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INTRODUCTION

Let T: A— X and S : B — Y be continuous operators acting between Banach
spaces. If a denotes a tensornorm defined on a tensor product space, i.e., a norm
satisfying (T @ S: A@B - X @Y)<a(T: A— X)a(S: B —Y), then the
continuity of T ® S follows easily from that of T and S. If, in addition, A and B are
{,-spaces, and if T and S are compact, then the same happens with T'® S. Things
are different when « is not a tensornorm.

When tensor products with an (,-space are considered, there exists, beyond the
7 and € topology, a third topology which has a great interest regarding applica-
tions: the topology induced on ¢, ®@ X by the space £,(X) of absolutely p-summable
sequences. This topology is termed natural topology, the norm that induces-the
natural topology is denoted A, and it is termed the natural norm. Clearly one has
£,®a,X = £,(X) (see [3, Sec. 7]).

Unfortunately, the natural norm is not a tensornorm, and-thus it may happen
that the natural tensor product of two continuous operators is not continuous [3, p.
7.3, 7.5 and 7.6].

Here we want to prove that given T' : £, — {, and S : X — Y compact
operators, their natural tensor product is compact, provided it is continuous, in the
following cases:

(i) p>gq,or
(i) p<gand Y = (,.
1. SOME LEMMAS

The following result can be found in [2]. For the sake of completeness we sketch
the proof.

LEMMA 1. Let (f,) be a sequence in {,(X),1 < p < 400, (resp., co(X)). The
sequence (f,) is norm null if and only if the following two conditions are satisfied:
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a) Any continuous projection onto £, (resp., ¢g) transforms (f,) into a norm null
P
sequence of {, (resp., co).

(b) Any continuous projection onto X transforms (f,) into a norm null sequence

of X.

Proof. The necessity is clear. We prove that (b) implies that
lim sup { S falB)k :n € N} =0.
N—co =N

Otherwise, it is possible to find an ¢ > 0 and two increasing sequences, (n;) and

(N;), of integers such that
k=Nit1

> M ®IP> e

k=N;+1
Choose norm one elements z*(7, k) € X™ such that < a*(¢, k), fu, (k) >= ||[n. (F)]]
and form the element (y~(k)) € oo (X ™) defined by y=(k) = z*(¢, k), N; < k < N1,
and y*(k) = 0 otherwise. The sequence (y=(k)) defines a continuous projection
P:l,(X) — (, as follows: P(g,) = (< y*(k), gn(k) >)&. Since the set {P(fx)}n is

relatively compact in £, one has:

Jim sup{ 55 1PUP i me ) <o

k=N

which is in contradiction with

S k=Ni41
" sup { Z |[P(f)P :n€ N} 2> E [fai(R)P > €.
k=N k=N;+1

The remainder of the proof is easy, and the case of co(X'), analogous. §

Remark. Let us call a complemented copy of X into {,(X) natural if it is ob-
tained by means of one of the inclusions: j, : X — (,(X), ju(z) = (0,...,2,0,...);
a complemented copy of £, into £,(X) shall be termed natural if it is obtained
trough an application of the form I, : {, — (,(X); I,(§) = (&iz1,&220,...), for
some sequence (z,) C X with ||z,]| = 1. A natural projection onto a natural copy
of X is a projection having the form: P : {,(X) — X, where Py(2) = ay; anal-
ogously, a natural projection onto a natural copy of £, is a projection of the form
P(z) = (< z*(k),z(k) >) with ||z*(k)|| = 1. In the preceding proof it is sufficient
to work with natural projections.

In what follows we will assume that p > 1; otherwise the results are elementary.

LEMMA 2. Let U : {,(X) — Z be a weakly compact operator. Assume that its
restrictions to all isomorphic copies of X and (,, are compact operators. Then U is
compact.
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Proof. The operator U* : Z* — [,.(X*) is weakly compact. By the Davis-Figiel-
Johnson-Pelczynski factorization theorem, it is possible to assume in what follows
that Z is reflexive. Given (z7) a weakly null sequence in Z*, (U"z}) is such that its
projection onto £,» and X* are norm null. Thus (U*z}) is norm null, the operator
U~ is compact, and sois U. |

Since £,®a,X = £,(X), the following result is straightforward (see [4]).

LEMMA 3. Let T : £, — {, and S : X — Y be weakly compact operators. If
T®S : ﬂp®ApX — L’q®AqY is continuous, then it is weakly compact.

2. MAIN RESULTS

PROPOSITION 4. Let T : {, — (, and S : X — Y be compact operators. If
p > q, then T®S : C,,QTZ)A’,X — ﬂqé)Aq)"', assuming it is continuous, is compact.

Proof. As before, I, : (,, — [’,,@APX shall denote a natural inclusion, while P :
£,(X) — X and Qj : £,(Y) — Y shall denote the natural projections onto the &
coordinate. If y = (y) is a normalized sequence of elements of Y™, P, : £,(Y) — £,
denotes the natural projection that y defines. Finally, , : &,@AqY — £,(Y) is the
canonical inclusion.

By Lemma 3, T®S is weakly compact. By Lemma 2 we only need to verify that
the restrictions of T®S to the natural copies of ¢, and X which are inside £,(X)
are compact. For the copies of X it is evident, since the application (T®S)jn(z) =
Te, ® Sz is clearly compact.

For the copies of £, some extra work is needed, since a description of the map

(TOS)I, : by — (,3a, X — L&Oa,Y — ((Y)

is not easy to obtain. It is enough, however, to verify that weakly null sequences
of £, are transformed into norm null sequences of £,(X). To this end, let (&,) be a
weakly null sequence of {,. Regarding the lemmas, it is necessary to verify that, for
all & and all norm one sequences (z,) of X, (Piig(T®S)I,(£,)) is a null sequence
and that the sequence ((P,1,(£.)) is convergent to 0 for all sequences y.

Let us define the map R: {, — X by R(e,) = Pi((Ten)x,). The operator R is
continuous since the sequence Py((Te,)x,) is weakly-p*-summable:

S l(Ten)(k)zall” < S-N(Ten)(k)P" < oo

Since SR = Piig(T®S)1,(&x), this part of the proof is complete. The part of ¢, is
just an application of Pitt’s lemma: if p > ¢, all continuous operators £, — (, are
compact (see [3]).

Remark. This result is an improvement of [1], where it has been proved that if
all operators from (, into {, and all operators from X into ¥ are compact, then all
operators from £,®a,X into {;®a, Y are compact.
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In case that not all operators from £, into £, are compact, it is still possible to
obtain a nice result for Y = £;:

PROPOSITION 5. Let T : £, — £, and S : X — £, be compact operators, p < q.
The operator T®S : {,@a,X — £,®a,{,, assuming it is continuous, is compact.

Proof. Consider the tensornorms d, and g, such as defined in [3, p. 17—18] by

means of:
k=n 1/p* k=n 1/p
dp(2) = inf{ sup (Z |z* (k)| ) (Z “yk”p) }
k=1

llz*11<1 \k=1
k=n 1/p* fp=n 1/p
a@ =i} sup (Slrr) (3 leek)
llweli<1 \g=1 k=1

where the infimum is taken over all representations z = Y¥=" 2, @ y;. Their dual
norms are noted d; and g5. Taking into account the so-called Chevet-Persson-
Saphar inequalities [3, p. 186] g;. < g4, dp < A, < g5, it is possible to factorize
the original operator T ® S in the form

6,08, X T2 0,04, 1
| id@id id@id T

b @4, X L Qg:. &
| Tes

Ll @a, £y id@id
| id@id

@, by == (;®1,

The proof is finished. K
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