognitive level is the appearance of a specialized subsystem for
the regulation of that relation, so that the organism is able to develop a structural
plasticity that can be modulated in ontogenetic time. Thus, cognitive phenomena
bring about the possibility of forming material structures specialized in the mainte-
nance of suitable relations with the environment. The origin of cognitive systems is
related to the increase in complexity and selective specificity of that exchange of
materials and energy between system and environrnent (self-organization and selec-
tion) and the construction of controls that allow the fixation and reproduction of
those paths.

The cognitive system acomplishes an integrating role for the organism, it is
superimposed on the biological ground forming a hierarchical functional network.
The characteristic behaviors of this kind oforganization appear in the upper level to
which corresponds the coordination of the lower ones, but the function of the upper
level cannot be isolated from the operation of lower levels. The cognitive system
adapts the behavior of the organism to a changing environment acquiring knowled-
ge in the course of its life and being open to the relation with the world. This rela-
tion is epistemic or informational, because it implies the detection of relevant
aspects of the environment encoding some physical patterns into informational ones
(symbols) that finally trigger functional actions. The relation of the cognitive sys-
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tem with the biological one is pragmatic and, even if pragmatics cannot fully
explain semantics (as syntax cannot either), it makes possible to understand the cog-
nitive system as one of self-determination for the organism. As a consequence, by
the insertion of the cognitive system in that global context we can understand or
analyze its representations as symbol systems characterized by a triple dimension of
syntax, semantics and pragmatics. In fact the reduction of cognition to a single one
of them has originated an intense debate in cognitive science around the idea of
representation [61; if the pragmatic aspect of biological functionality is left aside the
semantic relation of referentiality ofrepresentations becomes intractable.

3. FROM ADAPTAT1ON TO ILEARNING

According to the presentation of the last section, there seems to be a gap betwe-
en what we considered Minimal Living Systems and Cognitive Systems. In order to
find a link, we should first of all answer the following question: how can this inter-
nal system that correlates the behavior of the organism and the characteristics of the
environment originate and evolve? The constitution ofa minimal living system able
to reliably self-reproduce implies the possibility of phylogenetic adaptation of
populations of organisms to changing environments through processes of genetic
change (what inspires Genetic Algorithms, a computational procedure of problem
solving that we will see later). However, the capacities we are interested in do not
depend only on phylogenetic adaptability, but require structures that are variable
and modulable in somatic time.

3.1. Adaptation and the origin of the sensori-motor loop

Besides phylogenetic adaptation, all existent living systems possess some
mechanism of ontogenetic adaptation. Basically, ontogenetic adaptation consists in
a mechanism of functional self-modulation of the metabolic network. In its simplest
form, adaptation is achieved through the selective activation of the pertinent genes
when certain environmental conditions are detected. This kind of adaptation can be
understood as ways of connecting detection mechanisms with those that regulate
the genetic repertoire, producing changes in metabolic paths that will not have
reproductive consequences, but can enhance the production of components that
trigger precise functional actions.

These detection mechanisms constitute the most elemental version ofpercep-
tion. Several authors [33, 7]have proposed that the classifying capacity of the substra-
terecognition by enzymes is the most elemental form of a detection process. This
hypothesis is supported by the fact that all the increase of complexity of epistemic
processes that arises in biological evolution (including the functioning of the nervous
system) is grounded on mechanisms of enzyme recognition [19]. But a process ofper-
ception entails more than the enzyme pattern recognition capacity. Pattee [351expo-
ses more accurately his first position, by stating that the "detection" (or perception)
occurs when pattern recognition is arbitrary, repeatable, stable and with operative
consequences. Besides this process is rate-independent, because it must be distinguis-
hable from merely dynamical processes and certain record or memory is necessary
which, finally, can be reduced to that separation ofrates or scales. From Pattee's point
of view, perception is an intermediate process between dynamics (physical laws) and
computation (the process of symbol manipulation by rules): even if its result were not
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symbolic and computable, it must be some kind of record and must be distinguished
from dynamics. Intuitively that distinction brings forth the idea of some kind ofstore
that keeps the result ofperception to deliver it operatively later.

The problem of this position is that in order to consider something as percep-
tion, it is indispensable to be able to functionally recognize/evaluate the discrete
output as a significant event/structure in respect to what it presumably "detects".
As an example, the enzyme recognition of the substratum is not in itself an act of
perception (of the substratum) unless there is an operationally closed network that
interprets the aforementioned change of enzyme configuration (for example, by a
change of the metabolic path that synthetizes certain product). In the case of the
immune system, components that do not belong to the operationally closed system
are molecularly recognized and evaluated by the network itself, which can distin-
guish between what is or is not its own. But a phenomenon of this nature takes
place also in the cellular domain, because it is the cell itself -or, better, the network
that defines the reproductive identity of the cell- which evaluates or recognises the
enzyme changes occurred according to certain events/structures of the environment.
Thus, when certain membrane proteins or a specific set of such molecules [21] recei-
ve specific physical patterns, they undertake a configurational change that triggers
metabolic-motor reactions; these ones, in their tum guide subsequent perceptions,
so that a new functional closed loop is formed.

So, a system with mechanisms ofperception must be essentially functional, but
the converse is not true, functionality is not a sufficient condition to speak ofpercep-
tion. So, in the case ofa minimal biological system like the one presented in 2.2., only
able to maintain and reproduce itself, the enzymes recognizing genetic information
could not be considered as "sensors", but only as generically functional components,
because there is not any previous or more basic mechanism for the functional evalua-
tion of the different metastable states of those enzymes. Consequently, in order to con-
ceive even the most elemental process ofperception that refers to something extemal,
there must preexist a system able to self-define its identity. This way the changes trig-
gered by the perceptive process could modulate the behavior of the system in correla-
tion with extemal or environmental changes that have been "recognized".

Thus, a perceptive process starts with the detection of certain changes taking
place in the boundaries of the organism. It is basically a selective process of pattern
recognition linked with certain functional consequences for the system which per-
forms it. To fix the sensorimotor loop, living systems should selectively discard (eit-
her phylogenetically or/and ontogenetically) a great amount of components and
metabolic paths. In this way, epistemic coupling is achieved through recursive inte-
raction with the environment (producing its modification), as a mutual and pro-
gressive organism/environment adjustment until certain stability points are rea-
ched. The organism/environment relation can be seen as a closed correlation
berween perceptions of the relevant properties of the environment (its "affordances"
in terms of Gibson [131) and motor actions on it. Both processes are complementary
in the sense that perception must be active (the organism moves towards its goal
object, acts to perceive it) and action must be guided by perception. Perception is a
requisite for optimum action, but both are entangled in a closed loop.

3.2. Cognition and the development of adaptive sensors and effectors

From the viewpoint of its origins cognition and learning arise as a result ofgre-
ater complexity of the sensorimotor loop. Functionally speaking this increase in
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complexity is directed to the control, integration and hierarchical structuration of
an increasing number of biological activities. Although cognition does not define
the set of biological needs, it is directed to the optimization of their realization.
Therefore, even if cognition cannot be studied apart from biological functions, it has
a different specificity: their global integration through mechanisms that imply
informational processes.

While in purely adaptive organisms perception is, as we said before, the direct
cause of certain metabolic-motor actions, in cognitive organisms the physical pat-
terns impinging on sensors are transformed in trains of discrete sequences (which
constitute information) that modify the state and dynamics ofa network of connec-
tions where sensory information is processed. Unlike in metabolic networks, where
there is no distinction between units and connections [28], in neural networks the
stress is made on the variability of connections and on the control (by/of the very
network, throughout other layers or global patterns) upon such structural varia-
tions. Therefore in the former case structural changes take place only in the frame of
phylogenetic evolution, while in the later this kind of process can also take place in
somatic time (learning). That is why the concept of (epistemic) information proces-
sing needs the development of a system ofchannelling as rich and modulable as pos-
sible.

When high level cognitive functions are being considered, most research strate-
gies emphasize essentially the increase in complexity of the intermediate net con-
necting sensors and effectors. Even if, no doubt, this is a fundamental factor, one
should not forget that evolution toward more complex forms in the system proces-
sing sensory information is correlative to the complexity of sensors and effectors.
Frequently, when we face the task of building artificial models of cognitive systems,
this is left aside or under valued, mainly because cognition is not approached from a
radically evolutionary perspective, that is, as a development of the sensorimotor
loop. At higher levels of cognition the increasing complexity of the different ele-
ments of the system makes them appear as nearly autonomous subsystems. But it is
an empirically verifiable fact that in natural cognitive systems there is a closed and
tangled correlation between development of sensors, of the information processing
network and of effectors and cognitive science should take it into account.

This is why we think that if the model of artificial cognitive systems we are
going to develop presents a neural network to allow learning, its sensors and effec-
tors must be also adaptive. By adaptive sensors we understand those able to change
through learning the mapping between the type of output signals and their functio-
nal consequences, so that the meaning assigned to the result of the sensor can vary
according to the different circumstances of the environment in which it is produced
and, thus, it is modifiable by learning. Given that this principle in a converse order
can be applied to effectors, in this work we will focus on the study of sensors.

4. BASIC IDEAS TO MODEL COGNITIVE SYSTEMS 1N ARTIFICIAL WORLDS

In order to place the problem of modelling a cognitive system in its biological
ground, we should move from the domain of Artificial Intelligence (AI) to the one
of Artificial Life, where evolutionary modelling of autonomous systems [32, 4, 16]
focuses on the necessity of devising ways to approach their study as physical embo-
died systems (either biological or artificial) [40]. Contrary to the high-level, disem-
bodied perspective of Classical Artificial Intelligence, its goal is to understand inte-
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lligence as a form ofadaptivity that has evolved phylogenetically and is ontogeneti-
cally developed. The strategy to study is not to start modelling high level intelli-
gent behavior such as theorem proving or playing chess as processes developed inde-
pendently of their biological background, but to develop a lifelike structure (real or
simulated) for the cognitive agent.

Some of the issues emphasized by the new approach are: 1) the importance and
preeminence oflow level capacities for an accurate notion of intelligence, therefore
2) the necessity of studying sensorimotor loops underlying behavior, so that 3)
action is a control ofperception, it arises from the situatedness of an agent in its
environment or ecological niche.

Work in this field is based both on robots (realizations) and simulations, as far
as simulations are computational models ofphysical interactions underlying adapti-
vity and cognition. Realizations have the difficulty of how to implement evolution
connected with reproduction, so it is a usual practice to combine both methods: it is
not currently possible to create a building procedure robust enough to allow genetic
variations, and simple enough to be implemented on a small machine. For a review
of the simulation/realization controversy in the field see for example tienen la
cultad de [4, 1 6]. A theoretical discussion of the problem is [34].

In order to construct the structure of the artificial organisms, evolutionary
modelling uses a procedure to design cognitive architectures inspired by the ope-
ration ofdarwinian evolution: Genetic Algorithms (GA). GAs provide an automatic
method for structure development that permits to obtain interesting architectures
from a population of random possible ones. This population undergoes an evolutio-
nary process inspired by the genetic recombination of sexual reproduction (muta-
tion and crossover) and selection is exerted upon it depending on a fitness function
designed according to the desired behavior.

4.1. Evolution of the Artificial World

Thus, our effort is directed toward the creation of a simulated artificial world
(AW) were artificial organisms (A0s) can be found. All processes of the AW, either
physical or epistemic (such as perception, learning or anticipatory behavior) take
place in this artificial world, so they are simulations.

Following the wise advice of nature, we will use algorithms that try to mimic
the way Nature works: Genetic algorithms. In them several solutions to a problem
(in our case, the problem of surviving in an AW) are coded in a "genome", and they
compete to be the best solution. Genetic algorithms will allow us to implement
"evolution", by coding all somatic characteristics of the AO (its "body") in a geno-
me. Only the fittest are allowed to reproduce, by mixing their genetic information
(a string of Os and 1s) with other good solutions.

Until now most of the effort has been channelled in the direction of modelling
the cognitive structure of the autonomous agent, that is, its nervous system. The
search of forms ofdevelopment of neural networks (phenotypes) starting from the
genotypes specified by the symbol string optimize/levolved by the genetic algo-
rithrn is a very difficult one. The use ofgenetic algorithms to code neural networks
has had an important development in the literature of the area (see, for example, 111),
nevertheless until now no biologically plausible form of representation has been
proposed to understand in constructive terms the relation between genotype and
phenotype for the artificial living systems.

Anyway, the field seems to be sensitive to the necessity of coevolving agent
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morphologies as well as neural networks [4, 16] so that 1) the biological neural
structure has the function of producing behavior, 2) behavior becomes adapted to a
certain ecological niche and 3) the structure allowing adaptation has been comfor-
med by evolution and can evolve and 4) the nervous system coevolves with the rest
of the agents morphological traits.

The main problem to achieve it is the use ofvariable-length genes in the gene-
tic algorithm, that would allow for open-ended evolution (usually by a enlargement
of the genome, as shown in [15]). Nevertheless, this problem has been solved in
several ways, as has been proposed by Koza [20] and other authors (for instance
Goldberg, Deb & Kob [141 with their mGA paradigm). A system with open-ended
evolution should use one of these algorithms.

In our model, the genome contains a complete description of the AO, inclu-
ding some "metabolic" and "somatic" characteristics (speed and energy comsump-
tion, for instance). The neural net of each AO will allow it to leam departing from
its genetic information, changing the values of the connections between sensors and
effectors continuously, thus, changing structurally. Neural nets' combine several
units (threshold-logic units), connected with each other, in the same way as biologi-
cal neurons. The value of the connections can vary, making neural nets learn, or asso-
ciate inputs with outputs in a meaningful way (working, for instance, as associative
memories. These neural networks are correlated to features of their environments
and react toward changes by varying their configuration in a proper way as different
couplings take place. The adaptive sensors are also implemented by neural nets, and
effectors are adaptively connected between them and the neural net.

The genetic description is compiled (in the computer language sense) at the
time of birth. In principle, this process is deterministic, ie, compiled structures
follow necessarily from its encoded form. Nevertheless, as we said before, new forms
of representation should be sought in which development were similar to the biolo-
gical, so that the phenotypic structures were described in the genome only loosely,
while other dynamical properties would follow the genome in a functional way,
(trying to simulate the duality between informational and dynamical levels that we
have emphasized in subsection 2.2.) or could arise from interaction and competition
between neurons (as proposed by Edelman [81). Anyway, even if it is very difficult to
think of ways of achieving this, the genome complexity and the coding of the neural
net structures are positive steps towards it.

In order to evaluate the efficiency of these programs, besides watching the AO
perform its duties within the world, several offiine tools are built for the program edi-
tion, execution, and alteration. For instance, a graphical representation of the cogniti-
ve subsystem is useful to evaluate differences among subsequent generations, or diffe-
rences between different "tribes" in the world, ifsomething of the sort emerges.

4.2. C,ognition of Artificial Organisms

Right at this moment, research in the field of alife has not developed any truly
cognitive system, in the sense that it is really embedded in an organismic morpho-
logy and all its structure varies in a phylogenetic as well as an ontogenetic scale. The
vast majority of artificial organisms (see for example [1]) show only a moderate grade
of adaptation, usually/ through the change of the neural net weights, being change
at the level of the neural net structure far less common; most systems are currently
lacking adaptive sensors and effectors.

A cognitive AO must obviously learn inside the aworld. Learning does not
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mean only change of internal rules, it implies also the possibility of assigning new
"meanings" to the features of the environment that are detected (inputs) as the inte-
raction of the AO with the environment takes place in different circumstances. This
would mean that learning is mainly directed toward the realization ofdifferent bio-
logical needs or functions, that can perhaps change or develop in ontogenetic time
(escaping from predators, hunting, mating, etc. are functions that will have to be
fulfilled at different stages of the development of the AO). It requires the develop-
ment of adaptive sensors, capable of growing and varying the realized mappings
according to learning (and similarly, the possibility ofdeveloping new effectors).

In AL, a "tabula rasa" approach does not usually give good results. The orga-
nisms that populate the artificial world in the first place should have some innate
capabilites (for instance, they should have at least one sensor and one effector that
would allow them to move, and some kind of reflex or motivation to move unless
they find food). Evolution requires many AOs present in the world at the same time
because the "fitness landscape" to be explored is huge and it is the only way of being
sure that a sufficient amount of viable organisms will be created.

In our model the neural net structure remains frozen as it has been created, and
only weights change during its lifetime, accounting for learning. These weights,
that reveal the ontogenetic learning of the organism, are not inherited by the next
generations. If new connections are created as a consequence of evolution, their
values are randomly set.

4.3. Adaptive Cognitive Subsystems

We can analyze our AOs in terms of their sensitive, processing and effector
subsystems. These must evolve and adapt phylogenetically, therefore the algorithms
used must be adaptive in the ontogenetic and phylogenetic scales. New sensors
should be developed during evolution, and the processing subsystem should make
new associations sensors-effectors, giving new meaning to inputs, while the AO is
"living" (that is, during the finite time it is allowed to function inside the simulated
world).

4.3.1. Adaptive Sensors

Sensors cannot be understood if they are not related to a world, their function is
to react to certain characteristics of the world that surrounds the AO, and process
physical data in order to extract high-level sensory information: size of the object in
front, odor, distance and so on.

As we have already said, the AO sensors can be adaptive in two senses:
• in a phylogenetic scale, they can develop the capacity ofdetecting new featu-

res of the environment. New sensors can be developed, according to the "physical"
characteristics of the world.

• in an ontogenetic scale, they can vary the internal meaning assigned to
previously detected inputs, as the functioning of the sensorimotor loop acquires new
experience of its surroundings. This is achieved by variations in the values of the
connections among sensors, sensors and effectors, and sensors and the neural net.

How can these adaptive sensors be simulated? There are several problems to
develop them from scratch, that is from an initial system with random neural con-
nections, for it would take aeons of computer time, and evolution surely evolved
sensori-motor loops from systems that are already very complex, as was explained in
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sections 2 and 3. Research on the properties ofcognitive systems from an evolutio-
nary approach is still in a rather primitive stage. Indeed, most researchers working
in the modellization of sensors usually create neural networks with fixed weights,
with no learning, and connectivity patterns and strengths taken from experimental
data. Even these simple sensors are ofsuch a computational complexity that we can-
not imagine to develop a population of beings, each with a 16x16 retina. Raw infor-
mation picked up by this retina should be then processed to obtain high-level infor-
mation. This is a problem that falls into the domain of artificial vision, but AL
prefers minimalist versions that can help understand more general features oflife (or
lifelikeness), such as adaptation to an environment rather than detailed biological
structures. Perhaps the computational power and the development of the field will
make complexer models possible in a few years, but not in the current state of
affairs.

For the moment we take what we call a toolbox approach. We can think that we
already have all these sensors (distance, colour, size, shape) potentially developed, we
put then in a "genetic toolbox", and thus they can evolutively exchange into another
in reproduction or develop new ones, as a response to the presence ofa new stimulus
in a world. Each sensor is genetically specified to be sensitive to a certain type of
physical properties of the world. This includes a range in which it is effective and
some information about the features it is able to detect.

Obviously, sensors must be sensitive to all the characteristics of objects of the
world. One way of doing that is to define an Object Description Language to per-
form couplings between relevant features of the AW and an OA sensor. Couplings
are realized by some adjustment or matching rules between sensor specificities and
features of the world described by this ODL. Due to this object-sensor interaction
the AO can act according to the inference of the object characteristics realized by its
sensors.

Our world would be composed ofa potentially unlimited number of objects, all
possible programs written in this language. The matching can help the OA act in
the AW because the ODL, includes qualities like if the object is movable, if it can be
decomposed in smaller units, and so on. In this way, the AO can interact with the
world, and in turn, the latter can interact with it.

Every AO would has an adaptive sensor, or a set of them, only sensitive to some
aspects of the objects of the world. A sensor fires if the rule it contains (for instance,
BLACK and BIG) is met by the object/objects in front. Every time a rule fires, this
firing is passed on to the neural network that constitutes the information processing
subsystem of our AO. This way, adaptive sensors are not only sensitive to intrinsic
object characteristics, but also to relational ones, like distance, orientation and
speed.

Obviously, and taking into account what has been previously said about the
coevolution of cognitive subsystem (entangled in the whole organism, that is, in its
biological structure), it does not make sense to study the evolution of sensory organs
as parts that are isolated from the rest of the cognitive system. Sensors coevolve with
the neural net that processes their information, and the effectors that allow the AO
to move to the perceived object, change it or get away from it.

4.3.2. Neural Net Subsystem

As we have already said, the task of implementing a neural network of variable
structure and size, and to code it in a gene is dificult, because the goal of simulating
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a complete world restricts the use of the available computational resources. Once
again, we cannot pretend to evolve complicated learning algorithms from simple
rules. Besides, each of these algorithms would have such a huge set of inputs (pre-
sent and previous states and weights of the network) and outputs (variation of all
weights), that even a simple set of rules would be computationally cumbersome.
Thus, we can only hope to label each weight or directed connection as hebbian or
antihebbian (in fact all learning rules can be reduced to this one), and let the struc-
ture change genetically. Each neuron is then labelled as input, output, or pass
through, and information cascades from inputs to outputs, every discrete step going
from one neuron to the next one. Information from several timesteps is then concen-
trated in the output neurons.

The genetic coding of the neural network will include:
• A connection map, that tells how many neurons there are, and its connec-

tions.
• A neuron labelling, that classifies each neuron as input, output or pass-

through.
• A connection or weight labelling, possibly mixed with the first, that tells if

the connection is antihebbian or hebbian.
• Initial values ofweights.
The length of this part of the genome and its meaning can vary phylogeneti-

cally, making possible the development of a potentially infinite amount of neural
networks.

4.3.3. Adaptive Effectors

In order to simulate effectors, we will take the same approach than for sensors.
Effectors manipulate the world, affect some characteristics of the objects of the envi-
romnent or change the spatio-temporal relation of the AO with respect to the
world. Features of the objects of the world change as events take place, but this
variation will only be appreciated in the following step, as in an a-world time is dis-
crete.

Effectors are also genetically coded. We are not concerned with how deambula-
tory mechanisms are developed, for insance, therefore, we will use a toolbox appro-
ach too. There can be a finite amount of effectors (like walk, eat, mate, emit sound),
which can appear or not in an AO. These effectors are connected between them, to
the sensors and to the neural net, so that sensorimotor loops can emerge.

4.4. Current Model and Work in Progress

A system previous to this has been implemented with the aim ofstudying seve-
ral problems of population evolution in function of the cognitive capacities of the
AOs [27, 26, 251. Now we intend to improve this model by applying to it the ideas
that have been previously exposed on adaptive sensors. Even if our "toolbox appro-
ach" does not make possible to study physical perception, it is useful to see other
emergent features of the relation of the cognitive system and biological function in
evolution. Several improvements of this model are currently being studied: develop-
ment oforganisms, relation between innate and developed structures, differential
evolution of sensors, coevolution of organisms and environments, etc. so that the
model will hopefully cover other theoretical issues apart from those presented in sec-
tions 2 and 3.
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5. CONCLUSION

The attempt to pose the problem of the appearance of new cognitive capacities
in relation to the biological structure of organisms, so that it is possible to observe
the evolution of biological functions (feeding, reproducing, etc.) and their fulfil-
ment via cognitive processes in artificial worlds is a great challenge for cognitive
science. Traditionally it has focused on the study of high level phenomena and has
considered that the underlying biological structure played a small if not insignifi-
cant role in the realization of the different cognitive tasks: perception, learning and
memory.

This way, our model could overcome some epistemological limitations of
current connectionist approaches of cognition. In such approaches, the cognitive
systems are not able to autonomously find solutions for certain tasks, nor to deter-
mine their goals by themselves or change the ones specified from the outside [37].
As a consequence, the (relative) self-organization occurring in the cognitive process
is external and not linked to the constructive self-organization of the very cognitive
system. In our opinion, the root of this unsatisfactory situation lies in the fact that
the cognitive process is not considered as related in its origin to the self-reproducti-
ve one [31], and this has some consequences in the debate on the problem of repre-
sentation in cognitive science.
• Critics of classical AI maintain that the knowledge an organism has of its envi-

ronment does not rely on a symbolic representation that can be specified from the
outside, but it is not easy to explain how structures that are functional for the orga-
nism can originate and accomplish an epistemic function in relation to the environ-
ment. Very often this problem has been taken so far as to the adoption of anti-repre-
sentationalist positions of different sorts [3], for example when it is defended that
most of behavior is based on sensorimotor automatisms that do not require internal
representational models. This case is usually argued defending either that knowled-
ge depends on the real or detailed structure of the environment whose perception
guides action without the need of forming internal structures [5], or that representa-
tion is the result of the structure of the cognitive organism itself and information
can be considered embodied in the internal constraints of the organization of the
subject, which can make sense out of certain perturbations coming from the outside
[401.

The first position reduces the problem of cognition to a mere reactivity towards
the environment and, even if it can lead to an interesting engineering strategy that
is biologically more realist than the one ofprevious AI, epistemologically it erases
the problem of cognition for there is no more cognitive subject left. The second one
underestimates the problem of cognition in a similar way, because the transforma-
tions undertaken by the subject in relation to the environment cannot be considered
as knowledge of anything, as there is no environment to be known.

A study of cognitive process grounded in the biological structures of organisms
like the one we have proposed here makes it possible to re-settle the problem of cog-
nition as a phenomenon of construction ofa cognitive system in the interaction with
its relevant environment, a process through which hierarchical representational
structures are created with a functional value associated to the biological survival of
the AO.
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Notes

In other worIcs (see, for example, 29[291, we have referred to the view based on the view based on

the Central Dogma of Molecular Biology as the Informational Paradigm and have argued that the

Autopoietic Paradigm should be considered as an alternative Paradigm in Theorical Biology.


