A Generalized Hankel Transformation on the Spaces $F_{p,\mu}$

MANUEL T. FLORES AND JORGE J. BETANCOR

Dpto. de Análisis Matemático, Univ. La Laguna, Tenerife, Spain

AMS Subject Class. (1980): 44A15

Received September 19, 1990

E. Kratzel [2] introduced the function

$$J_{\nu}^{(n)}(x) = \frac{2}{\sqrt{\pi} \Gamma(\nu+1-1/n)} (x/2)^{n\nu/2} \int_{0}^{1} (1-t^{n})^{\nu-1/n} \cos(xt) dt,$$

for x>0, $\nu>-1+1/n$ and $n\in\mathbb{N}^*=\mathbb{N}-\{0\}$.

A generalization of the Hankel transformation can be defined by

$$h_{\nu,n}(f)(y) = \int_0^\infty (xy)^{\nu+1-(1/n)-(n\nu/2)} J_{\nu}^{(n)}(xy) f(x) dx, \text{ for } y > 0$$

with $\nu > -1+1/n$ and $n \in \mathbb{N}^*$. Note that $h_{\nu,n}$ reduces to the Hankel transformation with n=2. The $h_{\nu,n}$ transformation was introduced by M.T. Flores [1] who studied its main classical properties and investigated it on certain weighted L_p -spaces.

A.C. McBride [3] defined the space $F_{p,\mu}$ of functions as follows: if $1 \le p < \infty$ and $\mu \in \mathbb{R}$ a complex function $f \in C^{\varpi}(0,\infty)$ is in $F_{p,\mu}$ if, and only if, $x^k D^k(x^{-\mu}f(x)) \in L_{\varpi}(0,\infty)$ for every $k \in \mathbb{N}$. If $p = \infty$ and $\mu \in \mathbb{R}$, $f \in C^{\varpi}(0,\infty)$ is in $F_{p,\mu}$ provided that $x^k D^k(x^{-\mu}f(x)) \to 0$, as $x \to \infty$ and $x \to 0^+$, for every $k \in \mathbb{N}$. For $1 \le p \le \infty$ and $\mu \in \mathbb{R}$, $F_{p,\mu}$ is endowed with the topology generated by the family of norms $\{\gamma_{p,\mu}^k\}_{k=0}^{\infty}$ where $\gamma_{p,\mu}^k(f) = \|x^k D^k(x^{-\mu}f(x))\|_p$ when $f \in F_{p,\mu}$ and $\|\cdot\|_p$ being the L_p -norm. The last author analyzed fractional integral operators [3,4] and the Hankel transform [5] on $F_{p,\mu}$.

In this note we study the $h_{\nu,n}$ transformation on the space $F_{p,\mu}$. Our results generalize some of the one due to A.C. McBride [5] for the Hankel transformation.

We firstly need to establish the following

PROPOSITION 1. Let $f \in F_{p,\mu}$ with $p^{-1}-2-\nu+n^{-1}<\mu< p^{-1}$, $1\leqslant p\leqslant \infty$, $\nu>-1+n^{-1}$ and $n\in \mathbb{N}^*$. Then

$$\delta^k h_{\nu,n}(f)(y) = (-1)^k h_{\nu,n}((\delta+1)^k f(x))(y), \text{ for } y > 0 \text{ and } k \in \mathbb{N},$$

where $\delta = yD$. Here and in the sequel p^{-1} is understood as 1 when $p = \infty$.

Proof. In virtue of the operational rule ([1, p.10])

$$D\left(x^{n(\nu+1)/2}J_{\nu+1}^{(n)}(x)\right) = n2^{-n/2}x^{-1+n(\nu+2)/2}J_{\nu}^{(n)}(x)$$

by integrating by parts we can obtain

$$h_{\nu,n}(f)(y) = -2^{n/2} n^{-1} \int_0^\infty (xy)^{1+\nu-(1/n)-n(\nu+1)/2} J_{\nu+1}^{(n)}(xy) (\delta+\eta) f(x) dx$$

where $\eta = 2 - (1+\nu)n + \nu - 1/n$.

Differentiation under the integral sign leads to

$$\begin{split} \delta^k h_{\nu,n}(f)(y) &= (-1)^{k-1} \, 2^{n/2} \, n^{-1} \, \int_0^\infty (xy)^{1+\nu-(1/n)-n(\nu+1)/2} J_{\nu+1}^{(n)}(xy) (\delta+1)^k (\delta+\eta) f(x) \, \mathrm{d}x = \\ &= (-1)^k \, h_{\nu,n}((\delta+1)^k f(x))(y) \end{split}$$

for every $k \in \mathbb{N}$.

The behaviour of the $h_{\nu,n}$ transformation is now showed.

THEOREM 1. $h_{\nu,n}$ is a continuous operator from $F_{p,\mu}$ into $F_{p,(2/p)-1-\mu}$ provided that ν,n,μ and p satisfies the conditions in Proposition 1.

Proof. By invoking the behaviours of $J_{\nu}^{(n)}$ near the origin and the infinity ([1, p.11]) we can write for $f \in F_{p,\mu}$

$$\mid y^{-\mu-1}\,h_{\nu,n}(f)(1/y)\mid \ \leqslant C\{I_{1,\nu+2-(1/n)+\mu,1}(\mid x^{-\mu}g(x)\mid +K_{1,-\mu,1}(\mid x^{-\mu}g(x)\mid)\}$$

where C is a suitable positive constant, $g(x) = (\delta + 2 - n(\nu + 1) + \nu - 1/n) f(x)$ and the operators I and K are defined by A.C. McBride in [3].

According to [3] and [7] we get

$$\|y^{\mu+1-(2/p)} \delta^k h_{\nu,n}(f)(y)\|_p \leqslant C_1 \|x^{-\mu} (\delta+1)^k (\delta+2-n(\nu+1)+\nu-1/n) f(x)\|_p.$$

Also one has

$$||y^k D^k(y^{\mu+1-(2/p)}h_{\nu,n}(f)(y))||_p \le C_2 \sum_{i=0}^m \gamma_{p,\mu}^i(f),$$

for $f \in F_{p,u}$ and certain $C_2 > 0$ and $m \in \mathbb{N}$. Thus the proof is finished.

Let now $1 \le p \le \infty$, $\nu \in \mathbb{R}$, $n \in \mathbb{N}^*$ and $\mu > p^{-1} - 2 - \nu + n^{-1}$. We define the operator

$$h_{\nu,n}^*(f)(y) = (-2^{n/2}n^{-1})^k y^{-k} h_{\nu+k,n}(N_{\nu+k-1,n}, N_{\nu+k-2,n}, \dots N_{\nu,n}f(x))(y), \ f \in F_{p,\mu}$$

where $N_{\nu,n} = x^{-1}(\delta + \nu + 2 - n(\nu + 1) - 1/n)$ and $k \in \mathbb{N}$ is chosen such that $\nu + k > -1 + 1/n$ and $\mu < k + 1/p$.

We can prove that $h_{\nu,n}^*$ is independent of k provided that k satisfies the above conditions. Moreover $h_{\nu,n}^*f=h_{\nu,n}f$, for $f\in F_{p,\mu}$ when $\nu>-1+1/n$ and $p^{-1}-2-\nu+n^{-1}<\mu< p^{-1}$. Hence $h_{\nu,n}^*$ can be seen as an extension of $h_{\nu,n}$ on $F_{p,\mu}$ to values of $\nu\leqslant -1+1/n$ and $\mu\geqslant p^{-1}$.

In virtue of Theorem 1 and [3, Theorem 2.6] we can establish the following

THEOREM 2. If $1 \leqslant p \leqslant \infty$, $\nu \in \mathbb{R}$, $n \in \mathbb{N}^*$ and $\mu > p^{-1} - 2 - \nu + n^{-1}$, then $h_{\nu,n}^*$ is a continuous operator from $F_{p,\mu}$ into $F_{p,(2/p)-1-\mu}$.

REFERENCES

- M. T. FLORES, "Sobre una generalización de la transformación integral de Hankel", Memoria de Licenciatura, Dpto. de Análisis Matemático, Univ. de La Laguna, 1990.
- E. KRATZEL, Eine verallgemeinerung der Laplace- und Meijer-transformations, Wiss. Z. Univ. Jena Math. Naturw. Reihe 3 (1965), 369-381.

- 3. A. C. McBRIDE, A theory of fractional integration for generalized functions, SIAM J. Math. Anal.
- 6 (1975), 583-599.

 A.C. McBride, A theory of fractional integration for generalized functions II, Proc. Roy. Soc. of 4.
- A. C. McBride, A theory of fractional integration for generalized functions if, Froc. Roy. Soc. of Edinburgh 77A (1977), 335-349.

 A. C. McBride, The Hankel transform of some classes of generalized functions and connections with fractional integration, Proc. Roy. Soc. of Edinburgh 91A (1978), 95-117.

 A. C. McBride, "Fractional Calculus and Integral Transforms of Generalized Functions", Pitman 5.
- 6. (Advanced Publishing Program), Research Notes in Math., San Francisco, 1979.

 P. G. ROONEY, On the ranges of certain fractional integrals, Can. J. Math. 24 (1972), 1198-1216.
- 7.