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E. Kratzel [2] introduced the function
1
JM(gy=—2  (z/2)w/2 7 (1-tm)-Vncos(st) dt,
v JAT(v+1-1/n) : f 0
for £>0, v>-1+1/n and neN*=N-{0}.
A generalization of the Hankel transformation can be defined by

hv,,, (Ny) = fom (zy)v+1-(1/n)-(nv/2) J,(,")(ry)f(z) dz, for y>0

with ¥>-1+1/n and neN*. Note that h,, reduces to the Hankel transformation with
n=2. The h,, transformation was introduced by M.T. Flores [1] who studied its main
classical properties and investigated it on certain weighted L,—spaces. ,

A.C. McBride [3] defined the space Fy,, of functions as follows: if 1<p <oo and p€R
a complex function fe C®(0,00) is in Fp, if, and only if, z¥D¥(z-#f(z)) € Ly(0,00) for every
keN. If p=co and peR, feC®(0,00) is in F,, provided that z*D¥(z#f(z))—0, as
g—oo and z—0% for every k€N For 1<pgoo and p€R, Fp, is endowed with the
topology generated by the family of norms {7%,}i=0 where 7% ,.(f)=||zED¥(zf(z))[l,
when f€F,, and ||-|, being the L,—norm. The last author analized fractional integral
operators (3,4] and the Hankel transform [5] on Fp .

In this note we study the A, , transformation on the space Fy . Our results generalize
some of the one due to A.C. McBride [5] for the Hankel transformation.

We firstly need to establish the following

PROPOSITION 1. Let f€ Fp, with pl=2-v+nl<p<pl, 1<pgoo, v>-1+n"1 and
neN*. Then :

8khya(F(Y) = (=1)kh, o ((6+1)f(2))(y), for y>0 and keN,
where 6§ =yD. Here and in the sequel p~! is understood as 1 when p =o0.
Proof. In virtue of the operational rule ([1, p.10])
D (gnwH/2 J‘(l :'Z(z)) = n9-n/2z-len(vs2)/2 an)(z)

by integrating by parts we can obtain

®

hyn(f)(y) = —27/2n1 fo (zy)tv-(/m)-nwel)/2 Jﬁﬁ(w)(ﬂn)f(z) dz

where n=2-(14+¥)n+v—1/n.
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Differentiation under the integral sign leads to
®
B*hun (N(y) = (-2 20 [° (oy)tov-AIm-nte1)/2 1 () (54+1)4(641) f(z) dz =

= (=1)khy,a ((5+1)4f(2))(v)
for every keN. 1
The behaviour of the &, , transformation is now showed.

THEOREM 1. h,, is a continuous operator from Fp, into Fp (3/p).1-, Provided that
v,n,i and p satisfies the conditions in Proposition 1.

Proof By invoking the behaviours of Jl(,") near the origin and the infinity ([1, p.11])
we can write for feF,

[y# 1 hyn (F)(L/9)] < C{Ipa2-/myap,1{|27# 9(2)| + K1 o 1(|27H5(2) 1)}
where C is a suitable positive constant, g¢(z)=(6+2-n(v+1)+v-1/n)f(z) and the
operators I and K are defined by A.C. McBride in [3].
According to [3] and [7] we get

lywt-C/0 6k by, o (F) () llp < Coll 2+ (6+1)H(6+2-n(v+1)+v—1/n) f(2) .

Also one has

lly*D¥(yu+t-2/ eI, o (F)())Ilp < CzZ':;o Toulf),
for fe Fp, and certain C>0 and m €N. Thus the proof is finished. Nl

Let now 1<p <00, VER, neN* and > p-1—2—v+n-L. We define the operator

h;,n (.f)(y) = (_2"12"'_1)ky-kh‘wk,n(Nv+k-1,n-Nv+k-2,w-'Nv,nf(z))(y): f€ Fp,p.

where N, ,=z"1(6+v+2-n(v+1)-1/n) and keN is chosen such that v+k>—1+1/n and
p<k+1/p.

We can prove that h’,“,,n is independent of k provided that k satisfies the above
conditions. Moreover hj,f=hy,f, for feF,, when v>-1+1/n and pl-2-v+nl<pu<
p~l. Hence hj , can be seen as an extension of h,, on Fp, to values of ¥<—1+1/n and
pepl. :

In virtue of Theorem 1 and [3, Theorem 2.6] we can establish the following

THEOREM 2. If 1<p<oo, veER, neN* and p>pl-2-v+nl, then hy, is a
continuous operator from Fp , into Fy (3/p)-1-p-
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