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1. INTRODUCTION

An important issue in multi-attribute decision making consists of identify-
ing the set of efficient solutions. The importance of this set is that the decision
maker (DM) can restrict his attention to it, discarding all other solutions, be-
cause a nonefficient solution can never be optimal. Several methods have been
developed to aid a DM in generating all or representative subsets of efficient
solutions, [1] and [4], or to approximate it [7]. However, most of these methods
may be hard to apply to nonlinear problems being very difficult in that case
to generate the efficient set.

In this paper, we propose a characterization of the efficient set for im-
precise vector value functions, which intends to facilitate the checking of the
efficiency. Our framework will be the multi-attribute decision making prob-
lem under certainty with a set of alternatives structured as vectors of specific
levels of achievement against a number of factors z = (21,...,2,) € Z C R".
We assume that we have to maximize each z;, and there is partial information
on DM’s preferences in the sense that we are not able to assess a scalar value
function, [2] and [3], but a vector value function [8] v = (vy,...,v,) : Z — RP.
which represents a strict partial order > (irreflexive, transitive and asymmet-
ric) in Z, such that for any z,2' € Z

2=z 0(2) >v(z)

where v(2') > v(z) if and only if v;(2')2v;(2) for all i = 1,...,p and there is
j € {1,...,p} such that v;(2') > v;(2).
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This vector function may be seen as a proxy for an underlying (scalar)
value function. It seems appropriate in the hierarchical structures which of-
ten exhibits well defined multi-attribute problems, where there is a natural
grouping of attributes in the lowest-level of the hierarchy.

Given a vector value function v, we state the vector optimization problem
as

max v(2)

and we have that a point z € Z is a vector value efficient solution if there exist
no z' € Z such that z' = z.

This set of solutions, called vector value efficient set and denoted £(Z,v), is
where the DM should make his choice. Now, we may state our multi-attribute
problem as: “Given Z and v, find £(Z,v)”.

If £(Z,v) = {z}, i.e., the vector value efficient set has a unique solution,
then it can be considered as a solution of the decision problem. However, this
is not the case in most real problems, as £(Z,v) has many points and thus,
the generation of such set cannot be considered as the solution of a decision
problem. Then, based on the characterization of the value efficient set we
shall provide a method, valid for nonlinear problems, to interactively reduce
the value efficient set and alleviate the solution process.

The paper includes four more sections. In the second section we provide the
relation of the value efficiency with an extended vector value function concept
and its characterization. In the third section we study the reduction of the
value efficient set from increasingly more precise vector value functions. The
four section presents the outline of an algorithm for solving discrete problems
which shows an interactive method based on the above reduction. Finally,
some conclusions are considered in the last section.

2. VALUE EFFICIENCY AND ITS CHARACTERIZATION

Given our partial information problem by a vector value function v : Z —
RP, it leads us to consider £(Z,v). Consider an additive aggregation with
weights or scaling constants k = (ky,...,k,) as a valid approximation [9],
which has the form

v¥(2) = (kv)(2) = Z:kivi(z) .

Suppose there is partial information about the scaling constants £ in the
form of constraints set K,, which is next introduced. Let K° = RY , which is
a constant and convex cone.
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DEFINITION 1. Let K D K° be a constant, convex, closed and acute cone
which we call information cone, and KF its positive polar. The set K, =

K* NS, is called information set associated to K, where S, is the simplex on
RP.

We shall assume that K7 is defined by a polyhedral cone, and it will be
possible to determine its set of generators [10], which normalized in S, will be
denoted K, = G{k',...,k%}. Given a vector value function v and an infor-
mation set K,, the class of value functions consistent with such information is
denoted by ¥V = V(K,), and defined as

V(K,) = {v*:v* = kv, k€ K,}.

Now, we introduce the ordering: “Given z,2' € Z, 2’ =, z if and only if
v*(2') Z v*(z) for any k € K, and v* (2') > v*'(2) for at least one k' € K,”. Tt
is clear that >, is a strict partial order from which we can define the notion
of value efficient solution and the corresponding value efficient set will be

E(Z,V)={2€ Z:A2 € Z such that 2’ =, z}.

Next, based on the information set, we extend the concept of vector value
function

DEFINITION 2. For a vector value function v and an information set K, =
G{k',...,k%}, the function v¥ = (k'v,...,k%) with domain in Z, is called
vector value function associated to K,.

Thus, we shall have

2 -k 2 e vR(2) > " (2)
where v (2') > v¥(2) if and only if (k'v)(2') 2 (k'v)(z) for all 1 = 1,...,q
and there is j € {1,...,q} such that (kiv)(z') > (k’v)(z). In analogous
way, we shall have the vector value efficient set for v¥, denoted £(Z,v").
Note that, if we have null information over the scaling constants, i.e., K? =
G{(1,0,...,0),...,(0,...,0,1)}, it will be v = v¥°. On other hand, if K is a
halfspace, then K, = {k} and v® = kv will be a scalar value function.

Now, we shall provide a characterization that will give a practical way to
obtain £(Z,V).

THEOREM 1. Let v : Z — RP be a vector value function and K, =
G{k',...,k%} an information set, then

£(2,V) = £(2,v%).
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This theorem allow us to use the vector function v¥ rather than the infinite
class V(K,), to show the value efficiency of a solution. Note that in the special
case of the null information set about the scaling constants, i.e., K, = K?, we
have £(Z,V) = £(Z,v). Next, we consider the solutions which maximizes v*
for some k € K,.

DEeFINITION 3. For a fixed k € K,, the set

O(Z,v*) = {z' €Z: k() = maka(z)}

z2€Z
is called value optimization set.

This set will be well defined if, for example, we assume that Z is compact
and the functions v; are continuous. Next result states that the solutions
which maximize the function v* for some k, are vector value efficient solutions
(analogous results are in [12] and [13]).

THEOREM 2. Let v : Z — RP be a vector value function and K, =
G{k',...,k7} an information set, then

U 0z*) cezv™).
k€int(K,)

3. INTERACTIVE REDUCTION OF THE SET OF SOLUTIONS

We shall consider the progressive reduction of the value efficient set based
on an increasingly more precise vector value function, given through informa-
tion sets over the DM’s preferences.

ProPOSITION 1. Given a vector value function v and two information sets
K,, K| such that K. C int(K,), then

E(Z,v%") C £(Z,v5).

THEOREM 3. Let v a vector value function and {K} be a decreasing
sequence of information sets such that K} C int(K?) and K* | p whenn — oo,
then z € O(Z, pv).

To obtain the information sets we may generate constraints through pair-
wise comparisons of solutions. This has been made in [14], [6] and [11]. The
procedure will be to compare pairs of solutions z, 2’ and if the DM states a
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strict preference between them, we shall have a constraint which will lead to
a new information set, i.e., if DM prefers z’ to z then, add to the information
set (kv)(2') > (kv)(z). We do not write constraints for any of the indifference
or I do not know responses.

PROPOSITION 2. Let 2,z € Z, v a vector value function and let K, =
G{k',...,k%} be an information set. If the DM reveals that z is at most as
preferred as z', we generate the information set

K, = {k = Zaiki : (kv)(2') 2 (kv)(2) with (ay,...,q,) € Sq}

i=1
where K' # () and if K! C int(K,), then

E(Z,v%') C £(Z,v%).

4. AN INTERACTIVE ALGORITHM FOR DISCRETE PROBLEMS

The above results are valid for general problems, however, to show the
method, we outline an algorithm to solve discrete problems, whose aim is
the interactive reduction of the value efficient set and is based on pairwise
comparisons to derive successive information sets. This algorithm is developed
in an interactive framework [5] which intends to incorporate the DM as an
active element of the decision aid process.

The algorithm can be divided in three phases. The first one, includes
the initialization and the generation of vector value efficient set &£(Z,v¥X")
(which is computationally easy for discrete problems). The second phase,
checks for optimality. If the DM is satisfied with a solution z € £(Z,v%"),
stop. Otherwise, go to the third phase, which includes the generation of a
new information set (proposition 2) and the reduction of the set of solutions
E(Z,vX"), to start again the process.

5. CONCLUSIONS

We have considered the multi-attribute decision making problem under
partial information over the preferences, which are modeled by a vector value
function. We extend the notion of efficiency to this problem and we propose
its characterization based on more precise vector value functions with scaling
constants in a polyhedral set. We provide a procedure to interactively reduce
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the value efficient set for discrete problems, which is based on revealed pref-
erences over pairwise comparisons expressed as constraints over the scaling
constants. This method may be an important aid for a DM in the process of
reaching a final solution.
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