Absolutely (∞,p) summing and Weakly-p-compact operators in C(K)

Jesus M.F.Castillo y Fernando Sánchez

Departamento de Matematicas. Universidad de Extremadura. Avda de Elvas s/n. 06071 Badajoz. España (Spain).

AMS (1980) Clas Number: 46B20, 46B25, 47B10

In this note we review some results about:

- 1. Representation of Absolutely (∞,p) summing operators $(\Pi_{\infty,p})$ in C(K,E)
- 2. Dunford-Pettis properties.

For the basic definitions and especially those of the ideals $\Pi_{\omega,p}$ and \mathfrak{B}_p please consult the preceding report.

1. Since $\Pi_{\omega,p}$ operators are intermediate between the Unconditionally summing operators $\mathfrak U$ (= $\Pi_{\omega,1}$) and the Completely continuous operators $\mathfrak B$ (= $\Pi_{\omega,\infty}$) it is possible to extend to these ideals the results obtained for $\mathfrak U$ and $\mathfrak B$ by several authors:Bombal,Cembranos,Rodriguez-Salinas,Saab,... about the relationships among the pertenence of an operator $T:C(K,E)\longrightarrow F$ to $\mathfrak U,\mathfrak B$ and the pertenence of its representing measure to $\mathfrak U,\mathfrak B$.

Lemma 1.Let $T:C(K,E)\longrightarrow F$ be in $\Pi_{\infty,p}$. If μ denotes its representing measure:

- a) μ has semivariation continuous at ϕ
- b) For any Borel set $A\subseteq K$, $\mu(A):E \longrightarrow F$ is in $\Pi_{\infty,p}$.

The converse is false:[B1] shows an operator $T:C([0,1],c_0) \longrightarrow c_0$ not in $\Pi_{\omega,1}$ such that its representing measure has continuous semivariation at \emptyset and for any Borel set $A\subseteq K$, $m(A):c_0 \longrightarrow c_0$ is compact. Under certain assumptions the converse of 1 can be onbtained: following [BR]:

Lemma 2. Let $T:C(K,E) \longrightarrow F$ be an operator such that its representing measure μ satisfies a) and b) of Lemma 1. If μ admits a discrete control measure λ , then T is in $\Pi_{\infty,p}$.

Lemma 2. especially applies when K is a dispersed compact set. When something more can be said, for example that $id(E) \in \Pi_{\omega,p}$ then not only a) and b) implies that $T \in \Pi_{\omega,p}$, but we have in fact an equivalence. Following

Lemma 3. The following are equivalent:

- a) $Id(E) \in \Pi_{\omega,p}$
- b) For any compact K and any Banach space F, $T:C(K,E) \longrightarrow F$ is in $\Pi_{\infty,p}$ if and only if its representing measure μ has continuous semivariation at ϕ and for any Borel set $A\subseteq K$, $\mu(A):E \longrightarrow F$ is in $\Pi_{\infty,p}$.
- 2. The classical Dunford-Pettis property in a Banach space X is defined via the contention $\mathbb{S}\subseteq\mathbb{B}$ for operators defined on X.

Definition. We shall say that X has the Dunford-Pettisproperty of order p (in short DPP_p), $1 \le p \le +\infty$, if $\mathfrak{W}(X,Y) \le \Pi_{\infty,p}(X,Y)$ for any Banach space Y.

All Banach spaces have DPP₁, and the clasical DPP is DPP_{∞}. DPP_p are weaker properties than classical DPP, so that reflexive spaces may have it. For example, ℓ_r has DPP_p for p<ra>r*, and L_r(0,1) has DPP_p for p<min(2,r*).

The definition of DPP_p properties and the following characterization result appear in [C1]:

Proposition. The following are equivalent:

1.X has DPP_p , $1 \le p \le +\infty$.

2.If (x_n) is a weakly-p-summable sequence in X and (x_n^*) is weakly null in X*, then $\lim_{n \to \infty} (x_n^*, x_n) = 0$.

3. Any weakly compact operator $T:X \longrightarrow Y$ transforms weakly-p-compact sets into compact sets.

Concerning the relationships between the DPP_p in X and in C(K,X) we have: A simple modification of Talagrand's example [T] shows that a Banach space \mathcal{T}_p exists such that it has DPP but $C(K,\mathcal{T}_p)$ has not DPP_p . On the other hand:

Lemma 4. If $Id(E) \in \Pi_{\infty,p}$, then C(K,E) has DPP_p

And following [BR]:

Lemma 5. If K is a dispersed compact set, then they are equivalent: a) E has DPP_p and b) C(K,E) has DPP_p

For the general case the notion of Almost-Dunford-Pettis operator introduced in [BR] and the subsequent characterization of Bombal [B] still works. We shall say that an operator $T:C(K,E)\longrightarrow F$ is almost- $\Pi_{\omega,p}$ if it transforms sequences in C(K,E) of the form (f_nx_n) (where $f_n:K\longrightarrow K$ is a bounded sequence and (x_n) a weakly-p-summable sequence in E) into norm null sequences. Finally we say that C(K,E) has the almost- DPP_p if weakly compact operators $T:C(K,E)\longrightarrow F$ are almost- $\Pi_{\omega,p}$. We have:

Proposition. The following are equivalent:

- a) E has the DPP_p
- b) C(K,E) has the almost-DPP_p

Results for weakly-p-compact operators are being developed [F].

References

- [B1] F.Bombal and B.Rodriguez Salinas. Some classes of operators on C(K,E). Extension and Applications. Arch. Math vol 47 (1986) 55-65
- [B2] F.Bombal. On the Dunford-Pettis property. Portugaliae Math.
- [C1] J.M.F.Castillo. On weak p-summability in vector valued sequence spaces.
 To appear
- [C2] J.M.F.Castillo. On Banach spaces such that $\mathfrak{L}(L_p, X) = \mathfrak{K}(L_p, X)$. Preprint.
- [F] F.Sánchez.Sucesiones debilmente-p-sumables en espacios de Banach. Tesis Doctoral. Universidad de Extremadura 1991.
- [T] M.Talagrand. La propriété de Dunford-Pettis dans C(K,E) et $L_1(E)$. Israel J. of Math. vol 44, n^2 4 (1983)