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1. Introduction

We work with real Banach spaces. We will denote by B(X), S(X) and
B[x, r] respectively the closed unit ball, the unit sphere and the closed ball
of radius r > 0 around x ∈ X. We will identify any element x ∈ X with its
canonical image in X∗∗. All subspaces we usually consider are norm closed.

Definition 1.1. (a) We say A ⊆ B(X∗) is a norming set for X if ‖x‖ =
sup{x∗(x) : x∗ ∈ A}, for all x ∈ X. A closed subspace F ⊆ X∗ is a norming
subspace if B(F ) is a norming set for X.

(b) A Banach space X is

(i) nicely smooth if X∗ contains no proper norming subspace;

(ii) has the Ball Generated Property (BGP) if every closed bounded convex
set in X is ball-generated, i.e., intersection of finite union of balls;

(iii) has Property (II) if every closed bounded convex set in X is the in-
tersection of closed convex hulls of finite union of balls, or equivalently,
w*-points of continuity (w*-PCs) of B(X∗) are norm dense in S(X∗)
[5];

(iv) has the Mazur Intersection Property (MIP) (or, Property (I))
if every closed bounded convex set in X is intersection of balls,
or equivalently, w*-denting points of B(X∗) are norm dense in
S(X∗) [8].
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Clearly, the MIP implies both Property (II) and the BGP. In this work, we
obtain a sufficient condition for the BGP, and show that Property (II) implies
the BGP, which, in turn, implies nice smoothness.

Notice that if a separable space is nicely smooth then it has separable dual.
(The converse is false, since a dual space is nicely smooth if and only if it is
reflexive.) It follows that if nice smoothness was inherited by subspaces, a
nicely smooth space would necessarily be Asplund. However, recent work of
Jiménez Sevilla and Moreno [15] shows that this is not true. More precisely,
they showed that any Banach space can be isomorphically embedded in a
Banach space with the MIP, a property stronger than nice smoothness.

In this work, we obtain some necessary and/or sufficient conditions for a
space to be nicely smooth, and show that they are all equivalent for separable
or Asplund spaces. These sharpen known results. We observe that every
equivalent renorming of a space is nicely smooth if and only if it is reflexive.
We also show that if X is nicely smooth, X ⊆ E ⊆ X∗∗ and E has the
finite-infinite intersection property (∞.f .IP) (Definition 2.15), then E = X∗∗.
In particular, X is nicely smooth with ∞.f .IP if and only if X is reflexive.
Coming to stability results, we show that the class of nicely smooth spaces
is stable under c0 and `p sums (1 < p < ∞) and also under finite `1 sums.
We show that while nice smoothness is not a three space property, existence
of a nicely smooth renorming is a three space property. We show that the
Bochner Lp spaces (1 < p < ∞) are nicely smooth if and only if X is both
nicely smooth and Asplund. And for a compact Hausdorff space K, C(K, X)
is nicely smooth if and only if K is finite and X is nicely smooth. We also
study nice smoothness of certain operator and tensor product spaces.

2. Main Results

We record the following corollary of the proof of the Hahn-Banach Theorem
(see e.g., [18, Section 48]) for future use.

Lemma 2.1. Let X be a normed linear space and let Y be a subspace.
Suppose x0 /∈ Y and y∗ ∈ S(Y ∗). Then

sup{y∗(y)− ‖x0 − y‖ : y ∈ Y } ≤ inf{y∗(y) + ‖x0 − y‖ : y ∈ Y }

and α lies between these two numbers if and only if there exists a Hahn-Banach
(i.e., norm preserving) extension x∗ of y∗ with x∗(x0) = α.
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For a Banach space X, let us define

O(X) = {x∗∗ ∈ X∗∗ : ‖x∗∗ + x‖ ≥ ‖x‖ for all x ∈ X} .

And we have the following characterization:

Proposition 2.2. For a Banach space X, the following are equivalent:

(a) X is nicely smooth.

(b) For all x∗∗ ∈ X∗∗,
⋂

x∈X

B[x, ‖x∗∗ − x‖] = {x∗∗} .

(c) O(X) = {0}.
(d) For all nonzero x∗∗ ∈ X∗∗, there exists x∗ ∈ S(X∗) such that every

Hahn-Banach extension of x∗ to X∗∗ takes nonzero value at x∗∗.

(e) Every norming set A ⊆ B(X∗) separates points of X∗∗.

Proof. Equivalence of (a) and (b) is [12, Lemma 2.4].
(a) ⇔ (c) [10, Lemma I.1] shows that F is a norming subspace of X∗ if

and only if F⊥ ⊆ O(X). Hence the result.
(c) ⇔ (d) Each of the statements below is clearly equivalent to the next:

(i) x∗∗ ∈ O(X),

(ii) ‖x‖ ≤ ‖x∗∗ − x‖ for all x ∈ X,

(iii) for every x∗ ∈ S(X∗),

sup{x∗(x)− ‖x∗∗ − x‖ : x ∈ X} ≤ 0 ≤ inf{x∗(x) + ‖x∗∗ − x‖ : x ∈ X} ,

(iv) every x∗ ∈ S(X∗) has a Hahn-Banach extension x∗∗∗ with x∗∗∗(x∗∗) = 0
(Lemma 2.1).

Hence the result.
(a) ⇔ (e) Since any norming set spans a norming subspace, this is

clear.

We note a characterization of the BGP.
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Theorem 2.3. A Banach space X has the BGP if and only if for every
x∗ ∈ X∗ and ε > 0, there exists w*-slices S1, S2, . . . , Sn of B(X∗) such that
for any (x∗1, x

∗
2, . . . , x

∗
n) ∈ ∏n

i=1 Si, there are scalars a1, a2, . . . , an such that
‖x∗ −∑n

i=1 aix
∗
i ‖ ≤ ε.

Proof. Observe that X has the BGP if and only if every x∗ ∈ X∗ is ball-
continuous on B(X) [11, Theorem 8.3]. Now the result follows from the char-
acterization of such functionals obtained in [5, Theorem 2].

This leads to the following, more tractable sufficient condition for the BGP.

Definition 2.4. A point x∗0 in a convex set K ⊆ X∗ is called a w*-small
combination of slices (w*-SCS) point of K, if for every ε > 0, there exist
w*-slices S1, S2, . . . , Sn of K, and a convex combination S =

∑n
i=1 λiSi such

that x∗0 ∈ S and diam(S) < ε.

Proposition 2.5. If X∗ is the closed linear span of the w*-SCS points of
B(X∗), then X has the BGP.

Proof. Let x∗ ∈ X∗ and ε > 0. Since the set of w*-SCS points of
B(X∗) is symmetric and spans X∗, there exist w*-SCS points x∗1, x

∗
2, . . . , x

∗
n of

B(X∗), and positive scalars a1, a2, . . . , an such that ‖x∗ −∑n
i=1 aix

∗
i ‖ ≤ ε/2.

By definition of w*-SCS points, for each i = 1, 2, . . . , n, there exist w*-
slices Si1, Si2, . . . , Sini of B(X∗), and a convex combination Si =

∑ni
k=1 λikSik

such that x∗i ∈ Si and diam(Si) < ε/(2
∑n

i=1 ai). Now, for any (x∗ik) ∈∏n
i=1

∏ni
k=1 Sik,

∥∥∥∥∥x∗ −
n∑

i=1

ni∑

k=1

aiλikx
∗
ik

∥∥∥∥∥ ≤
∥∥∥∥∥x∗ −

n∑

i=1

aix
∗
i

∥∥∥∥∥ +
n∑

i=1

ai

∥∥∥∥∥x∗i −
n∑

k=1

λikx
∗
ik

∥∥∥∥∥

≤ ε/2 +
n∑

i=1

aidiam(Si) ≤ ε .

Hence by Theorem 2.3, X has the BGP.

Corollary 2.6. Property (II) implies the BGP, which, in turn, implies
nicely smooth.

Proof. Since X has Property (II), w*-PCs of B(X∗) are norm dense in
S(X∗), and a w*-PC is necessarily a w*-SCS point (this follows from Bour-
gain’s Lemma, see e.g., [17, Lemma 1.5]). Thus, Property (II) implies the
BGP.
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That the BGP implies nicely smooth is proved in [11, Theorem 8.3]. But
here is an elementary proof.

Let F be a norming subspace of X∗. Then B(X) is σ(X, F )-closed, so that
every ball-generated set is also σ(X, F )-closed. But if every closed bounded
convex set is σ(X,F )-closed, then F = X∗.

We now obtain a localization of [5, Theorem 3.1] and [9, Lemma 6].

Proposition 2.7. Let X be a Banach space. Let x∗0 ∈ S(X∗) and x∗∗0 ∈
X∗∗. The following are equivalent:

(a) every Hahn-Banach extension of x∗0 to X∗∗ takes the same value at x∗∗0 ;

(b) x∗∗0 , considered as a function on (B(X∗), w∗), is continuous at x∗0;

(c) sup{x∗0(x)− ‖x∗∗0 − x‖ : x ∈ X} = inf{x∗0(x) + ‖x∗∗0 − x‖ : x ∈ X};
(d) for any α ∈ R, if x∗∗0 (x∗0) 6= α, then there exists a ball B∗∗ in X∗∗ with

centre in X such that x∗∗0 ∈ B∗∗ and B∗∗ and x∗∗0 lies in the same open
half space determined by x∗0 and α.

Proof. (a) ⇔ (b) This is a natural localization of the proof of [13, Lemma
III.2.14]. We omit the details.

(a) ⇔ (c) Follows from Lemma 2.1.
(c)⇒ (d) Suppose x∗∗0 (x∗0) > α. By Lemma 2.1, inf{x∗0(x)+‖x∗∗0 −x‖ : x ∈

X} > α. By (c), it follows that sup{x∗0(x)−‖x∗∗0 −x‖ : x ∈ X} > α. So, there
exists x ∈ X such that x∗0(x) − ‖x∗∗0 − x‖ > α. Put B∗∗ = B∗∗[x, ‖x∗∗0 − x‖].
Clearly, x∗∗0 ∈ B∗∗, and inf x∗0(B

∗∗) = x∗0(x) − ‖x∗∗0 − x‖ > α. Similarly for
x∗∗0 (x∗0) < α.

(d) ⇒ (c) Suppose x∗∗0 (x∗0) > α. By (d), there exists a ball B∗∗ = B∗∗[x, r]
in X∗∗ such that x∗∗0 ∈ B∗∗ and inf x∗0(B

∗∗) > α. This implies ‖x∗∗0 − x‖ ≤ r
and inf x∗0(B

∗∗) = x∗0(x)−r > α. It follows that x∗0(x)−‖x∗∗0 −x‖ > α, whence
sup{x∗0(x) − ‖x∗∗0 − x‖ : x ∈ X} > α. Since α was arbitrary, it follows that
sup{x∗0(x)− ‖x∗∗0 − x‖ : x ∈ X} ≥ x∗∗0 (x∗0). Similarly, inf{x∗0(x) + ‖x∗∗0 − x‖ :
x ∈ X} ≤ x∗∗0 (x∗0). The result now follows from Lemma 2.1.

Corollary 2.8. [5, Theorem 3.1] For a Banach space X and f0 ∈ SX∗ ,
the following are equivalent:

(i) f0 is a w*-w PC of BX∗ ;

(ii) f0 has a unique Hahn-Banach extension in X∗∗∗;
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(iii) for any x∗∗0 ∈ X∗∗ and α ∈ R, if f0(x∗∗0 ) 6= α, then there exists a ball
B∗∗ in X∗∗ with centre in X such that x∗∗0 ∈ B∗∗ and B∗∗ and x∗∗0 lies
in the same open half space determined by f0 and α.

We now identify some necessary and some sufficient conditions for a space
to be nicely smooth.

Definition 2.9. For x ∈ S(X), let D(x) = {f ∈ S(X∗) : f(x) = 1}. The
set valued map D is called the duality map and any selection of D is called a
support mapping.

Theorem 2.10. For a Banach space X, consider the following statements:

(a) X∗ is the closed linear span of the w*-weak PCs of B(X∗).

(b) Any two distinct points in X∗∗ are separated by disjoint closed balls
having centre in X.

(b1) For every x∗∗ ∈ X∗∗, the points of w*-continuity of x∗∗ in S(X∗) sepa-
rates points of X∗∗.

(b2) For every nonzero x∗∗ ∈ X∗∗, there is a point of w*-continuity x∗ ∈
S(X∗) of x∗∗ such that x∗∗(x∗) 6= 0.

(c) X is nicely smooth.

(d) For every norm dense set A ⊆ S(X) and every support mapping φ, the
set φ(A) separates points of X∗∗.

Then (a)⇒ (b)⇒ (c)⇒ (d) and (a)⇒ (b1)⇒ (b2)⇒ (c)⇒ (d). Moreover, if
X is an Asplund space (or, separable), all the above conditions are equivalent,
and equivalent to each of the following:

(e) X∗ is the closed linear span of the w*-strongly exposed points of B(X∗).

(f) X∗ is the closed linear span of the w*-denting points of B(X∗).

(g) X∗ is the closed linear span of the w*-SCS points of B(X∗).

(h) X has the BGP.

Proof. (a) ⇒ (b) Let x∗∗0 6= y∗∗0 . By (a), there exists a w*-w PC x∗0 ∈ BX∗ ,
such that (x∗∗0 − y∗∗0 )(x∗0) > 0. Let α ∈ R be such that

x∗∗0 (x∗0) > α > y∗∗0 (x∗0) .
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Now applying Corollary 2.8, it follows that there exists a ball B∗∗
1 with centre

in X with x∗∗0 ∈ B∗∗
1 and inf x∗0(B

∗∗
1 ) > α. And there exists a ball B∗∗

2 with
centre in X such that y∗∗0 ∈ B∗∗

2 and supx∗0(B
∗∗
2 ) < α. Clearly, B∗∗

1 ∩B∗∗
2 = ∅.

(b) ⇒ (c) Clearly, (b) implies condition (b) of Proposition 2.2.
(a) ⇒ (b1) ⇒ (b2) follows from definitions.
(b2) ⇒ (c) By (b2), for every nonzero x∗∗ ∈ X∗∗, there is a point of

w*-continuity x∗ ∈ S(X∗) of x∗∗ such that x∗∗(x∗) 6= 0. By Proposition 2.7,
every Hahn-Banach extension of x∗ to X∗∗ takes the same value at x∗∗. The
result now follows from Proposition 2.2(d).

(c) ⇒ (d) We simply observe that φ(A) is a norming set for X.
Clearly, even without X being Asplund, (e) ⇒ (f) ⇒ (g) ⇒ (h) ⇒ (c),

and (f) ⇒ (a). Now if X is Asplund (if X is separable, (d) implies X∗ is
separable), then for A = {x ∈ S(X) : the norm is Fréchet differentiable at x},
and any support mapping φ, φ(A) = {w*-strongly exposed points of B(X∗)}.
Hence, (d) ⇒ (e).

Remark 2.11. (a) If in the first part, we simply assume that the w*-weak
PCs of B(X∗) form a norming set, then (a) – (c) are equivalent. And under
the stronger assumption that the set

{x ∈ S(X) : D(x) intersects the w*-weak PCs of B(X∗)}

is dense in S(X), (a) – (d) are equivalent. This happens if X is Asplund.
Can any of the implications be reversed in general?
(b) In [9, Lemma 5], Godefroy proves (a) ⇒ (c) by actually showing

(b1) ⇒ (c). (b2) is a weaker sufficient condition.
(c) In [4, Theorem 7], it is observed that (f) ⇒ (h). (g) is a weaker

sufficient condition.

Proposition 2.12. If every separable subspace of X is nicely smooth,
then X has the BGP, and hence, is nicely smooth.

Proof. Since for separable spaces nice smoothness is equivalent to the BGP,
the result follows from the characterization of ball-continuous functionals ob-
tained in [11, Theorem 2.4 and 2.5].

Theorem 2.13. A Banach space X is reflexive if and only if every equiv-
alent renorming is nicely smooth.



34 p. bandyopadhyay, s. basu

Proof. The converse being trivial, suppose X is not reflexive. Let x∗∗ ∈
X∗∗ \X and let F = {x∗ ∈ X∗ : x∗∗(x∗) = 0}. Define a new norm on X by

‖x‖1 = sup{x∗(x) : x∗ ∈ B(F )} for x ∈ X .

It follows from the proof of [11, Theorem 8.2] that ‖ · ‖1 is an equivalent norm
on X with F as a proper norming subspace.

Remark 2.14. (a) In [14] the authors showed that X is reflexive if and
only if for any equivalent norm, X is Hahn-Banach smooth and has ANP-III.
This was strengthened in [3, Corollary 2.5] to just Hahn-Banach smooth. The
above is an even stronger result with even easier proof.

(b) In [11, Theorem 8.1 and 8.2], it is shown that a subset W ⊆ X is ball-
generated for every equivalent renorming if and only if it is weakly compact.
The global analogue of this local result would read: every equivalent renorming
of X has the BGP if and only if X is reflexive. Thus in the global version,
our result is somewhat stronger, except for separable spaces, though, as the
proof shows, it is implicit in [11, Theorem 8.2].

Definition 2.15. A Banach space X is said to have the finite-infinite
intersection property (∞.f .IP) if every family of closed balls in X with empty
intersection contains a finite subfamily with empty intersection. It is well
known that all dual spaces and their 1-complemented subspaces have ∞.f .IP

Theorem 2.16. X is nicely smooth with ∞.f .IP if and only if X is re-
flexive.

Proof. Sufficiency is obvious.
For necessity, recall from [11, Theorem 2.8] that X has ∞.f .IP if and only

if X∗∗ = X +O(X). Since X is nicely smooth, O(X) = {0} and consequently,
X is reflexive.

Remark 2.17. Since Hahn-Banach smooth spaces (respectively, spaces
with Property (II)) are nicely smooth, [3, Theorem 2.11] (respectively, [3,
Theorem 3.4]) follows as an immediate corollary with a simpler proof. In-
deed, we have stronger results.
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Theorem 2.18. If X is nicely smooth, X ⊆ E ⊆ X∗∗ and E has the
∞.f .IP, then E = X∗∗.

Proof. Using the Principle of Local Reflexivity and w*-compactness of dual
balls, it is easy to see that E has ∞.f .IP if and only if any family of closed
balls with centres in E that intersects in E∗∗ also intersects in E.

Now if X ⊆ E ⊂ X∗∗, let x∗∗0 ∈ X∗∗ \ E. Consider the family

B = {B[x, ‖x∗∗0 − x‖] : x ∈ X} .

Clearly, they intersect at x∗∗0 ∈ X∗∗ ⊆ E∗∗. And since X is nicely smooth, by
Proposition 2.2 (b), the intersection in X∗∗ is singleton {x∗∗0 }. But then, this
family cannot intersect in E.

Remark 2.19. Can one strengthen this to show that if X is nicely smooth,
E has ∞.f .IP and X ⊆ E, then X∗∗ ⊆ E? Recall that c0 is nicely smooth,
and it is known [16] that if c0 ⊆ E and E is 1-complemented in a dual space,
then `∞ is isomorphic to a subspace of E. Our question is isometric.

In the special case of X = c0, we can prove:

Proposition 2.20. If c0 ⊆ E and E has ∞.f .IP, then `∞ is a quotient
of E.

Proof. Since c0 ⊆ E, `∞ ⊆ E∗∗. Let F = E ∩ `∞. Since `∞ is “injective”,
let T : E → `∞ be the norm preserving extension of the inclusion map from
F to `∞. Note that T is identity on c0. We will prove that T is onto.

Let x∗∗0 ∈ `∞. Let

B = {B[x, ‖x∗∗0 − x‖] : x ∈ c0} .

As before, this family intersects in E∗∗, and hence in E. And since ‖T‖ = 1,
if e ∈ E belongs to this intersection, so does Te. But the intersection in `∞
is singleton {x∗∗0 }, since c0 is nicely smooth. Thus, Te = x∗∗0 .

And in general, we have the result under stronger assumptions on both X
and E :

Proposition 2.21. If X has Property (II), E is a dual space and X ⊆ E,
then X∗∗ ⊆ E.
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Proof. Let E = Y ∗. Let i : X → Y ∗ be the inclusion map. Then i∗ :
Y ∗∗ → X∗ is onto. We will show that i∗|Y : Y → X∗ is onto. It will follow
that X∗ is a quotient of Y and hence, X∗∗ is a subspace of Y ∗ = E.

To show that i∗|Y : Y → X∗ is onto, it suffices to check that i∗(B(Y )) =
B(X∗). Since X has Property (II), it suffices to check that any w*-PC x∗ ∈
B(X∗) belongs to i∗(B(Y )). Let Λ ∈ Y ∗∗ be a norm preserving extension
of x∗ to Y ∗. Let {yα} ⊆ B(Y ) such that yα → Λ in the w*-topology of
B(Y ∗∗). Then yα|X → x∗ in the w*-topology of B(X∗). Since x∗ is a w*-PC,
yα|X → x∗ in norm, i.e., x∗ ∈ i∗(B(Y )).

3. Stability Results

Theorem 3.1. Let {Xα}α∈Γ be a family of Banach spaces. Then X =⊕
`p

Xα (1 < p < ∞) is nicely smooth if and only if for each α ∈ Γ, Xα is
nicely smooth.

Proof. We show that O(X) = {0} if and only if for every α ∈ Γ,
O(Xα) = {0}.

Now, X =
⊕

`p
Xα implies X∗∗ =

⊕
`p

X∗∗
α , and x∗∗ ∈ O(X) if and only if

‖x∗∗ + x‖p ≥ ‖x‖p for all x ∈ X

⇐⇒
∑

α∈Γ

‖x∗∗α + xα‖p ≥
∑

α∈Γ

‖xα‖p for all x ∈ X .

It is immediate that if for every α ∈ Γ, x∗∗α ∈ O(Xα), then x∗∗ ∈ O(X).
And hence, O(X) = {0} implies for every α ∈ Γ, O(Xα) = {0}.

Conversely, suppose for every α ∈ Γ, O(Xα) = {0}. Let x∗∗ ∈ X∗∗ \ {0}.
Let α0 ∈ Γ be such that x∗∗α0

6= 0. Then x∗∗α0
/∈ O(Xα0). Hence, there exists

xα0 ∈ Xα0 such that ‖x∗∗α0
+ xα0‖ < ‖xα0‖. Choose ε > 0 such that ‖x∗∗α0

+
xα0‖p + ε < ‖xα0‖p. Then there exists a finite Γ0 ⊆ {α ∈ Γ : x∗∗α 6= 0} such
that α0 ∈ Γ0 and

∑
α/∈Γ0

‖x∗∗α ‖p < ε. If α ∈ Γ0, then x∗∗α /∈ O(Xα). Hence,
there exists xα ∈ Xα such that ‖x∗∗α + xα‖ < ‖xα‖. Define y ∈ X by

yα =
{

xα if α ∈ Γ0

0 otherwise .
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Then we have,

‖x∗∗ + y‖p
p =

∑

α∈Γ

‖x∗∗α + ya‖p

=
∑
α∈Γ0
α6=α0

‖x∗∗α + xa‖p + ‖x∗∗α0
+ xα0‖p +

∑

α/∈Γ0

‖x∗∗α ‖p

<
∑
α∈Γ0
α6=α0

‖xa‖p + ‖x∗∗α0
+ xα0‖p + ε

<
∑

α∈Γ0

‖xα‖p = ‖y‖p
p

which shows that x∗∗ /∈ O(X).

Remark 3.2. The above argument also works for finite `1 (or `∞) sums
and shows that if X is the `1 (or `∞) sum of X1, X2, . . . , Xn, then X is nicely
smooth if and only if for every coordinate space Xi is so.

However, if Γ is infinite, X =
⊕

`1
Xα is never nicely smooth as

⊕
c0

X∗
α

is a proper norming subspace of X∗ =
⊕

`∞ X∗
α.

A similar argument also shows that nice smoothness is not stable under
infinite `∞ sums.

We now show that nice smoothness is stable under c0 sums.

Theorem 3.3. Let {Xα}α∈Γ be a family of Banach spaces. Then X =⊕
c0

Xα is nicely smooth if and only if for each α ∈ Γ, Xα is nicely smooth.

Proof. As before, we will show that O(X) = {0} if and only if for every
α ∈ Γ, O(Xα) = {0}.

Necessity is similar to that in Theorem 3.1.
Conversely, suppose for every α ∈ Γ, O(Xα) = {0}. And let x∗∗ ∈ X∗∗ \

{0}. Let α0 ∈ Γ be such that x∗∗α0
6= 0. Then x∗∗α0

/∈ O(Xα0). Hence, there
exists xα0 ∈ Xα0 such that ‖x∗∗α0

+ xα0‖ < ‖xα0‖. The triangle inequality
shows that for any λ ≥ 1, ‖x∗∗α0

+ λxα0‖ < ‖λxα0‖. Thus, replacing xα0 by
λxα0 for some λ ≥ 1, if necessary, we may assume ‖xα0‖ > ‖x∗∗‖∞.

Define y ∈ X by

yα =
{

xα0 if α = α0

0 otherwise .
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Then,

‖x∗∗ + y‖∞ = max{sup{‖x∗∗α ‖α 6=α0}, ‖x∗∗α0
+ xα0‖} < ‖xα0‖ = ‖y‖∞

whence x∗∗ /∈ O(X).

Corollary 3.4. Nice smoothness is not a three space property.

Proof. Let X = c, the space of all convergent sequences with the sup norm.
Recall that c∗ = `1 and that `1 acts on c as

〈a, x〉 = a0 limxn +
∞∑

n=0

an+1xn, a = {an}∞n=0 ∈ `1, x = {xn}∞n=0 ∈ c .

It follows that {a ∈ `1 : a0 = 0} is a proper norming subspace for c.
Put Y = c0. Then, by Theorem 3.3, Y is nicely smooth and dim(X/Y )

= 1, so that X/Y is also nicely smooth. But, by above, X is not nicely
smooth.

Remark 3.5. Since nice smoothness is not an isomorphic property, perhaps
a more pertinent question here would be whether having a nicely smooth
renorming is a three space property. The answer in this case is yes.

Theorem 3.6. Let X be a Banach space. Let Y be a subspace of X. If
both Y and X/Y have a nicely smooth renorming, then so does X.

Proof. Observe that a Banach space X has a nicely smooth renorming
if and only if for any proper subspace M ⊆ X∗, the norm interior of the
w*-closure of its unit ball is empty.

Now suppose Y and X/Y both have a nicely smooth renorming. Suppose
there exists a subspace M ⊆ X∗ such that B(M)

w∗
has nonempty interior,

i.e., there exists m ∈ M and ε > 0 such that B(m, ε) ⊆ B(M)
w∗

. We will
show that M is not proper.

Consider the inclusion map i : Y → X. Then i∗ : X∗ → Y ∗ is the natural
quotient map and is w*-continuous. It follows that i∗(B(m, ε)) ⊆ B(i∗(M))

w∗
.

Therefore, i∗(M) ⊆ Y ∗ is a subspace the w*-closure of whose unit ball has
nonempty interior. Because of our assumption on Y , we have i∗(M) = Y ∗,
and hence, X∗ = M + Y ⊥.

Put N = M ∩ Y ⊥. The natural isomorphism between X∗/M and Y ⊥/N

shows that the relative norm interior of B(N)
w∗

is also nonempty. Since
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Y ⊥ = (X/Y )∗, our assumption on X/Y implies that M ∩ Y ⊥ = Y ⊥, i.e., M
contains Y ⊥.

Thus, X∗ = M + Y ⊥ = M .

Remark 3.7. Since finite `1 sums of infinite dimensional Banach spaces fail
Property (II) [3, Proposition 3.7], the space c0

⊕
`1

c0 produces an example
of a nicely smooth space, which being Asplund, also has the BGP, but lacks
Property (II).

Recall that a closed subspace M ⊆ X is said to be an M -summand if there
is a projection P on X with range M such that ‖x‖ = max{‖Px‖, ‖x−Px‖}
for all x ∈ X.

Proposition 3.8. The BGP is inherited by M -summands.

Proof. We follow the arguments of [1, Proposition 2].
Let Y be an M -summand in X with P the corresponding projection. Let

K be a closed bounded convex set in Y . Since X has the BGP,

K =
⋂

i∈I

ni⋃

k=1

B[xik, rik] ,

where for each i and k, K ∩B[xik, rik] 6= ∅.
Given i and k, let x ∈ K ∩ B[xik, rik] ⊆ Y , then ‖x − xik‖ ≤ rik, so that

‖xik − Pxik‖ = ‖(x− xik)− P (x− xik)‖ ≤ ‖x− xik‖ ≤ rik.

Claim : K =
⋂

i∈I

ni⋃

k=1

BY [Pxik, rik]. (∗)

Since ‖P‖ = 1, we have

K = P (K) ⊆ P (
⋂

i∈I

ni⋃

k=1

B[xik, rik]) ⊆
⋂

i∈I

ni⋃

k=1

BY [Pxik, rik] .

Conversely, if x is in the RHS of (∗), for all i ∈ I, there exists k such that
‖x − xik‖ = max{‖x − Pxik‖, ‖xik − Pxik‖} ≤ rik, as ‖xik − Pxik‖ ≤ rik.

Thus, x ∈
⋂

i∈I

ni⋃

k=1

B[xik, rik] = K.

Theorem 3.9. Let X be a Banach space, µ denote the Lebesgue measure
on [0, 1] and 1 < p < ∞. The following are equivalent:
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(a) Lp(µ,X) has BGP.

(b) Lp(µ,X) is nicely smooth.

(c) X is nicely smooth and Asplund.

Proof. Clearly (a) ⇒ (b).
(b) ⇒ (c) Since Lq(µ,X∗) is always a norming subspace of Lp(µ,X)∗,

1
p + 1

q = 1, and they coincide if and only if X∗ has the RNP with respect to
µ [7, Chapter IV], (b) implies X∗ has the RNP, or, X is Asplund. Also for
any norming subspace F ⊆ X∗, Lq(µ, F ) is a norming subspace of Lp(µ,X)∗.
Hence, (b) also implies X is nicely smooth.

(c) ⇒ (a) If X is nicely smooth and Asplund, by Theorem 2.10, X∗ is the
closed linear span of the w*-denting points of B(X∗). And it suffices to show
that Lp(µ,X)∗ = Lq(µ,X∗) is the closed linear span of the w*-denting points
of B(Lq(µ,X∗)).

Let F =
∑n

i=1 αix
∗
i χAi with x∗i ∈ S(X∗) for all i = 1, 2, . . . , n be a simple

function in S(Lq(µ,X∗)). Let ε > 0. Now, for each i = 1, 2, . . . , n, there
exists λik ∈ R, and x∗ik, w*-denting points of B(X∗), k = 1, 2, . . . , N , such
that ‖x∗i −

∑N
k=1 λikx

∗
ik‖ < ε. For k = 1, 2, . . . , N . Define

Fk =
n∑

i=1

αiλikx
∗
ikχAi .

Since each x∗ik is a w*-denting point of B(X∗), for each k, Fk/‖Fk‖ is a w*-
denting point of B(Lq(µ,X∗)) [1, Lemma 10]. And,

∥∥∥∥∥F −
N∑

k=1

Fk

∥∥∥∥∥

q

q

=

∥∥∥∥∥
n∑

i=1

αix
∗
i χAi −

N∑

k=1

n∑

i=1

αiλikx
∗
ikχAi

∥∥∥∥∥

q

q

=
n∑

i=1

|αi|q
∥∥∥∥∥x∗i −

N∑

k=1

λikx
∗
ik

∥∥∥∥∥

q

µ(Ai)

<
n∑

i=1

εq|αi|qµ(Ai) ≤ εq‖F‖q
q ≤ ε .

The analogues of the following results for Property (II) were obtained
in [3].

Proposition 3.10. Let K be a compact Hausdorff space, then C(K, X)
is nicely smooth if and only if K is finite and X is nicely smooth.
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Proof. For a compact Hausdorff space K and a Banach space X, the set

A = {δ(k)⊗ x∗ : k ∈ K, x∗ ∈ S(X∗)} ⊆ B(C(K, X)∗)

is a norming set for C(K,X). So, if C(K, X) is nicely smooth, C(K, X)∗ =
span(A). It follows that K admits no nonatomic measure, whence K is scat-
tered. Now, let K1 denote the set of isolated points of K. Then K1 is dense
in K, so, the set

A1 = {δ(k)⊗ x∗ : k ∈ K1, x∗ ∈ S(X∗)}
is also norming. Thus, C(K, X)∗ = span(A1). But if k ∈ K \K1, then for any
x∗ ∈ S(X∗), δ(k)⊗x∗ /∈ span(A1). Hence, K = K1, whence K must be finite.
And if k0 ∈ K1, x → χ{k0}x is an isometric embedding of X into C(K,X) as
an M -summand. Thus, X is nicely smooth.

The converse is immediate from Theorem 3.3.

Remark 3.11. (a) It is immediate that for C(K) spaces Property (II),
the BGP and nice smoothness (indeed, any of the conditions of Theorem 2.10)
are equivalent, and are equivalent to reflexivity.

(b) It follows from the above and [3, Theorem 3.9] that C(K, X) has
Property (II) if and only if K is finite and X has Property (II). Only the
special case of C(K) is noted in [3].

Proposition 3.12. Let X be a Banach space such that there exists a
bounded net {Kα} of compact operators such that Kα −→ Id in the weak
operator topology. If L(X) is nicely smooth, then X is finite dimensional.

Proof. For x ∈ X, x∗ ∈ X∗, let x ⊗ x∗ denote the functional defined on
L(X) by (x⊗x∗)(T ) = x∗(T (x)). Then ‖x⊗x∗‖ = ‖x‖‖x∗‖. And, since ‖T‖ =
sup{x∗(T (x) : ‖x∗‖ = 1, ‖x‖ = 1} = sup{(x⊗ x∗)(T ) : ‖x∗‖ = 1, ‖x‖ = 1}, it
follows that A = {x ⊗ x∗ : ‖x∗‖ = 1, ‖x‖ = 1} is a norming set, and hence,
L(X)∗ = span(A).

Claim : Kα −→ Id weakly.
Since {Kα} is bounded, it suffices to check that Kα −→ Id on A, i.e., to

check x∗(Kα(x)) −→ x∗(x) for all ‖x‖ = 1, ‖x∗‖ = 1. But, Kα(x) −→ x
weakly, hence the claim.

Thus, Id is a compact operator, so that X is finite dimensional.

Proposition 3.13. For a compact Hausdorff space K, L(X,C(K)) is
nicely smooth if and only if K(X, C(K)) is nicely smooth if and only if X
is reflexive and K is finite.
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Proof. Suppose L(X,C(K)) is nicely smooth. By definition of the norm,
A = {δ(k) ⊗ x : x ∈ B(X), k ∈ K} is a norming set for L(X,C(K)), and
hence, L(X,C(K))∗ = span(A). It follows that L(X,C(K)) = K(X, C(K))
and that K(X, C(K)) is nicely smooth.

Now, from the easily established identification, K(X, C(K)) = C(K, X∗)
and Proposition 3.10, it follows that K(X,C(K)) is nicely smooth if and only
if K is finite and X∗ is nicely smooth, which, in turn, is equivalent to K is
finite and X is reflexive.

Also, if K is finite, C(K) is finite dimensional, so that L(X, C(K)) =
K(X, C(K)). This completes the proof.

Coming to general tensor product spaces, the proof of [12, Theorem 5.2]
combined with Theorem 2.10 actually shows that:

Theorem 3.14. If X, Y are nicely smooth Asplund spaces, then X ⊗ε Y
is nicely smooth.

We prove the converse for general Banach spaces.

Theorem 3.15. Let X, Y be Banach spaces such that X ⊗ε Y is nicely
smooth. Then both X and Y are nicely smooth.

Proof. Let M and N be norming subspaces of X∗ and Y ∗ respectively.
Then B(M) and B(N) are norming sets for X and Y respectively. Hence,
cow∗(B(M)) = B(X∗) and cow∗(B(N)) = B(Y ∗). Thus

B(X∗)⊗B(Y ∗) = cow∗(B(M))⊗ cow∗(B(N)) .

By definition of the injective norm, B(X∗) ⊗ B(Y ∗) is a norming set for
X ⊗ε Y . Thus it follows that co(B(M)) ⊗ co(B(N)) is a norming set for
X ⊗ε Y . Since co(B(M) ⊗ B(N)) ⊇ co(B(M)) ⊗ co(B(N)), it follows that
co(B(M)⊗B(N)) and hence B(M)⊗B(N) is a norming set for X⊗ε Y . And
since this space is nicely smooth,

(X ⊗ε Y )∗ = span(B(M)⊗B(N)) .

Suppose x∗ ∈ X∗, then for any y∗ ∈ S(Y ∗) and ε > 0, there exist fi ∈
B(M), ei ∈ B(N) and λi ∈ R such that

‖x∗ ⊗ y∗ −
n∑

i=1

λifi ⊗ ei‖ < ε .
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Applying to elementary tensors, this implies
∣∣∣∣∣(x

∗ ⊗ y∗ −
n∑

i=1

λifi ⊗ ei)(x⊗ y)

∣∣∣∣∣ < ε‖x‖‖y‖ for all x ∈ X, y ∈ Y

=⇒
∣∣∣∣∣x
∗(x)y∗(y)−

n∑

i=1

λifi(x)ei(y)

∣∣∣∣∣ < ε‖x‖‖y‖ for all x ∈ X, y ∈ Y

=⇒
∥∥∥∥∥x∗(x)y∗ −

n∑

i=1

λifi(x)ei

∥∥∥∥∥ < ε‖x‖ for all x ∈ X .

Let x ∈ E =
⋂

kerfi. Then, ‖x∗(x)y∗‖ < ε‖x‖, i.e., |x∗(x)| < ε‖x‖. That
is, ‖x∗|E‖ < ε. This implies d(x∗, span{fi}) < ε.

It follows that x∗ ∈ M and hence X is nicely smooth. Similarly for Y .

It seems difficult to obtain analogues of Theorems 3.14 and 3.15 for the
projective tensor product. However, we have the following

Proposition 3.16. Suppose X, Y are Banach spaces such that X∗ has
the approximation property and L(X, Y ∗) = K(X, Y ∗), i.e., any bounded
linear operator from X to Y ∗ is compact. Then the following are equivalent:

(a) K(X,Y ∗) is nicely smooth.

(b) X, Y are reflexive (and hence nicely smooth).

(c) X ⊗π Y is reflexive (and hence nicely smooth).

Proof. (a) ⇒ (b) Since X∗ has the approximation property,

K(X,Y ∗) = X∗ ⊗ε Y ∗

and it follows from Theorem 3.15 that X∗ and Y ∗ are nicely smooth, and
therefore, X and Y are reflexive.

(b) ⇒ (c) This is a well-known result of Holub (see [7]).
(c) ⇒ (a) X and Y being closed subspaces of the reflexive space X ⊗π Y

are themselves reflexive and from

K(X,Y ∗)∗ = (X ⊗π Y )∗∗ = X ⊗π Y

it follows that K(X,Y ∗) is reflexive, and hence, nicely smooth.
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