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THE PROPERTIES

Surely, one of the earliest eztraction—of-subsequences property is the Riesz
characterization of finite-dimensional Banach spaces:

(F) Each bounded sequence admits a convergent subsequence.

In the search of an infinite-dimensional analogue of (F), the following
weaker form of (F) appeared:

(W) FEach bounded sequence admits a weakly convergent subsequence.

The Banach-Alaglou and Eberlein-Smullian theorems assert that property
(W) is equivalent to the reflexivity of the space. Rosenthal’s ¢;-theorem [38] is a
tour de force based on this idea: if “weakly convergent” is replaced by “weakly
Cauchy” one obtains an equivalent condition for “X does not contain a copy of
{,”. We shall not enter into this line of results. Recently, Rosenthal [39] obtained
an eztraction—of-subsequences property equivalent to the property of “not
containing a copy of co”:

(Neg) Each weak-Cauchy sequence admits a basic subsequence satisfying
supgen |2/ ¢z <+00 =  Zc¢; comverges.

The property of not having quotients isomorphic to ¢y has been
characterized by Gonzalez and Onieva [21]:

(NQcy) Each weak* convergent sequence in X* admits a weak Cauchy
subsequence.

There remain unknown characterizations of the containment of copies of
other £,.
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Going back to our mainstream, an application of the Hahn-Banach theorem
shows that if (z,,) is a weakly convergent sequence in a Banach space X, having
the point z as its weak limit, then there exists a sequence (o, ) formed by convex
combinations of the z,’s, which is norm convergent to z. In fact, the sequence
(z,) is weakly null if and only if for each ¢ >0 there exists a finite convex
combination ¥; 7;z; such that ||%; X7;z;| < ¢ for every choice of signs. An old
question going back to Banach and Saks [3] is whether it is possible that that
convex combination can be chosen to be the arithmethic means; i.e.,
Op=(21+... +2,) /n.

DEFINITION 1. A sequence (z,) in a Banach space X is said to be a
Banach-Saks sequence if it has norm convergent arithmetic means; i.e., if the
sequence (z; +...+Z,)/n converges. A Banach space X is said to have the
Banach-Saks property if

(BS) FEach bounded sequence admits a Banach-Saks subsequence.

Examples of Banach spaces having and having not this property shall be
shown later. Here we want to introduce several stronger forms of reflexivity and
of the Banach-Saks property. To this end, we define two kinds of sequences in a
Banach space:

DEFINITION 2. ([25]) A sequence (z,) in a Banach space X is said to be
p-Banach-Saks, 1<p<+oc0, if, for some constant A, and all NEeN,
12, 24 <A, -NYP. We shall demote by A,({z,}) the infimum of those
constants A, satisfying the above inequality. The sequence (z,) is said to be
p -Banach-Saks convergent to z if the sequence (z, — z) is p-Banach-Saks.

Notice that a p-Banach-Saks sequence can contain subsequences having
constant A arbitrarily large, and even unbounded subsequences: the sequence (z)
of real numbers taking the values z; = n, for k=2", and z; = 0 otherwise is a
simple example. We shall call hereditarily p-Banach-Saks to a sequence (z,)
such that, for some comstant A >0, B/, Tngll < A-NYP for every choice of
integers n; < ... < ny. Hereditarily p-Banach-Saks sequences were introduced
by Pelczynski [36] under the name of 7, /p—convergent sequences.

DEFINITION 3. A sequence (z,) in a Banach space X is said to be weakly-
p-summable, 1< p <+00, if (z*(z,)), € £, for each z* € X*. Equivalently, if a
constant w, >0 exists such that, for all NeN, ||E;f\;1 0nZn |l < wp - [[(an)] p+. We
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shall denote by w,({z,}) the infimum of those constants w, satisfying the above
inequality. The sequence (z,) is said to be weakly-p-convergent to z if the
sequence (z, — z) is weakly-p-summable.

Weakly-p-summable and p*-Banach-Saks sequences have some simili—
tude: a sequence (z,) is weakly-p-summable when a bound of the form
|z 15!1 0,2,]| < K exists for all sequences (6,) belonging to the unit ball of £p«;
the sequence (z,) is p*-Banach-Saks when a bound of the form IIE,?;l 0,2, <
< K exists when (4,) is any of the following sequences in the unit ball of £,«:

(1,0,0,...)
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It is, therefore, obvious that weakly-p-summable sequences are p*-Banach-
Saks. In fact, weakly-p-summable sequences are even hereditarily-p*-Banach-
Saks. The converse is false in a strong sense. In R, the sequence (n_l/ 2) is here—
ditarily-2-Banach-Saks but not weakly-2-summable. Nevertheless, it contains,
naturally, weakly-2-summable subsequences. We proceed to show an heredita—
rily-2-Banach-Saks sequence containing no weakly-2-summable subsequences:

EXAMPLE 4. Let A, denote the subset of [0,1] formed by all real numbers
such that their n'® cipher, when represented in base 3, is 0 or 2. Now consider the
following sequence of functions inductively defined:

f1=XA1 and fn+1=(1+ma‘x{f11"')fn})'XAn+1'
The sequence g,(t)= f,,_l/z(t) when f,(t)+0, and g,(¢) =0 otherwise, is
normalized and hereditarily 2-Banach-Saks in C[0,1]**, but no subsequence of it
is weakly-2-summable.

Another aspect of the differences between both classes of sequences is the
following: any weakly-2-summable, as the continuous image of the canonical
basis of £,, lies inside the range of a vector measure (see [1]). There exist,
however, 2-Banach-Saks sequences which do not lie inside the range of a vector
measure, e.g.: the unit vector basis of the Lorentz sequence space constructed



80 J.M. F. CASTILLO

with norming sequence (c,) defined by the equality ¥, yc, = nl/? (see
[37], [12]). The sequence of Example 4 is another example.

With these definitions we are ready to strenghen the Banach-Saks property:
DEFINITION 5. A Banach space X is said to have the p-Banach-Saks
property (1< p <+00) if
(BSp) Each bounded sequence admits a p—Banach-Saks convergent subsequence.
And now the reflexivity:
DEFINITION 6. We shall say that a Banach space X€ W), 1<p <+00, if
(Wp)  Each bounded sequence admits a weakly-p-convergent subsequence.

To be able to work also with non-reflexive spaces, we shall speak about
those properties in the weak sense when weakly null sequences admit a
subsequence of the type indicated. Thus, a Banach space has the weak-Banach-
Saks property if weakly null sequences admit subsequences having norm conver —
gent arithmetic means. It has the weak-W, property if weakly null sequences
admit weakly-p-summable subsequences, and it has the weak-p-Banach-Saks
property if weakly null sequences admit p-Banach-Saks subsequences.

It is clear that property (weak) W, implies the (weak) p*-Banach-Saks
property. Surprisingly, the converse is almost true:

THEOREM 7. Let X be a Banach space with the (weak) p-Banach-Saks
property. Then, for all r>p*, X has the (weak) W, property.

A direct proof of this result can be found in [9]. A proof of the implication
weak-p-Banach-Saks = weak W,, for all r>p* was provided by Rakov [36].
Here we show a third different method:

Proof. If (z,) is a weakly-null sequence in a Banach space X, and p >1is
given then, for every choice of positive integers ¢,5 the set

N
Fij={(nk)er(lN) : Mgi v N>j}
: NP 7
is closed in Pg(IN). Hence the set
151 20 | o o

Bp = {(nk)e Pm(lN) : th—»mT QO} = ni=1Uj=1Fi,j
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is a Borel subset of P,(IN) and so completely Ramsey. Thus, if X has the
p-Banach-Saks property then for each ¢ < p, every bounded sequence in X has a
subsequence which is hereditarily ¢g-Banach-Saks convergent,.

Now, it is not difficult to see that if (z,) is a normalized sequence in a
Banach space satisfying

1Bzl < C-NYP max{| ;| - 1<i< N}
for all sequences (J;) of scalars and (k;) of integers, and for all integers N, then
for any 1< r < p there exists a constant D such that
N
IZi=1 Aizi; | < D-[I(A)-
(the first part of this proof was provided by the referee of [9]; the second part is

the correct statement of Lemma 3.4 of [19]). &

Rakov [37], gave an example showing that weak-p-Banach-Saks does not
imply weak W,«. We conjecture that the same is true in the general case:

OPEN PROBLEM. Are W, and p*-Banach-Saks equivalent ?

Maybe it is interesting here to remark that Knaust [30] has proved the
implication p-Banach-Saks = W« for Orlicz sequence spaces.

Another surprising fact concerning subsequences was established by Knaust
and Odell in [27] and [28]:

THEOREM 8. (Knaust and Odell) In a Banach space X having the weak-W,
property, 1< p <+0o, there ezists a uniform constant cp(X ) such that every
weakly null sequence admits a weakly-p-summable subsequence having constant not
greater than c,(X).

The behaviour of the uniform constant ¢, has some interest. In [10], it was
shown that if (X, ) is a sequence of Banach spaces and X is a Banach sequence
space having a monotone basis then ¢, (A(X,X5,...)) < ¢p(A) +sup{c,(Xn)}-

One of the most striking results about extraction of subsequences is the
following one of Brunel and Sucheston [7].

THEOREM 9. Each bounded sequence (z,) in a Banach space X contains a
subsequence (z,,) with the following property: for each finite set ICIN and each
finite sequence a = (a;),, there ezists a number L(a) such that
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. N .
L(a) =lm || 221 a; Ty prl s f(i)~ oo

Proof. Let a=(a;);,, be a fixed sequence of rational numbers. Define a
function ¢: Neerd T, gt by ¥(n) = [IEiNﬂ a; Tp,;[|. The image of ¢ lies in some
interval, say [0,a]. Consider the subsets A;={n:¢(7)€[0,e/2]} and
By={n: ¢(n)€[af2,a]}. Obviously, A; or B; is infinite. Given any sequence
(é,) of integers, Ramsey’s theorem allows one to conclude that either 4; or B,
contains all 7 formed from terms of a certain subsequence of (i,). Iterating the
argument and diagonalizing the subsequences obtained, one arrives to a point
L(a), intersection of a nested sequence of closed intervals, such that
|9(%) -L(a)| < € for any choice ny < ... <ny sufficiently far in the final
subsequence.

A new diagonalization passing through an enumeration of all finite
sequences of rationals leads to a new subsequence with the desired property.

The case of arbitrary finite sequences, not necessarily rationals, follows by
density. N ' :

This result of Brunel and Sucheston is the key behind Rakov’s Approach to
the p-Banach-Saks property [37]:

THEOREM 10. Let X be ¢ Banach space with the Banach-Saks property.
Assume that each weakly null sequence admits, for somep >1, a p—Banach—Saks
subsequence. Then there ezists some number ¢ > 1 such that each weakly null
sequence admits a ¢g-Banach-Saks subsequence.

THE EXAMPLES

Clearly, {, spaces, 1< p <+00, have the Wy« property, while {; and c
have the weak-W; property. L, spaces have property Wmay (o, p*y- Szlenk [43],
proved that L;[0,1] has the weak-Banach-Saks property. Since L;[0,1] contains
isomorphic copies of £,, 1<p<2, it is clear that it does not have the
p-Banach-Saks property for no p >1. Rakov’s result then implies that Szlenk’s
result is optimal.

The first example of a Banach space not having the weak-Banach-Saks
property was constructed by Schreier [42]. This is the space obtained by
completion of the space of finite sequences with respect to the following norm:

" "S [A adrI:xissible] JeA | J| ’
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where a finite sub-set of natural numbers A={n; < ... <n;} is said to be
admissible if k< ny.

Kakutani [26], proved that a uniformly convex Banach space has the
Banach-Saks property. Later on, Nishiura and Waterman [34] proved that a
Banach space with the Banach-Saks property must be reflexive, a fact which led
Sakai [40] to ask whether a reflexive Banach space must also have the Banach-
Saks property. Baerstein [2] showed a method to obtain, for each 1< p <+00, a
reflexive Banach space B, which does not have the Banach-Saks property. These
are the spaces obtained by completion of the space of finite sequences with respect
to the following norm:

) 1
lalls, = sup{[f}k"E'k"f] /?.B <By<.. <En,nEIN},

where each E,, is admissible.

Beauzamy and Lapresté [4], remarked that since the canonical inclusion
{; = S is weakly compact but not a Banach-Saks operator, real interpolation
between £; and S would provide other examples of reflexive Banach spaces
without the Banach-Saks property.

Recovering Kakutani’s ideas, it is possible to prove [9]:

THEOREM 11. Let X be an infinite dimensional super-reflezive Banach
space. Then there are numbers 1< ¢ <p such that X€ W, and X¢ W,.

Since any £,-sum of finite dimensional spaces is in W+ but not in W,, for
all r<p* the space %, tf shows that Theorem 11 is not an equivalence.
Tsirelson’s space is an example of a non super-reflexive Banach space having all
W, properties (1< p). See [11] for details. A similar result to this seems to have
been obtained by Knaust [31] and Kotlyar [33].

The calculus of p could be: let § be such that any two points in the unit
sphere such that |z-y| >e¢ satisfy ||z+y] <2(1-6). Take p such that
(2(1-6))? < 2. The space is W,. Kotlyar calculates p as p= log,,4(1/0) where
f=min g <ymax {(e+1)/2,1-6(e)} and 6(¢) is the modulus of convexity.

Given a property P of Banach spaces, a second set of problems which
naturally arises is whether “X has property P ” implies that L,(X) or £,(X)
have property P. In [35], Partington proved that the Banach-Saks property
passes from X to £,(X); in fact, he proved:
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THEOREM 12. Let )\ be a Banach sequence space having a monotone basis,
and let (X,) be a sequence of Banach spaces. If each X, and )\ have the
Banach-Saks property, then the same is true for A(X1,X,,.. ).

The result is false if “Banach-Saks” is replaced by “weak-Banach-Saks”:
a careful choice 1< p, <logn/(logn —logc) implies that the sequence
Ty =(€p,€pn,€pn,-.. ) (n times) does not contain Banach-Saks subsequences in the

space co(€p; Ly, --slpy,---)-

It can be proved that Partington’s result is “almost” true for the
p-Banach-Saks properties. Firstly, one verifies that W, properties pass to vector
sequence spaces [10]:

THEOREM 13. Let A be a Banach sequence space having a monotone basis,
and let X be a Banach space. If X and X have the property (weak) W,, then the
same is true for A(X).

and then, using the implication p-Banach-Saks = W, for all 7 > p*, one obtains:

If A and X have the (weak) p-Banach-Saks property, then A(X) has the (weak)
r-Banach-Saks property for all r <p. ‘

The passage to L,(X) seems to be more difficult. Schachermayer [41] and
Bourgain [22] showed that the Banach-Saks property is not L,-hereditary.
Schachermayer produced a tree-like version of Scherier space, which we shall
denote E. Since the canonical inclusion £; =+ E is a Banach-Saks operator, the
real interpolation spaces Eg, = ({;,E)g, have the Banach-Saks property.
Schachermayer proved that Ly([0,1],Eq,) has not the Banach-Saks property.
Beauzamy and Lapresté [4], used a tree-like version of Baernstein spaces, E,, to
show that the Banach-Saks property is not L,-hereditary. It can also be seen
that E, has property W+, from which it follows that properties W, are not
L, -hereditary.

Despite these examples of Schachermayer and Bourgain, Cembranos has
obtained the following remarkable result [15].

THEOREM 14. For a Banach space X the jfollowing conditions are
equivalent:
(1) Ly(X) has the weak-Banach-Saks property.
(2) Ly(X) has the weak-Banach-Saks property (1< p <+00).
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(3) Li(X) is weak Komlds.
From which it follows that the following conditions are also equivalent:
(i) Ly(X) has the weak-Banach-Saks property and X is reflezive.
(ii) Ly(X) has the Banach-Saks property (1< p <+00).
(i) L (X) is Komlds.

Recall here Komlés’ theorem:

THEOREM 15. For every bounded sequence (f,) in Lq(u) there ezist a
subsequence (fy) and fin Lq(p) such that

1172;21 fm; — [ almost everywhere

for each subsequence (fy,;) of (fm)-

When Komlds theorem holds in the space L (X) it is said that L,(X) is a
Komlés space. When Komlés theorem holds replacing “bounded sequence” by
“weakly null sequence ” it will be said that L,(X) is a weak Komlds space.

THE APPLICATIONS

Hereditary Dunford-Pettis property. A Banach space X is said to have the
Dunford-Pettis property if weakly compact operators defined on X are compact
or, equivalently, if for arbitrary weakly null sequences (z,) and (z; ) in X and
X*, respectively, lim<z*, z,>=0. A Banach space X is said to have the
hereditary Dunford-Pettis property if each closed subspace of X has the
Dunford-Pettis property.

Using a result of Elton [16], it can be seen that property weak W; is
equivalent to the hereditary Dunford-Pettis property and, therefore, to property
S of Knaust and Odell [27]. One has:

THEOREM 16. If X and ) have the hereditary Dunford-Pettis property,
then A(X) has the hereditary Dunford-Pettis property.

This includes the cases A =cg,{; of Cembranos [13],[14] and A={;
of Knaust [29].

Spaces of Polynomials. Let X be a (real or complex) Banach space. For
m=1,2,...,amap P is said to be a continuous m-homogeneous polynomial if
it has the form P(z)=A(z,z,...,z), where A is a continuous m-linear scalar
valued form on X™. A continuous polynomial is a finite sum
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P=Py+P; +...+P,, where Py is a constant and each P, is a continuous
m-homogeneous polynomial. A sequence (z,) C X is said to be weak-polynomial
convergent to z if P(z,) - P(z) for all continuous polynomials on X. In [8],
Carne, Cole and Gamelin defined a A-space as a Banach space such that every
sequence weak-polynomial convergent to zero is norm null, and conjectured that,
for 1< p <+00, Ly-spaces are A-spaces, proving themselves the conjecture for
p>2. In [23], Jaramillo and Prieto proved that super-reflexive spaces are
A-spaces. In fact, what they proved is:

THEOREM 17. If X* has, for some p <+oo, property W,, then X is a
A-space.

which is a combination of Theorem 11 and the observation that a weakly-p-
summable sequence (z,* )in X* defines a continuous N-homogeneous polynomial
P(z) = %2, (z,j (:z:))N in X.

This result allows one to prove that several interesting Banach spaces are
A-spaces: Tsirelson space T (the dual of Tsirelson original space, since T* € W,
for all p >1; see [11]), the duals of Schachermayer spaces (E,)* (since E; € Wy« ;
see [10] and [4]) and Baernstein B, spaces:

THEOREM 18. Let 1< p <+00. Baernstein's spaces By, are A-spaces.

Proof. Following Theorem 12, it is only needed to verify that (B,)* has
property W,.

Let (ug) be a bounded sequence of (B, )*. By the reflexivity of (B,)* and a
standard application of the Besaga-Pelczynski selection principle, it can be
assumed that (uj) is a weakly null sequence of (Bp)* formed by normalized
blocks of the canonical basis (e, ), i-e., ug =Ygy AnZy, for some sequence
I < I < ... of finite sets. This sequence of blocks is weakly-p-summable:

N N
12521 05u;llgyy+ = sup{|2Zj=1 0;u;(z)| : zllg, <1} <
N N
sup{Z;=116;u;(2) | lzls, <1} <sup{Zjz116;|1];2lg, : Iz, <1} <

* 1/p* ‘ 1/1,
sup{ [E:i]il ;17 ] [31'1\;1 {“IjZ"Bp}p] zlls, < 1} .

Given € >0, it is clear that there is a chain of admissible sets {E;} such
that {||7;z]l5,}” < {IlE;zll1}” + ¢/2. This finishes the proof. 1
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Comment. Seifert proved that (B, )* has the Banach-Saks property.

For every 1< p <+00, £,(T), £,(By) or £,((E,)*) are also A-spaces.
Other results where a suitable extraction of subsequences pays off can be
found in [6] and [20].

THEOREM 19. ([20]) If X* has, for some 1< p <+oco, the property Wy,
then the space of all weakly continuous m-homogeneous polynomials P, (™ X),
m>p, contains an isomorphic copy of cq.

and

THEOREM 20. ([6]) If X* has, for some 1< p <+00, the property W, then
every R-bounding set (i.e., every set where all rational functions are bounded) is
relatively compact in X.

REFERENCES

1. ANANTHARAMAN, R. AND DIESTEL, J., Sequences in the range of a vector
measure, Comment. Math. Prace. Mat. XXX (1991), 221 -235.

2. BAERNSTEIN II, A., On reflexivity and summability, Studie Math. 42 (1972), 91-94.

3. BANACH, S. AND SAKS, S., Sur la convergence forte dans les champs Ly, Studia
Math. 2 (1930), 51 -5T7.

4. BEAUZAMY, B. AND LAPRESTE, J.T., “Modeles Ktalés des Espaces de Banach?”,
Hermann, 1984.

5. BEAUZAMY, B., “Espaces d’Interpolation Réels: Topologie et Géométrie”, Lecture
Notes in Math. Vol. 666, Springer—Verlag, Berlin, 1978.

6. BISTROM, P., JARAMILLO, J.A. AND LINDSTROM, M., Algebras of real analytic
functions; Homomorphisms and bounding sets, Preprint 1992.

7. BRUNEL, A. AND SUCHESTON, L., On B-—convex Banach spaces, Math. Systems
Theory T no. 4 (1973), 294 -299.

8. CARNE, T., COLE, B. AND GAMELIN, T., A uniform algebra of analytic functions
on a Banach space, Trans. AMS 314 (1989), 639 -659.

9. CASTILLO, JM.F. AND SANCHEZ, F., Weakly p—compact, p—Banach-Saks and
super-reflexive Banach space, J. of Math. Analysis and Appl. (to appear).

10. CASTILLO, JM.F. AND SANCHEZ, F., Upper £,-estimates in vector sequence
spaces, with some applications, Math. Proc. Cambridge Philos. Soc. 113 (1993),
329-334.

11. CASTILLO, JM.F. AND SANCHEZ, F., Remarks on some basic properties of
Tsirelson s space, Note di Mat. (to appear).

12. CASTILLO, JM.F. AND SANCHEZ, F., Remarks on the range of a vector measure,
Glasgow Math. J. (to appear).

13. CEMBRANOS, P., The hereditary Dunford—Pettis property on C (K ,E), lllinois J. of
Math. 31 (3) (1987), 356 —373.

14. CEMBRANOS, P., The hereditary Dunford-Pettis property for £;(E), Proc. AMS
108 (4) (1990), 947 -950.

15. CEMBRANOS, P., The weak Banach-Saks property on Lp(p,e), Preprint.

16. DIESTEL, J., A survey of results related to the Dunford—Pettis property, In AMS
Comtemporary Mathematics, Vol. 2 (1980), 15-60



88

17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.

29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
41.
42,
43.

J.M. F. CASTILLO

DIESTEL, J., “Sequences and Series in Banach Spaces”, Graduate Texts in Math. 92,
Springer—Verlag, New—~York, 1984.

ERDGS, P. AND MAGIDOR, M., A note on regular methods of summability and the
Banach-Saks propety, Proc. of the AMS 59 (1976), 232-234.

FARMER, J. AND JOHNSON, W.B., Polynomial Schur and Polynomial
Dunford—Pettis properties, Preprint.

GOMEZ, J. AND JARAMILLO, J., Interpolation by weakly differentiable functions on
Banach spaces, Preprint 1992.

GONZALEZ, M. AND ONIEVA, V.M., Lifting results for sequences in Banach spaces,
Math. Proc. Cambridge Philos. Soc. 105 (1989), 117-121.

GUERRE, S., La propiété de Banach-Saks ne pase pas de E a Lo(E), déprés J.
Bourgain, Seminaire d’Analyse Fonctionelle 1979-80, Ecole Polytechnique
Poloisean, Expose 8.

JARAMILLO, J.A. AND PRIETO, A., On the weak polynomial convergence on a
Banach space, Proc. AMS (to appear).

JOHNSON, W.B., Operators into Ly which factor through Ly, J. London Math.
Soc. 14 (1976), 333-339.

JOHNSON, W.B., On quotiens of Ly, which are quotients of Ly, Compo. Math. 34 (1)
(1977), 69-89. :
KAKUTANI, S., Weak convergence in uniformly convex spaces, Tohoku Math. J. 45

(1938), 188 -193.

KNAUST, H. AND ODELL, E., On cg-sequences in Banach spaces, Israel J. Math.
67 (2) (1989), 153 -196.

KNAUST, H. AND ODELL, E., Weakly null sequences with upper lp —estimates, In
Lecture Notes in Math. Vol. 1470, Springer—Verlag, 1991, pp. 85-107.

KNAUST, H., p—Hilbertian sequences in £; (X), Preprint.

KNAUST, H., Orlicz sequence spaces of p—Banach-Saks type, Arch. Math. 59 (1992),
562 —565.

KNAUST, H., “On uniform structures in infinite dimensional Banach Spaces”,
Ph. D. Dissertation, Univ. Texas at Austin, 1989.

KoMLos, J., A generalization of a problem of Steinhaus, Acta Math. Acad. Sci.
Hungarica 18 (1967), 217 -229.

KOTLYAR, B.D., The Banach-Saks property and the rate of convergence, Uspekhi
Mat. Nauk. 37 (1982), 187-188.

NISHIURA, T. AND WATERMAN, D., Reflexivity and summability, Studia Math. 23
(1963), 53 -5T7.

PARTINGTON, J.R., On the Banach-Saks property, Math. Proc. Cambridge Philos.
Soc. 82 (1977), 369 -374.

PELCZYNSKI, A., A property of multilinear operators, Studia Math. 16 (1957-58),
173 -182.

RAKOV, S.A., Banach-Saks property of a Banach space, Math. Zametki 26 (6) (1979),
823 -834. (English transl. Math. Notes 26 (1979), 909-916.)

ROSENTHAL, H.P., A characterization of Banach spaces containing £y, Proc. Nat.
Acad. Sci. USA 71 (1974), 2411-2413.

ROSENTHAL, H.P., On Banach spaces containing ¢, Preprint.

SAKAIL S., Review of [28], Math. Reviews 27,5 (1964) 5107.

SCHACHERMAYER, W., The Banach-Saks property is not L g-hereditary, Israel J.
Math 40 (3—4) (1981), 340 -344.

SCHREIER, J., Ein Gegenbeispiel sur Theorie der schwanchen Konvergens, Studia
Math. 2 (1930), 58 -62.

SZLENK, W., Sur le suites faiblement convergentes dans 1’espace L, Studia Math. 25
(1969), 337 -341.



